Ontologies - Querying Data through Ontologies

Serge Abiteboul Ioana Manolescu Philippe Rigaux Marie-Christine Rousset Pierre Senellart

Web Data Management and Distribution http://webdam.inria.fr/textbook

November 17, 2011

Outline

- The Semantic Web
- Ontologies and Reasoning
- Illustration

3 ontology languages for the Web

- 3 Reasoning in Description Logics
- 4 Querying Data through Ontologies

Conclusion

The Semantic Web

- A Web in which the resources are semantically described
 - annotations give information about a page, explain an expression in a page, etc.
- More precisely, a resource is anything that can be referred to by a URI
 - a web page, identified by a URL
 - a fragment of an XML document, identified by an element node of the document,
 - a web service,
 - a thing, an object, a concept, a property, etc.
- Semantic annotations: logical assertions that relate resources to some terms in pre-defined ontologies

Ontologies

- Formal descriptions providing human users a shared understanding of a given domain
 - A controlled vocabulary
- Formally defined so that it can also be processed by machines
- Logical semantics that enables reasoning.
- Reasoning is the key for different important tasks of Web data management, in particular
 - to answer queries (over possibly distributed data)
 - to relate objects in different data sources enabling their integration
 - to detect inconsistencies or redundancies
 - ► to refine queries with too many answers, or to relax queries with no answer

Classes and class hierarchy

- Backbone of the ontology
- AcademicStaff is a Class
- (A class will be interpreted as a set of objects)
- AcademicStaff isa Staff
- (isa is interpreted as set inclusion)

Relations

- Declaration of relations with their signature
- (Relations will be interpreted as binary relations between objects)
- TeachesIn(AcademicStaff,Course)
 - if one states that "X TeachesIn Y", then X belongs to AcademicStaff and Y to Course,
- TeachesTo(AcademicStaff, Student),
- Leads(Staff, Department)

Illustration

Instances

- Classes have instances
- Dupond is an instance of the class Professor ۰
- it corresponds to the fact: Professor(Dupond)

- Relations also have instances ٩
- (Dupond,CS101) is an instance of the relation TeachesIn
- it corresponds to the fact: TeachesIn(Dupond,CS101)

The instance statements can be seen as (and stored in) a database

Ontology = schema + instance

Schema

- The set of class and relation names
- The signatures of relations and also constraints
- The constraints that are used for two purposes
 - checking data consistency (like dependencies in databases)
 - ★ inferring new facts

Instance

- The set of facts
- The set of base facts together with the inferred facts should satisfy the constraints

• Ontology (i.e., Knowledge Base) = Schema + Instance

Outline

Introduction

- 2 3 ontology languages for the Web
 - 3 Reasoning in Description Logics
 - 4 Querying Data through Ontologies
 - 5 Conclusion

3 ontology languages for the Web

- RDF: a very simple ontology language
- RDFS: Schema for RDF
 - Can be used to define richer ontologies
- OWL: a much richer ontology language

- We next present them rapidly
- We will introduce further a family of ontology languages: Description logics

RDF: Resource Description Framework

RDF facts are triplets

:Dupond :Leads :CSDept > :Dupond :TeachesIn :UE111 > :Dupond :TeachesTo :Pierre > :Pierre :EnrolledIn :CSDept > :Pierre :RegisteredTo :UE111 > :UE111 :OfferedBy :CSDept >

Linked open data: publish open data sets on the Web

By September 2011, 31 billions RDF triplets

RDF graph

- A set of RDF facts defines
 - a set of relations between objects
 - an RDF graph where the nodes are objects:

RDF semantics

- A triplet $\langle s \ P \ o \rangle$ is interpreted in first-order logic (FOL) as a fact P(s, o)
- Example:

Leads(Dupond, CSDept) TeachesIn(Dupond, UE111) TeachesTo(Dupond,Pierre) EnrolledIn(Pierre, CSDept) RegisteredTo(Pierre, UE111) OfferedBy(UE111, CSDept)

RDFS: RDF Schema

- Not detailed here: the schema in RDF is super simplistic
- An RDF Schema defines the schema of a richer ontology

RDF Schema

 Do net get confused: RDFS can use RDF as syntax, i.e., RDFS statements can be themselves expressed as RDF triplets using some specific properties and objects used as RDFS keywords with a particular meaning.

