Chapter 4
Basic SQL
Chapter 4 Outline

- SQL Data Definition and Data Types
- Specifying Constraints in SQL
- Basic Retrieval Queries in SQL
- INSERT, DELETE, and UPDATE Statements in SQL
- Additional Features of SQL
Basic SQL

- SQL language
 - Considered one of the major reasons for the commercial success of relational databases

- SQL
 - Structured Query Language
 - Statements for data definitions, queries, and updates (both DDL and DML)
 - Core specification
 - Plus specialized extensions
SQL Data Definition and Data Types

- Terminology:
 - Table, row, and column used for relational model terms relation, tuple, and attribute

- CREATE statement
 - Main SQL command for data definition
Schema and Catalog Concepts in SQL

- **SQL schema**
 - Identified by a *schema name*
 - Includes an *authorization identifier* and *descriptors* for each element

- **Schema elements** include
 - Tables, constraints, views, domains, and other constructs

- Each statement in SQL ends with a semicolon
Schema and Catalog Concepts in SQL (cont’d.)

- **CREATE SCHEMA statement**
 - `CREATE SCHEMA COMPANY AUTHORIZATION 'Jsmith';`

- **Catalog**
 - Named collection of schemas in an SQL environment

- **SQL environment**
 - Installation of an SQL-compliant RDBMS on a computer system
The CREATE TABLE Command in SQL

- Specify a new relation
 - Provide name
 - Specify attributes and initial constraints
- Can optionally specify schema:
 - CREATE TABLE COMPANY.EMPLOYEE ...
 - or
 - CREATE TABLE EMPLOYEE ...
The CREATE TABLE Command in SQL (cont’d.)

- **Base tables (base relations)**
 - Relation and its tuples are actually created and stored as a file by the DBMS

- **Virtual relations**
 - Created through the `CREATE VIEW` statement
Figure 4.1
SQL CREATE TABLE data definition statements for defining the COMPANY schema from Figure 3.7.

```
CREATE TABLE EMPLOYEE
    ( Fname VARCHAR(15) NOT NULL,
      Minit CHAR, 
      Lname VARCHAR(15) NOT NULL, 
      Ssn CHAR(9) NOT NULL, 
      Bdate DATE, 
      Address VARCHAR(30), 
      Sex CHAR, 
      Salary DECIMAL(10,2), 
      Super_ssn CHAR(9), 
      Dno INT NOT NULL, 
    PRIMARY KEY (Ssn), 
    FOREIGN KEY (Super_ssn) REFERENCES EMPLOYEE(Ssn), 
    FOREIGN KEY (Dno) REFERENCES DEPARTMENT(Dnumber));

CREATE TABLE DEPARTMENT
    ( Dname VARCHAR(15) NOT NULL, 
      Dnumber INT NOT NULL, 
      Mgr_ssn CHAR(9) NOT NULL, 
      Mgr_start_date DATE, 
    PRIMARY KEY (Dnumber), 
    UNIQUE (Dname), 
    FOREIGN KEY (Mgr_ssn) REFERENCES EMPLOYEE(Ssn));
```
CREATE TABLE DEPT_LOCATIONS
(Dnumber INT NOT NULL,
 Dlocation VARCHAR(15) NOT NULL,
PRIMARÝ KEY (Dnumber, Dlocation),
FOREIGN KEY (Dnumber) REFERENCES DEPARTMENT(Dnumber));

CREATE TABLE PROJECT
(Pname VARCHAR(15) NOT NULL,
 Pnumber INT NOT NULL,
 Plocation VARCHAR(15),
 Dnum INT NOT NULL,
PRIMARÝ KEY (Pnumber),
UNIQUE (Pname),
FOREIGN KEY (Dnum) REFERENCES DEPARTMENT(Dnumber));

CREATE TABLE WORKS_ON
(Essn CHAR(9) NOT NULL,
 Pno INT NOT NULL,
 Hours DECIMAL(3,1) NOT NULL,
PRIMARÝ KEY (Essn, Pno),
FOREIGN KEY (Essn) REFERENCES EMPLOYEE(Ssn),
FOREIGN KEY (Pno) REFERENCES PROJECT(Pnumber));

CREATE TABLE DEPENDENT
(Essn CHAR(9) NOT NULL,
 Dependent_name VARCHAR(15) NOT NULL,
 Sex CHAR,
 Bdate DATE,
 Relationship VARCHAR(8),
PRIMARÝ KEY (Essn, Dependent_name),
FOREIGN KEY (Essn) REFERENCES EMPLOYEE(Ssn));
The CREATE TABLE Command in SQL (cont’d.)

