
 153

CHAPTER 7 

XML 

XML (extensible Markup Language) is a data representation standard adopted by the World Wide
Web Consortium (W3C) many years ago as the mechanism to share and exchange data on the
Web. This chapter introduces the student to basic XML concepts including syntax, querying using
XPath and XQuery, and schema specifications using XML Schema.

7.1 XML Basics 

XML represents data in text format and encloses data items between user understandable and
meaningful tags. For example, the address of a student is described as follows:

 <address>123 Main Street, Atlanta, GA 30002</address>

The data item in this case is “123 Main Street, Atlanta, GA 30002” and is enclosed
between the start tag <address> and the end tag </address>. The tag name “address” is
user-defined and is descriptive of the data item that it is enclosing.

The entire string starting with the start tag, including the data item, and ending with the end tag is
referred to as an XML element. XML elements can be nested as in the following example which
includes sub-components of the address:

 <address>
 <street>123 Main Street</street>
 <city>Atlanta</city>
 <state>GA</state>
 <zipcode>30002</zipcode>
 </address>

Here, the <address> XML element has four sub-elements, <street>, <city>, <state>,
and <zipcode>. Notice that all sub-elements are completely enclosed with the start and end tags
of the main element.

Occasionally, there is a need to have an element without any contents. Such elements are called
empty elements. For example, the following empty element may be used in a situation where the
phone number is not known:

 <phone></phone>

The above empty element can also be represented in the shorter notation:

 <phone/>

 154

There is no restriction in XML for repeating the sub-element tags. So, a list of phone numbers for
an individual can be described as follows:

 <person>
 <name>John Smith</name>
 <phone>111-1234</phone>
 <phone>212-2121</phone>
 </person>

In addition to the element syntactic structure, XML also provides an additional mechanism to
describe data. XML attributes are name-value pairs that are introduced in the start tag of elements.
The following is an example of attributes in use within an element description:

 <cost currency=”USD”>25.20</cost>

Here, the cost of some item is being described. The cost (25.20) is being described using an XML
element <cost>. The start tag includes a name-value pair currency=”USD” indicating that the
currency of the cost is in US dollars. In contrast to XML elements, attribute names cannot be
repeated within the same start-tag. So, the following will be an error:

 <cost currency=”USD” currency=”INR”>25.20</cost>

XML syntax also allows mixing of elements and text outside of the element context. This is a left
over feature from the document world in mark up languages are still used. For example, consider
the following XM fragment code:

 <person>
 <name>John</name>
 This is my cousin!
 <age>22</age>
 </person>

In this description of a person, the text “This is my cousin!” appears outside of the context
of any element of sub-element. Such annotations are usually ignored by XML parsers.
Comments in XML are introduced as follows:

 <!--This is a comment -->

XML documents usually begin with a version statement as follows:

 <?xml version=”1.0”>

The CDATA construct allows one to include special characters such as the < or > symbols as part
of text. For example, to include XML tags as part of the content of elements, the CDATA construct
can be used as follows:

 <![CDATA[<age>22</age>]]>

 155

7.2 Company Database in XML 

One possible XML representation of the COMPANY database is discussed in this section. The
overall structure of the XML document is as follows:

 <?xml version=”1.0”>
 <companyDB>
 <departments>
 …
 …
 </departments>
 <employees>
 …
 …
 </employees>
 <projects>
 …
 …
 </projects>
 </companyDB>

The document contains three main sections, one each for the list of departments, employees, and
projects. Each section describes the individual entities within the classes along with relationships
with other entities.