- Declaration of classes and subclass relationships
 - Staff rdf:type rdfs:Class
 - (Java rdfs:subClassOf CSCourse)
- Declaration of instances (beyond the pure schema)
 - > (Dupond rdf:type AcademicStaff)

RDF Schema - continued

- Declaration of relations (properties in RDFS terminology)
 - RegisteredTo rdf:type rdf:Property >
- Declaration of subproperty relationships
 - LateRegisteredTo rdfs:subPropertyOf RegisteredTo >
- Declaration of domain and range restrictions for predicates
 - (TeachesIn rdfs:domain AcademicStaff)
 - (TeachesIn rdfs:range Course)
 - TeachesIn(AcademicStaff,Course)

RDFS logical semantics

RDF and RDFS statements	FOL translation	DL notation
<pre>(irdf:typeC)</pre>	C(i)	<i>i</i> : <i>C</i> or <i>C</i> (<i>i</i>)
〈iPj〉	P(i,j)	<i>i P j</i> or <i>P</i> (<i>i</i> , <i>j</i>)
<pre>(Crdfs:subClassOfD)</pre>	$\forall X(C(X) \Rightarrow D(X))$	$C \sqsubseteq D$
<pre>{Prdfs:subPropertyOfR ></pre>	$\forall X \forall Y (P(X, Y) \Rightarrow R(X, Y))$	$P \sqsubseteq R$
<pre> {Prdfs:domainC} </pre>	$\forall X \forall Y (P(X, Y) \Rightarrow C(X))$	$\exists P \sqsubseteq C$
<pre> {Prdfs:rangeD } </pre>	$\forall X \forall Y (P(X, Y) \Rightarrow D(Y))$	$\exists P^{-} \sqsubseteq D$

- Ignore for now DL column
- This is just a notation
- We will come back to it to discuss Description logics

OWL: Web Ontology Language

OWL extends RDFS with the possibility to express additional constraints

Main OWL constructs

- Disjointness between classes
- Constraints of functionality and symmetry on predicates
- Intentional class definitions
- Class union and intersection
- We will see these are all expressible in Description logics

OWL constructs

- Ignore again the DL column
- Disjointness between classes:

OWL notation	FOL translation	DL notation
<pre> {Cowl:disjointWithD ></pre>	$\forall X(C(X) \Rightarrow \neg D(X))$	$C \sqsubseteq \neg D$

Constraints of functionality and symmetry on predicates:

OWL notation	FOL translation	DL notation
<pre></pre>	$\forall X \forall Y \forall Z$	(funct P)
owl:FunctionalProperty)		
	$(P(X,Y) \land P(X,Z) \Rightarrow Y = Z)$	or $\exists P \sqsubseteq (\leq 1 P)$
<pre></pre>	$\forall X \forall Y \forall Z$	(funct P ⁻)
owl:InverseFunctionalProperty	$(P(X,Y) \land P(Z,Y) \Rightarrow X = Z)$	or $\exists P^- \sqsubseteq (\leq$
>		1 <i>P</i> ⁻)
<pre>< P owl:inverseOf Q ></pre>	$\forall X \forall Y (P(X,Y) \Leftrightarrow Q(Y,X))$	$P \equiv Q^-$
<pre></pre>	$\forall X \forall Y (P(X,Y) \Rightarrow P(Y,X))$	$P \sqsubseteq P^-$
owl:SymmetricProperty >		

Definition of intentional classes in OWL

- Goal: allow expressing complex constraints such as:
 - departments can be lead only by professors
 - only professors or lecturers may teach to undergraduate students.
- The keyword owl:Restriction is used in association with a blank node class, and some specific restriction properties:
 - owl:someValuesFrom
 - owl:allValuesFrom
 - owl:minCardinality
 - owl:maxCardinality