- Some foreign keys may cause errors
 - Specified either via:
 - Circular references
 - Or because they refer to a table that has not yet been created
Attribute Data Types and Domains in SQL

- **Basic data types**
 - **Numeric data types**
 - Integer numbers: INTEGER, INT, and SMALLINT
 - Floating-point (real) numbers: FLOAT or REAL, and DOUBLE PRECISION
 - **Character-string data types**
 - Fixed length: CHAR(n), CHARACTER(n)
 - Varying length: VARCHAR(n), CHAR VARYING(n), CHARACTER VARYING(n)
Attribute Data Types and Domains in SQL (cont’d.)

- **Bit-string** data types
 - Fixed length: `BIT(n)`
 - Varying length: `BIT VARYING(n)`

- **Boolean** data type
 - Values of `TRUE` or `FALSE` or `NULL`

- **DATE** data type
 - Ten positions
 - Components are `YEAR, MONTH, and DAY` in the form `YYYY-MM-DD`
Attribute Data Types and Domains in SQL (cont’d.)

- Additional data types
 - **Timestamp** data type (**TIMESTAMP**)
 - Includes the **DATE** and **TIME** fields
 - Plus a minimum of six positions for decimal fractions of seconds
 - Optional **WITH TIME ZONE** qualifier
 - **INTERVAL** data type
 - Specifies a relative value that can be used to increment or decrement an absolute value of a date, time, or timestamp
Attribute Data Types and Domains in SQL (cont’d.)

- **Domain**
 - Name used with the attribute specification
 - Makes it easier to change the data type for a domain that is used by numerous attributes
 - Improves schema readability
 - Example:

    ```
    CREATE DOMAIN SSN_TYPE AS CHAR(9);
    ```
Specifying Constraints in SQL

- Basic constraints:
 - Key and referential integrity constraints
 - Restrictions on attribute domains and NULLs
 - Constraints on individual tuples within a relation
Specifying Attribute Constraints and Attribute Defaults

- **NOT NULL**
 - NULL is not permitted for a particular attribute

- **Default value**
 - DEFAULT <value>

- **CHECK clause**
 - Dnumber INT NOT NULL CHECK (Dnumber > 0 AND Dnumber < 21);
CREATE TABLE EMPLOYEE
(
 Dno INT NOT NULL DEFAULT 1,
CONSTRAINT EMPPK
 PRIMARY KEY (Ssn),
CONSTRAINT EMPSUPERFK
 FOREIGN KEY (Super_ssn) REFERENCES EMPLOYEE(Ssn)
 ON DELETE SET NULL ON UPDATE CASCADE,
CONSTRAINT EMPDEPTFK
 FOREIGN KEY (Dno) REFERENCES DEPARTMENT(Dnumber)
 ON DELETE SET DEFAULT ON UPDATE CASCADE);
CREATE TABLE DEPARTMENT
(
 Mgr_ssn CHAR(9) NOT NULL DEFAULT '888665555',
 ...
CONSTRAINT DEPTPK
 PRIMARY KEY (Dnumber),
CONSTRAINT DEPTSFK
 UNIQUE (Dname),
CONSTRAINT DEPTMGRFK
 FOREIGN KEY (Mgr_ssn) REFERENCES EMPLOYEE(Ssn)
 ON DELETE SET DEFAULT ON UPDATE CASCADE);
CREATE TABLE DEPT_LOCATIONS
(
 Dnumber, Dlocation,
 PRIMARY KEY (Dnumber, Dlocation),
 FOREIGN KEY (Dnumber) REFERENCES DEPARTMENT(Dnumber)
 ON DELETE CASCADE ON UPDATE CASCADE);
Specifying Key and Referential Integrity Constraints

- **PRIMARY KEY** clause
 - Specifies one or more attributes that make up the primary key of a relation
 - `Dnumber INT PRIMARY KEY;`

- **UNIQUE** clause
 - Specifies alternate (secondary) keys
 - `Dname VARCHAR(15) UNIQUE;`
Specifying Key and Referential Integrity Constraints (cont’d.)