The <departments> element contains one or more <department> elements that describe the
individual department along with its relationships with other entities. The following XML code
fragment shows the details for department 5:

<departments>
 …
 …
 <department dno="5">
 <dname>Research</dname>
 <locations>
 <location>Bellaire</location>
 <location>Sugarland</location>
 <location>Houston</location>
 </locations>
 <manager mssn="333445555">
 <startDate>22-MAY-1978</startDate>
 </manager>
 <employees essns="123456789 333445555 666884444 453453453"/>
 <projectsControlled pnos="1 2 3"/>
 </department>
 …
 …
</departments>

 156

As can be seen, the department element contains an attribute dno and several sub-elements, each
describing either a simple attribute or a relationship. The <dname> sub-element describes the
department name, the <locations> sub-element encloses one or more <location> elements,
each describing a department location. The <manager>, <employees>, and
<projectsControlled> sub-elements describe relationships with other entities and all these
are represented by XML attributes.

The <employees> element contains one or more <employee> elements that describe the
individual employees along with its relationships with other entities. The following XML code
fragment shows the details for employee 333445555:

<employees>
 …
 …
 <employee ssn="333445555" worksFor="5"
 supervisor="888665555" manages="5">
 <fname>Franklin</fname>
 <minit>T</minit>
 <lname>Wong</lname>
 <dob>08-DEC-45</dob>
 <address>638 Voss, Houston, TX</address>
 <sex>M</sex>
 <salary>40000</salary>
 <dependents>
 <dependent>
 <dependentName>Alice</dependentName>
 <sex>F</sex>
 <dob>05-APR-1976</dob>
 <relationship>Daughter</relationship>
 </dependent>
 <dependent>
 <dependentName>Theodore</dependentName>
 <sex>M</sex>
 <dob>25-OCT-1973</dob>
 <relationship>Son</relationship>
 </dependent>
 <dependent>
 <dependentName>Joy</dependentName>
 <sex>F</sex>
 <dob>03-MAY-1948</dob>
 <relationship>Spouse</relationship>
 </dependent>
 </dependents>
 <supervisees essns="123456789 666884444 453453453"/>
 <projects>
 <worksOn pno="2" hours="10.0"/>
 <worksOn pno="3" hours="10.0"/>
 <worksOn pno="10" hours="10.0"/>
 <worksOn pno="20" hours="10.0"/>
 </projects>

 157

 </employee>
 …
 …
</employees>

The <projects> element contains one or more <project> elements that describe the
individual projects along with its relationships with other entities. The following XML code
fragment shows the details for project 1:

<projects>
 …
 …
 <project pnumber="1" controllingDepartment="5">
 <pname>ProductX</pname>
 <plocation>Bellaire</plocation>
 <workers>
 <worker essn="123456789">32.5</worker>
 <worker essn="453453453">20.0</worker>
 </workers>
 </project>
 …
 …
</projects>

We shall use the above XML description of the COMPANY database in subsequent sections to
discuss XML querying.

7.3 XML Editor EditiX 

A free version of an XML editor can be downloaded from http://free.editix.com/. This software is
available for all platforms including PC, Mac, and Linux. The free version of the editix has built-in
support for editing and validating XML documents against DTDs and XML Schemas and also
provides for XPath and XQuery support. The initial window for editix is shown in Figure 7.1.

 158

Figure 7.1 editix Window on startup

The left panel provides space to specify XPath as well as XQuery expressions to be evaluated
against an XML document. The right panel is initially blank. This space is used to display the
XML document. The File menu provides the ability to assign DTD or XML Schema files to the
XML document as well as to validate XML documents against the schema files. Figure 7.2 shows
the window after the company.xml document is opened in editx.

Figure 7.2 editix Window after opening XML document

 159

The right panel contains two parts: a navigation pane that shows top-level elements along with
counts of sub-elements and the display pane showing the entire XML document. The navigation
pane can be used to go to specific portions of the XML file. The editor itself is quite
straightforward to use.

7.4 XPath 

XPath is an important specification language used to traverse and locate nodes in an XML
document. It is not a full-fledged query language, but is used to specify a set of nodes in the XML
tree structure, very much like the file specification in the directory hierarchy of a Unix operating
system. XPath expressions are used in other query languages such as XQuery. The
company.xml document will be used to illustrate all examples in the rest of the chapter.