OWL Semantics

OWL notation	FOL translation	DL notation
_a owl:onPropertyP		
_aowl:allValuesFromC	$\forall Y (P(X,Y) \Rightarrow C(Y))$	∀ <i>P.C</i>
_a owl:onPropertyP		
_a owl:someValuesFromC	$\exists Y (P(X,Y) \land C(Y))$	∃ <i>P</i> . <i>C</i>
_a owl:onPropertyP		
_a owl:minCardinality n	$\exists Y_1 \ldots \exists Y_n (P(X, Y_1) \land \ldots \land$	$(\geq nP)$
	$P(X, Y_n) \land \bigwedge_{i,j \in [1n], i \neq j} (Y_i \neq Y_j))$	
_a owl:maxCardinality n	$\forall Y_1 \dots \forall Y_n \forall Y_{n+1}$	
	$(P(X, Y_1) \land \ldots \land P(X, Y_n) \land$	$(\leq nP)$
	$P(X, Y_{n+1})$	
	$\Rightarrow \bigvee_{i,j \in [1n+1], i \neq j} (Y_i = Y_j))$	

Unnamed new classes by example

• Departments can be lead only by professors

- Define the set of objects that are lead by professors
 - _a rdfs:subClassOf owl:Restriction
 - _a owl:onProperty Leads
 - _a owl:allValuesFrom Professor

• Now specify that all departments are lead by professors Department rdfs:subClassOf _a

Union and Intersection of Classes by example

• only professors or lecturers may teach to undergraduate students

_a	rdfs:subClassOf	owl:Restriction
_a	owl:onProperty	TeachesTo
_a	owl:someValuesFrom	Undergrad
_b	owl:unionOf	(Professor, Lecturer)
_a	rdfs:subClassOf	_b

• This corresponds to an inclusion axiom in Description Logic:

 \exists TeachesTo.UndergraduateStudent \sqsubseteq Professor \sqcup Lecturer

• owl:equivalentClass corresponds to double inclusion:

 $MathStudent \equiv Student \sqcap \exists RegisteredTo.MathCourse$

Outline

Introduction

- 2 3 ontology languages for the Web
- Reasoning in Description Logics
 ALC
 Rehyperial DLs
 - Polynomial DLs
- 4 Querying Data through Ontologies

5 Conclusion

Description Logics

- Philosophy: isolate decidable fragments of first-order logic allowing reasoning on complex logical axioms over unary and binary predicates
- These fragments are called **Description Logics**

- The DL jargon:
 - the classes are called concepts
 - the properties are called roles.
 - the ontology (the knowledge base) = Tbox + Abox
 - the schema is called the Tbox
 - the instance is called the Abox

The DL family

- Few constructs: atomic concepts and roles, inverse of roles, unqualified restriction on roles, restricted negation
- Revisit RDFS checking out the DL column
- If you don't like the syntax: neither do I

Semantics of main conctructs

•
$$I(C_1 \sqcap C_2) = I(C_1) \cap I(C_2)$$

• $I(\forall R.C) = \{o_1 \mid \forall o_2 \ [(o_1, o_2) \in I(R) \Rightarrow o_2 \in I(C)]$
• $I((\exists R.C) = \{o_1 \mid \exists o_2. [(o_1, o_2) \in I(R) \land o_2 \in I(C)]$
• $I(\neg C) = \Delta^I \setminus I(C)$
• $I(R^-) = \{(o_2, o_1) \mid (o_1, o_2) \in I(R)\}$

Defining a particular description logic

- Define how to construct complex concepts and roles starting from atomic concepts and roles
 - ► *Professor* \sqcup *Lecturer* (those who are either professor or lecturer)
- Choose the constraints you want to consider
- The complexity of the logic depends on these choices

Reasoning problems studied in DL

- Satisfiability checking: Given a DL knowledge base K = (T, A), is K satisfiable?
- Subsumption checking: Given a Tbox T and two concept expressions C and D, does T ⊨ C ⊑ D?
- Instance checking: Given a DL knowledge base $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$, an individual *e* and a concept expression *C*, does $\mathcal{K} \models C(e)$?
- Query answering: Given a DL knowledge base K = ⟨T, A⟩, and a concept expression C, finds the set of individuals e such that K ⊨ C(e)?