- **FOREIGN KEY** clause
 - Default operation: reject update on violation
 - Attach *referential triggered action* clause
 - Options include *SET NULL*, *CASCADE*, and *SET DEFAULT*
 - Action taken by the DBMS for *SET NULL* or *SET DEFAULT* is the same for both *ON DELETE* and *ON UPDATE*
 - *CASCADE* option suitable for “relationship” relations
Giving Names to Constraints

- Keyword `CONSTRAINT`
 - Name a constraint
 - Useful for later altering
Specifying Constraints on Tuples Using CHECK

- **CHECK clauses at the end of a CREATE TABLE statement**
 - Apply to each tuple individually
 - `CHECK (Dept_create_date <= Mgr_start_date);`
Basic Retrieval Queries in SQL

- **SELECT statement**
 - One basic statement for retrieving information from a database

- SQL allows a table to have two or more tuples that are identical in all their attribute values
 - Unlike relational model
 - Multiset or bag behavior
The SELECT-FROM-WHERE Structure of Basic SQL Queries

- Basic form of the SELECT statement:

```
SELECT <attribute list>
FROM <table list>
WHERE <condition>;
```

where

- `<attribute list>` is a list of attribute names whose values are to be retrieved by the query.
- `<table list>` is a list of the relation names required to process the query.
- `<condition>` is a conditional (Boolean) expression that identifies the tuples to be retrieved by the query.
The SELECT-FROM-WHERE Structure of Basic SQL Queries (cont’d.)

- **Logical comparison operators**
 - =, <, <=, >, >=, and <>

- **Projection attributes**
 - Attributes whose values are to be retrieved

- **Selection condition**
 - Boolean condition that must be true for any retrieved tuple
Figure 4.3
Results of SQL queries when applied to the COMPANY database state shown in Figure 3.6. (a) Q0. (b) Q1. (c) Q2. (d) Q8. (e) Q9. (f) Q10. (g) Q1C.

(a)	Bdate	Address
 | 1965-01-09 | 731 Fondren, Houston, TX |

(b)	Fname	Lname	Address
 | John | Smith | 731 Fondren, Houston, TX |
 | Franklin| Wong | 638 Voss, Houston, TX |
 | Ramesh | Narayan | 975 Fire Oak, Humble, TX |
 | Joyce | English | 5631 Rice, Houston, TX |

Query 0. Retrieve the birth date and address of the employee(s) whose name is ‘John B. Smith’.

Q0:
SELECT
FROM
WHERE
Bdate, Address
EMPLOYEE
Fname='John' AND Minit='B' AND Lname='Smith';

Query 1. Retrieve the name and address of all employees who work for the ‘Research’ department.

Q1:
SELECT
FROM
WHERE
Fname, Lname, Address
EMPLOYEE, DEPARTMENT
Dname='Research' AND Dnumber=Dno;
Figure 4.3
Results of SQL queries when applied to the COMPANY database state shown in Figure 3.6. (a) Q0. (b) Q1. (c) Q2. (d) Q8. (e) Q9. (f) Q10. (g) Q1C.

<table>
<thead>
<tr>
<th>Pnumber</th>
<th>Dnum</th>
<th>Lname</th>
<th>Address</th>
<th>Bdate</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>4</td>
<td>Wallace</td>
<td>291 Berry, Bellaire, TX</td>
<td>1941-06-20</td>
</tr>
<tr>
<td>30</td>
<td>4</td>
<td>Wallace</td>
<td>291 Berry, Bellaire, TX</td>
<td>1941-06-20</td>
</tr>
</tbody>
</table>

Query 2. For every project located in ‘Stafford’, list the project number, the controlling department number, and the department manager’s last name, address, and birth date.

Q2:
```
SELECT Pnumber, Dnum, Lname, Address, Bdate
FROM PROJECT, DEPARTMENT, EMPLOYEE
WHERE Dnum=Dnumber AND Mgr_ssn=Ssn AND
      Plocation='Stafford';
```
Ambiguous Attribute Names

- Same name can be used for two (or more) attributes
 - As long as the attributes are in different relations
 - Must **qualify** the attribute name with the relation name to prevent ambiguity

Q1A: SELECT Fname, EMPLOYEE.Name, Address
 FROM EMPLOYEE, DEPARTMENT
 WHERE DEPARTMENT.Name='Research' AND DEPARTMENT.Dnumber=EMPLOYEE.Dnumber;
Aliasing, Renaming, and Tuple Variables

- **Aliases or tuple variables**
 - Declare alternative relation names E and S
 - `EMPLOYEE AS E(Fn, Mi, Ln, Ssn, Bd, Addr, Sex, Sal, Sssn, Dno)`
Unspecified WHERE Clause and Use of the Asterisk

- **Missing `WHERE` clause**
 - Indicates no condition on tuple selection
- **CROSS PRODUCT**
 - All possible tuple combinations

Queries 9 and 10. Select all `EMPLOYEE` `Ssn`s (Q9) and all combinations of `EMPLOYEE` `Ssn` and `DEPARTMENT` `Dname` (Q10) in the database.

Q9: `SELECT` `Ssn`
 `FROM` `EMPLOYEE`;

Q10: `SELECT` `Ssn`, `Dname`
 `FROM` `EMPLOYEE, DEPARTMENT`;
Unspecified WHERE Clause and Use of the Asterisk (cont’d.)