There are several types of nodes in the XML tree: root node (e.g. <companyDB>), element node
(e.g. <salary>80000</salary>), attribute node (e.g. dno=”4”), and text node (e.g.
Stafford). The nodes are related to each other in the XML tree via the parent, child, sibling,
ancestor, and descendant relationships.

The latest XPath specification is available from the Web site http://www.w3.org/TR/xpath and the
list of built-in functions for use in XPath and XQuery is available at
http://www.w3.org/TR/xquery-operators/.

Basic XPath expressions

XPath expressions are of two types: absolute and relative. An absolute XPath expression begins
with a / and is followed by a sequence of XML element names each separated by a /. For
example, the expression:

/companyDB/departments/department

denotes the set of all <department> elements that are sub-elements of <departments>
elements which in turn are sub-elements of the root element <companyDB> in the XML
document. To execute XPath expressions on editix, simply enter the XPath expression in the
XPath panel on the left and click “From root” button. This will bring up the matching nodes in the
results box below. Upon clicking one of the results, the corresponding section in the XML tree
display on the right is highlighted. The window after executing the above XPath expression is
shown in Figure 7.3.

 160

Figure 7.3 editix Window after XPath expression is executed

The expression / denotes the root node, . denotes the current node, and .. denotes the parent
node of the current node. Expressions that do not begin with the / symbol are called relative XPath
expressions and have a meaning only with respect to a current node. Attribute values are accessed
using the @ expression. For example, the following XPath expression can be used to access the
supervisor attribute of employee elements in the XML document:

/companyDB/employees/employee/@supervisor

Text nodes in the XML document can be accessed using the built-in function text(). For
example, to access all the lname values for employees, the following XPath expression can be
used:

/companyDB/employees/employee/lname/text()

Advanced XPath expressions

XPath allows the * wildcard to match any node in the path. For example, to select all children
nodes of <employee> element, the following XPath expression can be used:

/companyDB/employees/employee/*

The wildcard can also be used to retrieve all attributes of an element. For example, to retrieve all
the attributes of the <employee> element, the following XPath expression can be used:

 161

/companyDB/employees/employee/@*

Another wildcard provided by XPath is //, the descendant-or-self wildcard. This allows access to
nodes at any level in the tree. For example, to access all the <dob> elements in the XML
document regardless of the level it appears, the following XPath expressions can be used:

//dob

XPath allows access to the children nodes based on their positions. For example, the 7th
<employee> sub-element of <employees> element can be accessed using the XPath expression:

/companyDB/employees/employee[7]

To access the second dependent of the first employee, the following XPath expression can be used:

/companyDB/employees/employee[1]/dependents/dependent[2]

Using the built-in function last(), the last dependent of the first employee can be accessed using the
XPath expression:

/companyDB/employees/employee[1]/dependents/dependent[last()]

The [] notation used to get positional access to the children of a node can be used to express
general predicates as well. A logical predicate involving the attributes and child node values of the
current node can be specified along with any built-in functions. Several examples of the use of
general predicate are presented next.

The position() built-in function can be used within the predicate to access the first three
<employee> elements in the XML document as follows:

/companyDB/employees/employee[position()<=3]

To access all <employee> elements that have a <minit> sub-element with a value of “E”, the
following XPath expression can be used:

/companyDB/employees/employee[minit="E"]

To access all <project> elements that have a controllingDepartment attribute value
greater than 6, the following XPath expression can be used:

/companyDB/projects/project[@controllingDepartment>6]

The starts-with() and contains() built-in functions work on string values and can be
useful to access elements based on substring matches. To access all <employee> elements
whose last name starts with “S”, the following XPath expression can be used:

 162

/companyDB/employees/employee[starts-with(lname,"S")]

To access all <employee> elements who address contains the sub-string “Philadelphia”,
the following XPath expression can be used:

/companyDB/employees/employee[contains(address,"Philadelphia")]

Complex search conditions can be specified using logical connectives “and”, “or” and “not”.
For example, to access all <employee> elements who work for department 7 and who are males
and who have a male dependent, the following XPath expression can be used:

//employee[@worksFor=7 and sex="M" and dependents/dependent[sex="M"]]

XPath allows a path expression to be used in place of a predicate with the [] notation. The node is
selected if the expression within the square brackets evaluates to a non-empty set if nodes. For
example, the XPath expression:

/companyDB/employees/employee[dependents]

returns all employee nodes that have dependents.