Remarks

- For DLs with full negation: instance checking and subsumption checking can be reduced to (un)satisfiability checking
 - $\mathcal{T} \models C \sqsubseteq D \Leftrightarrow \langle \mathcal{T}, \{(C \sqcap \neg D)(a)\} \rangle$ is unsatisfiable.
 - $\langle \mathcal{T}, \mathcal{A} \rangle \models C(e) \Leftrightarrow \langle \mathcal{T}, \mathcal{A} \cup \{\neg C(e)\} \rangle$ is unsatisfiable.
- For DLs without negation: instance checking can be reduced to subsumption checking by computing the most specific concept satisfied by an individual in the Abox (denoted msc(A, e))

$$\land \langle \mathcal{T}, \mathcal{A} \rangle \models \mathcal{C}(\mathbf{e}) \Leftrightarrow \mathcal{T} \models msc(\mathcal{A}, \mathbf{e}) \sqsubseteq \mathcal{C}$$

\mathcal{ALC} : the prototypical DL

- (standard) An \mathcal{ALC} Abox is made of a set of facts of the form C(a) and R(a, b) where a and b are individuals, R is an atomic role and C is a possibly complex concept
- ALC constructs:
 - conjunction $C_1 \sqcap C_2$,
 - \blacktriangleright existential restriction $\exists R.C$
 - $\star \exists Y(R(X,Y) \land C(Y))$
 - negation $\neg C$.
- As a result, ALC also contains de facto:
 - disjunctions $C_1 \sqcup C_2 \ (\equiv \neg (\neg C_1 \sqcap \neg C_2)),$
 - ▶ value restrictions ($\forall R.C \equiv \neg(\exists R.\neg C)$),
 - \blacktriangleright \top (\equiv $A \sqcup \neg A$) and \bot (\equiv $A \sqcap \neg A$).

 An ALC Tbox may contain inclusion constraints between concepts and roles

 $\begin{array}{l} \textit{MathCourse} \sqsubseteq \textit{Course} \\ \textit{LateRegisteredTo} \sqsubseteq \textit{RegisteredTo} \end{array}$

An *ALC* Tbox may contain General Concept Inclusions (GCIs):
 ∃ Teaches To. UndergraduateStudent ⊑ Professor ⊔ Lecturer

Tableau method

- Reasoning is based on tableau calculus a classical method in logic for checking satisfiability
- Extensively used in Description logics for implementing reasoners
- Technique
 - Get rid of the Tbox by recursively unfolding the concept definitions
 - Transform the resulting Abox so that negations applies only to atomic concepts
 - Try to construct a model or raise a contradiction
- We illustrate the technique with a simple example without GCIs
- In general, much more involved

Tableau method

- $\bullet\,$ For satisfiability checking of a DL knowledge base $\langle {\cal T}, {\cal A} \rangle$
 - ► $\mathcal{T} = \{C_1 \equiv A \sqcap B, C_2 \equiv \exists R.A, C_3 \equiv \forall R.B, C_4 \equiv \forall R.\neg C_1\}$
 - $\mathcal{A} = \{C_2(a), C_3(a), C_4(a)\}$
- Get rid of the Tbox, by recursively unfolding the concept definitions:
 - $\blacktriangleright \mathcal{A}' = \{ (\exists R.A)(a), (\forall R.B)(a), (\forall R.\neg(A \sqcap B))(a) \} \equiv \langle \mathcal{T}, \mathcal{A} \rangle$
- Transform the concepts expressions in A' into negation normal form
 A" = {(∃R.A)(a), (∀R.B)(a), (∀R.(¬A ⊔ ¬B))(a)}
- Apply tableau rules to extend the resulting Abox until no rule applies anymore:
 - From an extended Abox which is complete (no rule applies) and clash-free (no obvious contradiction), a so-called canonical interpretation can be built, which is a model of the initial Abox.

