Formal Languages - 3

• Ambiguity in PLs
 – Problems with if-then-else constructs
 – Harder problems

• Chomsky hierarchy for formal languages
 – Regular and context-free languages
 – Type 1: Context-sensitive languages
 – Type 0 languages and Turing machines

Dangling Else Ambiguity (Pascal)

Start ::= Stmt
Stmt ::= Ifstmt | Astmt
Ifstmt ::= IF LogExp THEN Stmt | IF LogExp THEN Stmt ELSE Stmt
Astmt ::= Id := Digit
Digit ::= 0123456789
LogExp ::= Id = 0
Id ::= ablicddefg[hilijkllmnolplqrlsiltulvwlxylz

How are compound if statements parsed using this grammar??
IF \(x = 0 \) THEN IF \(y = 0 \) THEN \(z := 1 \) ELSE \(w := 2; \)

Parse Tree 1

Parse Tree 2
Which tree is correct?

- **Algol60**: use block structure

 if \(x = 0 \) then begin if \(y = 0 \) then \(z := 1 \) end else \(w := 2 \)

- **Algol68**: use statement begin/end markers

 if \(x = 0 \) then if \(y = 0 \) then \(z := 1 \) fi else \(w := 2 \) fi

- **Pascal**: change the if statement grammar to disallow parse tree 2; that is, *always associate an else with the closest if*
New Pascal Grammar

Start ::= Stmt
Stmt ::= Stmt1 | Stmt2
Stmt1 ::= IF LogExp THEN Stmt1 ELSE Stmt1 | Astmt
Stmt2 ::= IF LogExp THEN Stmt1 | IF LogExp THEN Stmt1 ELSE Stmt2
Astmt ::= Id := Digit
Digit ::= 0|1|2|3|4|5|6|7|8|9
LogExp ::= Id = 0
Id ::= ablcldlflghiiijklmnlolplqrlsrstltulviwixylz

Note: only if statements with IF..THEN..ELSE are allowed after the THEN clause of an IF-THEN-ELSE statement.

If \(x = 0 \) THEN IF \(y = 0 \) THEN \(z := 1 \) ELSE \(w := 2 \);

In the new grammar there is only 1 parse tree!
Ambiguity

- Sometimes we can remove an ambiguity from a grammar by restructuring the productions, but it is not always possible
 - An inherently ambiguous language does not possess an unambiguous grammar
 - E.g., \(L = \{ a^i b^j c^k \mid i = j \text{ or } j = k \text{ for } i,j,k \geq 1 \} \) generated by grammar:
 \[
 \begin{align*}
 S &::= L C | A D \\
 L &::= a L b | a b \\
 C &::= c | c C \\
 D &::= b D c | b c \\
 A &::= a | a A \\
 \end{align*}
 \]

Parse Trees

The problem here is that there are 2 different parts to the grammar for \(L \) -- one to generate the sentences for strings with same numbers of \(a \)'s and \(b \)'s and the other for same numbers of \(b \)'s and \(c \)'s. Thus, for strings in the language \(\{ a^n b^n c^n \mid n \geq 1 \} \) contained in \(L \), there are always TWO different derivations.
Ambiguity

• There is no algorithm which can examine an arbitrary context-free grammar and tell if it is ambiguous or not
 – This is undecidable

• There is no algorithm which can examine two arbitrary context-free grammars and tell if they generate the same language
 – This is undecidable

Chomsky Hierarchy

• Describes categories of languages which correspond to more and more powerful recognizing automata

• 4 level hierarchy
 – We’ve studied the bottom two levels: regular and context-free languages
Type 3 (regular) Languages

- **Recognizer**: finite state automaton
- Can do simple recursive constructs
- Can’t count (or match parentheses)
 - Not regular \(\{a^n b^n, n \geq 1\} \)
- Can be written with all right recursive or all left recursive rules
 - Nonterm ::= term | Nonterm term

Type 2 (context-free) Languages

- **Recognizer**: push down automaton
- BNF rules with 1 nonterminal on lefthandside
- Can’t check context
 - Not context-free \(\{a^n b^n c^n, n \geq 1\} \)
 - Programming examples
 - Check that no variable is declared twice
 - Check difference between function calls and array accesses in Fortran (both use parentheses)

 DIMENSION F(10,10)....F(I,J)....
Context-free Languages

- Check matchup of arguments with parameters in Pascal using nested function definitions

\[
\begin{align*}
\text{procedure } p \ (x \ : \ \text{integer}, \ y : \ \text{real})
\text{procedure } q \ (w : \ \text{integer})
... \ P(50,1.2)...
\text{end } q
...Q(1)...
\text{end } P
\end{align*}
\]

pattern seen is \((\text{parms } p)(\text{parms } q)(\text{args } p)(\text{args } q)\)

corresponding language is \(\{a^n b^n c^n d^n, \ m,n \geq 1\}\)

Type 1 (context-sensitive) Language

- **Recognizer**: linear bounded automaton
- Grammar rules can have more than 1 symbol on lefthandside as long as \(|\text{rhs}| \geq |\text{lhs}|\)
- Can do parameter - argument matching (in number)
- **Examples**:
 \(\{a^n b^m c^n d^n, m,n \geq 1\}\)
 \(\{a^n b^n c^n, n \geq 1\}\)
Context-sensitive Example

1. T ::= S 2a 2b
2. S ::= a S B C l a B C
3. CB ::= BC --reverse B’s and C’s
4. aB ::= ab
5. bB ::= bb --expand B
6. bC ::= bc --expand C
7. cC ::= cc

Derive aabbcc:

T S a S B C l a a B C B C a a B B C C a a B B C C a a B B C C a a b b C C a a b b C C a a b b c C a a b b c C a a b b c C a a b b c C a a b b c C

Type 0 (recursively-enumerable) Languages

• Recognizer: Turing machine
• All languages that can be recognized by a procedure
• Subclass of Type 0: Recursive languages, languages recognized by an algorithm that always halts
Turing Machines, Lightly

• Abstract model of computation

• <finite set of states, alphabet, blank symbol, start state, final state, transition function>
 – transition function:
 <state, tape symbol read> → <state, tape symbol wrote, {L,R,S}> where
 L,R,S means tape moves 1 square to the Left, Right, No move

• TM Halting problem: Given a TM in an arbitrary configuration with nonblank symbols on its tape, will the TM eventually halt? -- unsolvable!
 – There cannot exist an algorithm to solve this problem for an arbitrary choice of Turing machine on arbitrary input, although for a specific TM with specific input, there may be a solution.