OUTLINE

• DBPedia:
 o What is it?
 o How's the data structured?
 o Where does the data come from?
 o Accessing the data
• Query Examples
Community whose goal is to provide web based information from Wikipedia data

- Allows users to ask sophisticated questions
- Links data sets together across the web
- Describes more than 3.5 million things which are broken down into categories
 - People
 - Places
 - Music Album
 - Films
 - Video games
 - Organizations
 - Species
 - Diseases
 - etc
What kind of Data?

- Dataset is represented in a cross-domain ontology that was manually created by members of the community.
- 272 classes based on information in Wikipedia infoboxes:
 - organized in hierarchy under "owl:Thing"
 - infoboxes are grey "summary" boxes in top right of Wikipedia pages.
- Organization of classes:
 - Means of Transportation parent of:
 - aircraft, ship, automobile, etc
 - Event parent of:
 - music festival, military conflict, convention, etc
STRUCTURE OF DATA

- OWL ontology describing all classes
- Data must be mapped from Wikipedia to DBpedia
 - data from Wikipedia not stored in standardized way
 - creation of data and properties decentralized by many users.
 - eg.
 - birthplace & placeofbirth property names describe same data
Example of class ontology:

```xml
<owl:Class rdf:about="http://dbpedia.org/ontology/Person">
  <rdfs:label xml:lang="en">person</rdfs:label>
  <rdfs:label xml:lang="de">Person</rdfs:label>
  <rdfs:label xml:lang="pt">pessoa</rdfs:label>
  <rdfs:label xml:lang="fr">personne</rdfs:label>
  <rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"></rdfs:subClassOf>
  <owl:equivalentClass rdf:resource="http://xmlns.com/foaf/0.1/Person"></owl:equivalentClass>
</owl:Class>
```

- Support for multiple languages
- "Person" is one level below root.
- Mapping to FOAF makes machine-readable
- Ontology Classes
- http://dbpedia.org/ontology/Person
STRUCTURE OF INSTANCE

- Instance Property description of "Person"
- Subject, predicate, object
- Predicates/Objects can be DBpedia defined (deathPlace) or standards defined (foaf)
- Objects can be literal values ("Greek Philosopher")
- Objects can be DBPedia/Standards defined:
 - foaf/Person
 - DBpedia defined
Resources may reference other resources by relationships

Relationships can be represented as edges in a large web of data

You can follow these relationships to other resources
Relationship Examples

(www.visualdataweb.org/relfinder/relfinder.php):

RelFinder -

Viewable Relationships:

- Porsche, Volkswagen, Allan McNish, Audi
- Physics, Albert Einstein, Literature (then + Barack Obama)
- George Clooney, O Brother, Where Art Though + John Turturro (start clicking on classes)
Most Wikipedia data is unstructured
infobox templates, categorization information, images, geo
information, and external url links are structured, however

```
{{Infobox Town AT |
  name = Innsbruck |
  image_coa = InnsbruckWappen.png |
  image_map = Karte-tirol-1.png |
  state = {{Tyrol}} |
  regbz = {{Statutory city}} |
  population = 117,342 |
  population_as_of = 2006 |
  pop_dens = 1,119 |
  area = 104.91 |
  elevation = 674 |
  lat_deg = 47 |
  lat_min = 16 |
  lat_hem = N |
  lon_deg = 11 |
  lon_min = 23 |
  lon_hem = E |
  postal_code = 6010-8080 |
  area_code = 0612 |
  licence = I |
  mayor = Hilde Zach |
  website = [http://innsbruck.at] |
}}
```
Wikipedia Data Gathering

- DBpedia gathers data using an automated extractor
 - pulls all infobox data from all articles in Wikipedia
 - pulls multiple languages
- Very little clean-up is done to the data
 - "June 2009 changed to 2009-06"
 - xml friendly
- Downside:
 - over 8000 property types exist
- Mapping of Wikipedia Infoboxes to DBpedia classes is done by hand to correct weaknesses in the Wikipedia model
 - more than 1 infobox may exist for the article
ACCESSING DATA

• Browse Data:
 o either looking through RDF manually
 o using tool like RelFinder
 o hard to get value

• Third Party Tools:
 o use underlying SPARQL queries
 o Display search results in html format with links to resource information
 o SPARQL queries require an intimate knowledge of data set
 o Not practical for a wide web use
QUERY EXAMPLES

DBpedia SPARQL (http://dbpedia.org/snorql/):

All “Things” about Atlanta:
SELECT * WHERE {
 FILTER (LANG(?o)='en') .
}
People who were born in Germany before the year 1800, but died in Paris:

PREFIX dbo: <http://dbpedia.org/ontology/>

SELECT * WHERE {
 ?person dbo:birthPlace :Germany .
 ?person foaf:name ?name .
 FILTER (LANG(?description) = 'en') .
 FILTER (?birth < "1800-01-01"^^xsd:date) .
}
ORDER BY ?name
Schools within 10km of Atlanta:
SELECT DISTINCT ?Link ?SchoolName ?EstablishedDate ?lat ?long
WHERE
{
 FILTER (bif:st_intersects (?matchgeo, ?sourcegeo, 5)) .
 ?Link rdfs:label ?SchoolName .
 FILTER (lang (?SchoolName) = "en")
}
ORDER BY ?SchoolName
Third Party Tools

- Third Party Search Engines:
 - Text based searching
 - Facet based searching
 - Similar to Web Stores "filtering" results.
 - can also use text searching
 - Very powerful method of searching
Query Examples

Faceted Searching: (http://dbpedia.neofonie.de/browse)
- Large High Elevation Cities
SUMMARY

- Very powerful and meaningful results are produceable
- Relies heavily on crowd sourcing data and manual mapping
 - categorization of classes, wiki to dbpedia mapping, error correction.
- Data needs to be pre-formatted and stored in a place where accessing the data set is fast. (too big to cache)
- Error in data set makes searching difficult
Questions?