ALC

Tableau rules for ALC

• The \square -rule:

Condition: A contains $(C \sqcap D)(a)$ but not both C(a) and D(a)Action: add $\mathcal{A}' = \mathcal{A} \cup \{ C(a), D(a) \}$

● The ⊔-rule:

Condition: \mathcal{A} contains $(\mathcal{C} \sqcup \mathcal{D})(a)$ but neither $\mathcal{C}(a)$ nor $\mathcal{D}(a)$ Action: add $\mathcal{A}' = \mathcal{A} \cup \{\mathcal{C}(a)\}$ and $\mathcal{A}'' = \mathcal{A} \cup \{\mathcal{D}(a)\}$

● The ∃-rule:

Condition: \mathcal{A} contains $(\exists R.C)(a)$ but there is no c such that $\{R(a,c), C(c)\} \subset \mathcal{A}$ Action: add $\mathcal{A}' = \mathcal{A} \cup \{ R(a, b), C(b) \}$ where b is a new individual name

• The \forall -rule:

Condition: \mathcal{A} contains $(\forall R.C)(a)$ and R(a, b) but not C(b)Action: add $\mathcal{A}' = \mathcal{A} \cup \{ \mathcal{C}(\mathbf{b}) \}$

ALC

Illustration on the example

• The result of the application of the tableau method to $\mathcal{A}'' =$ $\{(\exists R.A)(a), (\forall R.B)(a), (\forall R.(\neg A \sqcup \neg B))(a)\}$ gives the following Aboxes:

$$\mathcal{A}_1'' = \mathcal{A}'' \cup \{ R(a,b), \mathcal{A}(b), \mathcal{B}(b), \neg \mathcal{A}(b) \}$$
$$\mathcal{A}_2'' = \mathcal{A}'' \cup \{ R(a,b), \mathcal{A}(b), \mathcal{B}(b), \neg \mathcal{B}(b) \}$$

They both contain a clash:

 \mathcal{A}'' (and the equivalent original knowledge base) is correctly decided unsatisfiable by the algorithm

Complexity

- The tableau method shows that the satisfiability of ALC knowledge bases is decidable but with a complexity that may be exponential because of the disjunction construct and the associated *□-rule*.
- Satisfiability checking in *ALC* (and thus also subsumption and instance checking) is in fact EXPTIME-complete
- Additional constructs like those in the fragment OWL DL of OWL do not change the complexity class of reasoning (which remains EXPTIME-complete)

OWL Full is undecidable

DLs for which reasoning is polynomial

- *FL*: conjunction C₁ ⊓ C₂, value restrictions ∀*R*.C and unqualified existential restriction ∃*R*
 - For Tboxes without GCIs, subsumption checking is polynomial
 - For Tboxes with (even simple) GCIs, subsumption checking is co-NP complete
- \mathcal{EL} : conjunctions $C_1 \sqcap C_2$ and existential restrictions $\exists R.C$
 - Subsumption checking in \mathcal{EL} is polynomial even for general Tboxes.
- \mathcal{FLE} : conjunction $C_1 \sqcap C_2$, value restrictions $\forall R.C$, and existential restrictions $\exists R.C$
 - Subsumption checking in \mathcal{FLE} is NP-complete
- The DL-LITE family: a good trade-off, specially designed for guaranteeing query answering through ontologies to be polynomial in data complexity.

Outline

Introduction

- 2 3 ontology languages for the Web
- 3 Reasoning in Description Logics

Querying Data through Ontologies

- Querying using RDFS
- Querying using DL-LITE
- Complexity

Conclusion

Querying using RDFS

- RDFS statements can be used to infer new triples
- Example
 - Base fact ResponsibleOf(durand, ue111)
 - ► Use the statement (ResponsibleOf rdfs:domain Professor) i.e., the logical rule: ResponsibleOf(X,Y) ⇒ Professor(X)
 - With substitution {X/durand, Y/ue111}
 - Infer fact Professor(durand)
 - ► Use the statement (Professor rdfs:subClassOf AcademicStaff) i.e., the rule Professor(X) ⇒ AcademicStaff(X)
 - With substitution {X/durand}
 - Infer fact AcademicStaff(durand)
 - etc.