XPath also provides support for the “union” of two sub-expressions using the “|” operator. For
example, to access all project names and department names, the following XPath expression can
be used:

/companyDB/departments/department/dname/text() |
/companyDB/projects/project/pname/text()

The general form of an XPath expression is one of the following:

/locationStep1/locationStep2/… for absolute path expressions

or

locationStep1/locationStep2/… for relative path expressions.

In either case, the location step is of the form:

axis::nodeSelector[selectionPredicate]

where axis is one of the following: child, parent, descendant, ancestor,
descendant-or-self (//), or ancestor-or-self. The default axis is child. The
nodeSelector is either the name of an element or an attribute or a wild card symbol. The
selectionPredicate is a predicate as discussed in various examples previously. An example
of an XPath expression in which the axis is explicitly mentioned is:

 163

/companyDB/employees/employee[@worksFor=ancestor::companyDB/depart
ments/department[dname="Administration"]/@dno]

This expression accesses all employee nodes of employees who work for the
“Administration” department. The use of the ancestor axis enables traversing up the
XML tree to look for a particular department.

7.5 XQuery 

XQuery is the official W3C (World Wide Web Consortium) standard query language for XML
data. It is a high-level functional language for formulating ad hoc queries on XML data. The latest
XQuery specifications are available at http://www.w3.org/TR/xquery.

Editix provides support for XQuery execution in its user interface. Figure 7.4 shows the editx
window with the XQuery tab opened on the left panel.

Figure 7.4 editix Window with XQuery tab in left panel

The user first enters the query in the text box and then clicks the “Run” button. In the figure the
following query is shown:

 164

let $d:=doc("/Users/raj/company.xml")
return $d//companyDB/employees/employee[2]

 The results are displayed under the “Result” tab. To see the results the user needs to click the
“Results” tab. A screenshot of the results tab is shown in Figure 7.5.

Figure 7.5 editix Window with query results in left panel

Note that the XML file is displayed on the right panel, but unlike XPath, the results are not
highlighted there. This is because XQuery is a general query language and the results are
constructed from the XML document but may not have the same structure as the XML document.

Simple XQuery Expressions

XQuery is a high-level functional language that evaluates expressions of different kinds. Simple
arithmetic expressions such as:

(2*3)-(8*7)

 165

are evaluated by XQuery. Built-in functions can be invoked as shown in the following three
examples:
concat("Hello"," World")
matches("Monday","^.*da.*$")
current-time()

The concat() function takes in one or more string arguments and returns the concatenation of
all strings. The matches() function takes a string input and a second string input representing a
regular expression. It returns true if the first string matches the regular expression. The
current-time() function returns the current time of day. All XPath/XQuery built-in functions
are documented at http://www.w3.org/TR/xquery-operators/.

XQuery provides the let clause to assign values to variables and the return clause to construct
the output and return the value of the output. Lists in XQuery are flat objects and are constructed
by surrounding comma-separated values by parentheses. The following example illustrates list
values, the let and the return clauses, and list aggregate operations:

let $list:=(1,5,10,12,15)
return count($list)

The above example returns the number of elements in the list. Other list aggregate operations
include avg, sum, max, and min.

Value comparison operators for primitive data types are: eq, ne, lt, gt, ge, and le;
general objects (including the primitive types) such as lists etc. can be compared using <, <=,
=,!=, >, >=. XML nodes comparisons are done with one of the three operators: <<, >>,
and is. The “is” operator compares for exact identity. The document order of nodes is verified by
<< (appears before) and >> (appears after).