- Specify an asterisk (*)
 - Retrieve all the attribute values of the selected tuples

```
Q1c: SELECT * FROM EMPLOYEE
     WHERE Dno=5;

Q1d: SELECT * FROM EMPLOYEE, DEPARTMENT
     WHERE Dname='Research' AND Dno=Dnumber;

Q10a: SELECT * FROM EMPLOYEE, DEPARTMENT;
```
Tables as Sets in SQL

- SQL does not automatically eliminate duplicate tuples in query results
- Use the keyword **DISTINCT** in the **SELECT** clause
 - Only distinct tuples should remain in the result

Query 11. Retrieve the salary of every employee (Q11) and all distinct salary values (Q11A).

Q11:
```
SELECT ALL Salary 
FROM EMPLOYEE;
```

Q11A:
```
SELECT DISTINCT Salary 
FROM EMPLOYEE;
```
Tables as Sets in SQL (cont’d.)

- Set operations
 - UNION, EXCEPT (difference), INTERSECT
 - Corresponding multiset operations: UNION ALL, EXCEPT ALL, INTERSECT ALL

Query 4. Make a list of all project numbers for projects that involve an employee whose last name is ‘Smith’, either as a worker or as a manager of the department that controls the project.

Q4A: (SELECT DISTINCT Prumber
FROM PROJECT, DEPARTMENT, EMPLOYEE
WHERE Dnum=Dnumber AND Mgr_ssn=Ssn
AND Lname='Smith')
UNION
(SELECT DISTINCT Prumber
FROM PROJECT, WORKS_ON, EMPLOYEE
WHERE Pnumber=Pno AND Essn=Ssn
AND Lname='Smith');
Substring Pattern Matching and Arithmetic Operators

- **LIKE** comparison operator
 - Used for string **pattern matching**
 - % replaces an arbitrary number of zero or more characters
 - underscore (_) replaces a single character

- Standard arithmetic operators:
 - Addition (+), subtraction (−), multiplication (*), and division (/)

- **BETWEEN** comparison operator
Ordering of Query Results

- Use **ORDER BY** clause
 - Keyword **DESC** to see result in a descending order of values
 - Keyword **ASC** to specify ascending order explicitly
 - **ORDER BY D.Dname DESC, E.Lname ASC, E.Fname ASC**
Discussion and Summary of Basic SQL Retrieval Queries

```
SELECT <attribute list>
FROM <table list>
[ WHERE <condition> ]
[ ORDER BY <attribute list> ];
```
INSERT, DELETE, and UPDATE Statements in SQL

- Three commands used to modify the database:
 - INSERT, DELETE, and UPDATE
The INSERT Command

- Specify the relation name and a list of values for the tuple

U1: INSERT INTO EMPLOYEE
 VALUES
 ('Richard', 'K', 'Marini', '653298653', '1962-12-30', '98 Oak Forest, Katy, TX', 'M', 37000, '653298653', 4);

U3B: INSERT INTO WORKS_ON_INFO
 (Emp_name, Proj_name, Hours_per_week)
 SELECT E.Lname, P.Pname, W.Hours
 FROM PROJECT P, WORKS_ON W, EMPLOYEE E
 WHERE P.Pnumber=W.Pno AND W.Essn=E.Ssn;
The DELETE Command

- Removes tuples from a relation
 - Includes a `WHERE` clause to select the tuples to be deleted

```
U4A: DELETE FROM EMPLOYEE WHERE Lname='Brown';
U4B: DELETE FROM EMPLOYEE WHERE Ssn='123456789';
U4C: DELETE FROM EMPLOYEE WHERE Dno=5;
U4D: DELETE FROM EMPLOYEE;
```
The UPDATE Command

- Modify attribute values of one or more selected tuples
- Additional **SET** clause in the **UPDATE** command
 - Specifies attributes to be modified and new values

```
U5: UPDATE PROJECT
    SET Plocation = 'Bellaire', Dnum = 5
    WHERE Pnumber = 10;
```
Additional Features of SQL

- Techniques for specifying complex retrieval queries
- Writing programs in various programming languages that include SQL statements
- Set of commands for specifying physical database design parameters, file structures for relations, and access paths
- Transaction control commands
Additional Features of SQL (cont’d.)

- Specifying the granting and revoking of privileges to users
- Constructs for creating triggers
- Enhanced relational systems known as object-relational
- New technologies such as XML and OLAP
Summary

- SQL
 - Comprehensive language
 - Data definition, queries, updates, constraint specification, and view definition

- Covered in Chapter 4:
 - Data definition commands for creating tables
 - Commands for constraint specification
 - Simple retrieval queries
 - Database update commands