The saturation algorithm

- Keep infering new facts until a fixpoint is reached
- Note: Only polynomially many facts can be added
- PTIME

Querying using DL-LITE

- Develop as a good compromise between expressive power and reasonable complexity of query answering
- RDFS simpler and very used but limited
- More complex DL: query answering is unfeasible

The DL-LITE family

- Three kinds of axioms: positive inclusions (PI), negative inclusions (NI) and functionality constraints (func)
- Captures the main constraints used in Databases and Software Engineering
- Different variants
 - ► DL-LITE_R: no functionality constraints
 - DL-LITE_F: no role inclusion
 - ► DL-LITE_A: no functionality constraints on roles involved in role inclusions

PI: Positive inclusion and incompleteness

• One of the following forms:

DL notation	Corresponding logical rule
$B \sqsubseteq \exists P$	$B(X) \Rightarrow \exists YP(X,Y)$
$\exists Q \sqsubseteq \exists P$	$Q(X,Y) \Rightarrow \exists ZP(X,Z)$
$B \sqsubseteq \exists P^-$	$B(X) \Rightarrow \exists Y P(Y, X)$
$\exists Q \sqsubseteq \exists P^-$	$Q(X,Y) \Rightarrow \exists ZP(Z,X)$
$P \sqsubseteq Q^-$ or $P^- \sqsubseteq Q$	$P(X,Y) \Rightarrow Q(Y,X)$

where *P* and *Q* denote properties and *B* denotes a class.

DL notation	Corresponding logical rule
Professor 드 🗄 TeachesIn	$Professor(X) \Rightarrow \exists Y TeachesIn(X, Y)$
Course $\sqsubseteq \exists RegisteredIn^-$	$Course(X) \Rightarrow \exists Y RegisteredIn(Y, X)$

- Not safe
- From *Professor*(*durand*), I know there is some *y TeachesIn*(*durand*, *y*)
- Incompleteness: I don't know y
- Saturation may not terminate

Negative inclusion and inconsistencies

• Negative inclusion takes one of the forms:

DL notation	
$B_1 \sqsubseteq \neg B_2$	
$R_1 \sqsubseteq \neg R_2$	

- where B₁ and B₂ are either classes or expressions of the form ∃P or ∃P⁻ for some property P
- and where R_1 and R_2 are either properties or inverses of properties.
- Students do not teach courses

DL notation	Corresponding logical rule
Student $\sqsubseteq \neg \exists$ TeachesIn	$Student(X) \Rightarrow \neg \exists Y TeachesIn(X, Y)$
	or equivalently,
	$\exists Y TeachesIn(X, Y) \Rightarrow \neg Student(X)$

- The knowledge base may be inconsistent
- Not possible with RDFS ontologies

WebDam (INRIA)

Key constraints and more inconsistencies.

• Axioms of the form (funct P) or $(funct P^{-})$ where P is a property

DL notation	corresponding logical rule
(funct P)	$P(X,Y) \wedge P(X,Z) \Rightarrow Y = Z$
$(funct P^-)$	$P(Y,X) \wedge P(Z,X) \Rightarrow Y = Z$

- Key constraints also lead to inconsistencies
- Example:
 - (funct ResponsibleOf⁻)
 - A course must have a unique professor responsible for it
 - If we have ResponsibleOf(durand, ue111) and ResponsibleOf(dupond, ue111) The KB is inconsistent

Query answering: Example

Abox:

Professor(Jim), HasTutor(John, Mary), TeachesTo(John, Bill)

Tbox:

- ► Professor ⊑ ∃ TeachesTo
- ► Student ⊑ ∃HasTutor
- \exists TeachesTo⁻ \sqsubseteq Student
- ► ∃HasTutor⁻ ⊆ Professor
- ▶ Professor ⊑ ¬Student
- Queries: conjunctive queries on concepts and atomic roles
 - $q_0(x) \leftarrow TeachesTo(x, y) \land HasTutor(y, z)$

Query answering: Principles of reformulation

- Transform the query into FO queries over the database
- FO queries are used to check for inconsistencies of the KB
- FO queries are used to evaluate the result
- The FO queries can be evaluated using a database engine with query optimization

Because of incompleteness, not always possible

Query answering by example (no inconsistency)