XPath expressions can be directly introduced in the return clause of queries as follows:

let $d:=doc("/Users/raj/company.xml")
return $d//companyDB/employees/employee[2]

In fact, XPath expressions form the building clocks for constructing XQuery queries and can be
used in several clauses as will be discussed later in this section.

Raw XML content also are treated as expressions and simply printed to the output by XQuery.
For example, the following expression is simply sent to output when evaluated by XQuery:

<item ino=”222”><iname>Nut</iname><price>22.50</price></item>

Curly braces can enclose sub-expressions in XQuery that need to be evaluated before sending to
output. The following example employs the curly braces around an expression to print the salaries
of employees who work for department number 6:

 166

let $d:=doc("/Users/raj/company.xml")//employee[@worksFor=6]
return
 <dept6Salary>{$d/salary}
 </dept6Salary>

FLWOR Expressions

The most important and powerful construct in XQuery is the FLWOR expression. FLWOR,
pronounced “flower” stands for for, let, where, order by, and return, the individual
clauses allowed in a query. A FLWOR expression starts with one or more for or let clauses,
followed by an optional where clause, followed by an optional order by clause, and ending
with a return clause. FLWOR expressions are illustrated via a series of queries on the
company.xml document.

Query 1: Get all projects.

let $d:=doc("/Users/raj/company.xml")
for $p in $d/companyDB/projects/project
return $p

This query uses the let expressions to assign the root element of the company.xml document
to the variable $d. Then, in the for-clause, the query iterates through all the nodes corresponding
to the XPath expression $d/companyDB/projects/project. In the return-clause the
value of the iterator variable $p is returned as the result of the query. The result will be a forest of
all <project> elements.

The next query uses the distinct-values function to remove duplicates:

Query 2: Get distinct project numbers of projects in which employees work.

<projects>
{
let $d:=doc("/Users/raj/company.xml")
for $p in distinct-values(
 $d/companyDB/employees/employee/projects/worksOn/@pno)
return
<project>{$p}</project>
}
</projects>

In this query, the overall expression is a XML construct which includes FLWOR query within
curly braces. The for-clause uses the distinct-values() function to eliminate duplicates in
project numbers found within the projects/worksOn sub-element of the employee element.
The query results for this query are shown in Figure 7.6.

 167

Figure 7.6 editix Window with Query 2 results in left panel

Notice that the project numbers are not ordered. The order by clause allows results to be ordered.
By adding the order by clause in Query 2 as shown below, the results can be ordered.

<projects>
{
let $d:=doc("/Users/raj/company.xml")
for $p in distinct-values(
 $d/companyDB/employees/employee/projects/worksOn/@pno)
order by number($p)
return
<project>{$p}
</project>
}
</projects>

Note the use of the number() function in the order by clause. This is necessary because by
default the order by clause treats the list as strings and as such the number 100 will appear before
99. The number() function converts the string to a number, thereby allowing the ordering to be
done on a numeric basis.

Query 3: Get social security numbers of employees whose last name starts with "S".

let $d:=doc("/Users/raj/company.xml")
for $e in $d/companyDB/employees/employee

 168

where starts-with($e/lname,"S")
return <sssn>{$e/@ssn}</sssn>

This query calls the built-in function starts-with() to determine if the last name of the
employee begins with “S” and employs the where-clause to filter the results as shown below:

<?xml version="1.0" encoding="UTF-8"?>
<sssn ssn="123456789"/>
<sssn ssn="444444403"/>
<sssn ssn="666666607"/>

Query 4: Get last names and first names of employees in the "Research" department.

let $d:=doc("/Users/raj/company.xml")
let $r:=$d/companyDB/departments/department[dname="Research"]
for $e in $d/companyDB/employees/employee
where $e/@worksFor=$r/@dno
return
<ResearchEmp>{$e/lname}{$e/fname}</ResearchEmp>