• Tbox: \mathcal{T}

- Professor $\sqsubseteq \exists$ TeachesTo
- ► Student ⊑ ∃HasTutor
- \exists TeachesTo⁻ \sqsubseteq Student
- \exists HasTutor⁻ \sqsubseteq Professor
- Professor $\sqsubseteq \neg$ Student
- Query:
 - $q_0(x) \leftarrow TeachesTo(x, y) \land HasTutor(y, z)$
- Reformulations of q_0 given the the Tbox \mathcal{T} :
 - $q_1(x) \leftarrow TeachesTo(x, y) \land Student(y)$
 - $q_2(x) \leftarrow TeachesTo(x, y) \land TeachesTo(z', y)$
 - $q_3(x) \leftarrow TeachesTo(x, y')$
 - $q_4(x) \leftarrow Professor(x)$
 - $q_5(x) \leftarrow HasTutor(u, x)$
- Main result (holds for DL-LITE_A but not for full DL-LITE):
 - ► For any Abox \mathcal{A} such that $\mathcal{T} \cup \mathcal{A}$ is satisfiable: Answer $(q_0, \mathcal{T} \cup \mathcal{A}) = \bigcup_i \text{Answer}(q_i, \mathcal{A})$

Illustration

- $q_0(x) \leftarrow TeachesTo(x, y) \land HasTutor(y, z)$
- Student $\sqsubseteq \exists$ HasTutor
- $HasTutor(y, z) \leftarrow Student(y)$
- $q_1(x) \leftarrow TeachesTo(x, y) \land Student(y)$

Example (ctd)

- Abox: \mathcal{A}
 - Professor(Jim), HasTutor(John, Mary), TeachesTo(John, Bill)
- Query
 - $q_0(x) \leftarrow TeachesTo(x, y) \land HasTutor(y, z)$
- Reformulations of q_0 given the the Tbox \mathcal{T} :
 - $q_1(x) \leftarrow TeachesTo(x, y) \land Student(y)$
 - $q_2(x) \leftarrow \textit{TeachesTo}(x, y) \land \textit{TeachesTo}(z', y)$
 - $q_3(x) \leftarrow TeachesTo(x, y')$
 - $q_4(x) \leftarrow Professor(x)$
 - $q_5(x) \leftarrow HasTutor(u, x)$
- Result of the evaluation of the reformulations over \mathcal{A} :
 - Answer($q_0, \mathcal{T} \cup \mathcal{A}$) = {*Mary*, *Jim*, *John*}

Consistency checking by example

- Tbox: \mathcal{T}'
 - ► Professor ⊑ ∃ TeachesTo
 - Student ⊑ ∃HasTutor
 - \exists Teaches To⁻ \sqsubseteq Student
 - ► ∃HasTutor⁻ ⊆ Professor
 - ▶ Professor ⊑ ¬Student
 - \exists Teaches To $\sqsubseteq \neg$ Student
 - ► ∃HasTutor ⊆ Student
- Saturation of the NIs (possibly using the PIs):
 - \exists Teaches To $\sqsubseteq \neg \exists$ Has Tutor
- Translation of each NI into a boolean conjunctive query:
 - $q_{unsat} \leftarrow TeachesTo(x, y) \land HasTutor(x, y')$
- Evaluation of q_{unsat} on the Abox A:
 - ▶ {*Professor*(*Jim*), *HasTutor*(*John*, *Mary*), *TeachesTo*(*John*, *Bill*)}
 - Answer(q_{unsat}, A) = true
- Main result:
 - $\mathcal{T}' \cup \mathcal{A}$ is inconsistent iff there exists a q_{unsat} such that Answer (q_{unsat}, \mathcal{A})
 - = true

- Closure of a Tbox: derive new statements
- From \exists *TeachesTo* $\sqsubseteq \neg$ *Student*
- Derive *Student* $\sqsubseteq \neg \exists$ *TeachesTo*
- From \exists HasTutor \sqsubseteq Student and Student $\sqsubseteq \neg \exists$ TeachesTo
- Derive \exists *HasTutor* $\sqsubseteq \neg \exists$ *TeachesTo*
- From \exists HasTutor $\sqsubseteq \neg \exists$ TeachesTo
- Derive \exists *TeachesTo* $\sqsubseteq \neg \exists$ *HasTutor*