This query implements a “join” operation. The query assigns the “Research” department object
to the variable $r. The, in the for-clause, the variable $e iterates over all employees. The
where-clause selects only those employees who work for the department denoted by $r. The
equality comparison works fine since there is only one department with name “Research”, i.e. the
value for $r is a singleton set. The return-clause constructs the answer to the query as shown
below:

<?xml version="1.0" encoding="UTF-8"?>
<ResearchEmp>
 <lname>Wong</lname>
 <fname>Franklin</fname>
</ResearchEmp>
<ResearchEmp>
 <lname>Smith</lname>
 <fname>John</fname>
</ResearchEmp>
<ResearchEmp>
 <lname>Narayan</lname>
 <fname>Ramesh</fname>
</ResearchEmp>
<ResearchEmp>
 <lname>English</lname>
 <fname>Joyce</fname>
</ResearchEmp>

Query 5: Get employees who work more than 40 hours.

 169

let $d:=doc("/Users/raj/company.xml")
for $e in $d/companyDB/employees/employee
where sum($e/projects/worksOn/@hours)>40.0
return
<OverWorkedEmp>{$e/lname}
{$e/fname}<TotalHours>{sum($e/projects/worksOn/@hours)}
</TotalHours>
</OverWorkedEmp>

This query illustrates the aggregate operation, sum. The for-clause introduces an iterator $e over
all employees and the where-clause sums the hours worked on various projects by the employee
and check to see if it exceeds 40. The return-clause constructs the results as shown below:

<?xml version="1.0" encoding="UTF-8"?>
<OverWorkedEmp>
 <lname>Zell</lname>
 <fname>Josh</fname>
 <TotalHours>48</TotalHours>
</OverWorkedEmp>
<OverWorkedEmp>
 <lname>Chase</lname>
 <fname>Jeff</fname>
 <TotalHours>46</TotalHours>
</OverWorkedEmp>
<OverWorkedEmp>
 <lname>Ball</lname>
 <fname>Nandita</fname>
 <TotalHours>44</TotalHours>
</OverWorkedEmp>
<OverWorkedEmp>
 <lname>Bacher</lname>
 <fname>Red</fname>
 <TotalHours>50</TotalHours>
</OverWorkedEmp>

Query 6: Get department names and the total number of employees working in the department.

let $d:=doc("/Users/raj/company.xml")
for $r in $d/companyDB/departments/department
return
<deptNumEmps>{$r/dname}
<numEmps>{count(tokenize($r/employees/@essns,"\s+"))}
</numEmps>
</deptNumEmps>

 170

This example is similar to the previous example, but it illustrates how to tokenize a string of social
security numbers separated by a space. The tokenize() function takes as its first argument the
string of social security numbers of employees working for a particular department and a regular
expression denoting the separator. In this case, the regular expression is “s\+” indicating one or
more spaces. Rest of the query is similar to the previous one. The results are shown below:

<?xml version="1.0" encoding="UTF-8"?>
<deptNumEmps>
 <dname>Headquarters</dname>
 <numEmps>1</numEmps>
</deptNumEmps>
<deptNumEmps>
 <dname>Administration</dname>
 <numEmps>3</numEmps>
</deptNumEmps>
<deptNumEmps>
 <dname>Research</dname>
 <numEmps>4</numEmps>
</deptNumEmps>
<deptNumEmps>
 <dname>Software</dname>
 <numEmps>8</numEmps>
</deptNumEmps>
<deptNumEmps>
 <dname>Hardware</dname>
 <numEmps>10</numEmps>
</deptNumEmps>
<deptNumEmps>
 <dname>Sales</dname>
 <numEmps>14</numEmps>
</deptNumEmps>

Query 7: Get last names of employees who work for a project located in “Houston”.