FOL reducibility of data management in DL-LITE

Query answering and data consistency checking can be performed in two separate steps:

- A reasoning step with the Tbox alone (i.e., the ontology without the data) and some conjunctive queries
- An evaluation step of conjunctive queries over the data in the Abox (without the Tbox)
 - makes it possible to use an SQL engine
 - thus taking advantage of well-established query optimization strategies supported by standard relational DBMS

Complexity

Complexity results

- The reasoning step on Tbox is polynomial in the size of the Tbox
 - Produces a polynomial number of reformulations and of unsat queries
- The evaluation step over the Abox has the same data complexity as standard evaluation of conjunctive gueries over relational databases
 - in AC₀ (strictly contained in LogSpace and thus in P)
- The interaction between role inclusion constraints and functionality constraints makes reasoning in DL-LITE *P*-complete in data complexity
 - full DL-LITE is not FOL-reducible
 - Reformulating a guery may require recursion

Problem with full DL-LITE by example

- Let the Tbox (R and P are two properties and S is a class):
 R ⊆ P (funct P)
 S ⊆ ∃R
 ∃R⁻ ⊆ ∃R
- and the query: q(x) := R(z, x)
- $r_1(x) := S(x_1), P(x_1, x)$ is a reformulation of the query *q* given the Tbox
 - ▶ from $S(x_1)$ and the PI $S \sqsubseteq \exists R$, it can be inferred: $\exists y R(x_1, y)$, and thus $\exists y P(x_1, y)$ (since $\mathbb{R} \sqsubseteq \mathbb{P}$).
 - From the functionality constraint on P and P(x₁, x), it can be inferred:
 y = x, and thus: R(x₁, x)
 - ► Therefore: $\exists x_1 S(x_1) \land P(x_1, x) \models \exists z R(z, x)$ (i.e., $r_1(x)$ is contained in the query q(x))

Complexity

Problem with full DL-LITE by example - continued

- r₁ is not the only one reformulation of the query
- In fact, there exists an *infinite* number of different reformulations for q(x): ۲
- for $k \ge 2$, $r_k(x) := S(x_k)$, $P(x_k, x_{k-1}), \dots, P(x_1, x)$ is also a reformulation:
 - ▶ from $S(x_k)$ and the PI $S \sqsubseteq \exists R$, it can be inferred: $\exists y_k R(x_k, y_k)$, and thus $\exists y_k P(x_k, y_k)$ (since $\mathbb{R} \subseteq \mathbb{P}$).
 - from the functionality constraint on P and $P(x_k, x_{k-1})$, it can be inferred: $y_k = x_{k-1}$, and thus: $R(x_k, x_{k-1})$
 - ▶ Now, based on the PI $\exists \mathbb{R}^- \sqsubseteq \exists \mathbb{R}: \exists y_{k-1} R(x_{k-1}, y_{k-1}),$
 - and with the same reasoning as before, we get $y_{k-1} = x_{k-2}$, and thus: $R(x_{k-1}, x_{k-2}).$
 - ▶ By induction, it can be inferred: $R(x_1, x)$, and therefore $r_k(x)$ is contained in the query q(x).

Problem with full DL-LITE by example - end

- One can show that for each k, there exists an Abox such that the reformulation r_k returns answers that are not returned by the reformulation $r_{k'}$ for k' < k.
- Thus, there exists an infinite number of *non redundant* conjunctive reformulations.

Outline

Introduction

- 2 3 ontology languages for the Web
- 3 Reasoning in Description Logics
- 4 Querying Data through Ontologies

5 Conclusion

Conclusion

- The scalability of reasoning on Web data requires light-weight ontologies
- One can use a description logic for which reasoning is feasible (polynomial)
- For Aboxes stored as relational databases, it is even preferable that query answering can be performed with a relational query (using query reformulation)
- Full OWL is too complex
- Consider extensions of RDFS