<empsWorkingOnHoustonProjects>
{
distinct-values(
let $d:=doc("/Users/raj/company.xml")
for $r in $d/companyDB/projects/project[plocation="Houston"]
return
 for $e in $d/companyDB/employees/employee
 where exists(index-of($r/workers/worker/@essn,$e/@ssn))
 return $e/lname
)
}
</empsWorkingOnHoustonProjects>

 171

This query illustrates nesting of FLWOR expressions as well as additional built-in functions. The
outer FLWOR expression sets up an iterator $r over all “Houston” projects. The nested
FLWOR expression is present in the return-clause and iterates over all employee nodes. The
where-clause checks to see if the social security number of the employee matches one of the
worker social security numbers of the “Houston” project. The index-of() function returns a
list of indices where the second argument (search item) appears in the first argument (list to be
searched). The exists() function returns true if its input is non-empty. The results of
executing the query are shown below:

<?xml version="1.0" encoding="UTF-8"?>
<empsWorkingOnHoustonProjects>
Wong Narayan Borg Wallace
</empsWorkingOnHoustonProjects

Query 8: Get last names of employees with dependents.

let $d:=doc("/Users/raj/company.xml")
for $e in $d/companyDB/employees/employee[dependents]
return $e/lname

This query illustrates the use of an XPath-expression ([dependents]) as a predicate; employee
nodes that have sub-element <dependents> are selected and the last names of such employees
are returned as the answer to the query.

Query 9: Get last names of employees without dependents.

let $d:=doc("/Users/raj/company.xml")
let $empsWithDeps := $d/companyDB/employees/employee[dependents]
for $e in $d/companyDB/employees/employee
where empty(index-of($empsWithDeps,$e))
return $e/lname

This query defined a variable $empsWithDeps that holds all employee nodes with dependents.
Then, the for-clause iterates over all employees and selects only those employees who do not
appear in the list $empsWithDeps.

Query 10: get last names of employees from Milwaukee along with their income group: “Low
Income Group” (earning < 40000), “Middle Income Group” (earning between 40000 and 60000),
and “High Income Group” (earning more than 80000).

<IncomeGroup>
{
let $d:=doc("E:/company.xml")
for $e in
 $d/companyDB/employees/employee[contains(address,"Milwaukee")]
return

 172

<emp>{$e/lname}
<income>
{if ($e/salary >= 80000) then "High Income"
else if ($e/salary >=60000) then "Middle Income"
else "Low Income"
}
</income>
</emp>
}
</IncomeGroup>

This query illustrates the use of conditional expressions in FLWOR queries. The for-clause sets
up an iterator on all “Milwaukee” employee nodes. The return-clause constructs the output
XML using a conditional expression. The output to the query looks like the following:

<?xml version="1.0" encoding="UTF-8"?>
<IncomeGroup>
 <emp>
 <lname>Freed</lname>
 <income>High Income</income>
 </emp>
…
…
</IncomeGroup>

Query 11: Get employee names of employees who work on all projects located in “Houston”.

let $d:=doc("/Users/raj/company.xml")
let $houstonProjs :=
 $d/companyDB/projects/project[plocation="Houston"]
for $e in $d/companyDB/employees/employee
where every $p in $houstonProjs satisfies
 (some $q in $e/projects/worksOn satisfies
 $p/@pnumber = $q/@pno)
return concat($e/fname,", ",$e/lname)

This query illustrates the use of the “every” and “some” quantifier constructs in XQuery. The
query first computes the list of all projects located in “Houston” in the variable
$houstonProjs. The for-clause sets up an iterator on employee nodes. The where-clause
employs the quantifier constructs to verify if every “Houston” project is present in the
projects/worksOn sub-element of the employee node. The results are as follows:

<?xml version="1.0" encoding="UTF-8"?>
Franklin, Wong

The general syntax of the quantifier expressions is:

 173

some $var1 in $expr1, …, $varN in $exprN
satisfies $boolExpr

every $var1 in $expr1, …, $varN in $exprN
satisfies $boolExpr

The “some” expression evaluates to true if at least one assignment of values to the variables result
in the Boolean expression being evaluated to true.

The “every” expression evaluates to true if all assignment of values to the variables result in the
Boolean expression being evaluated to true.

7.6 XML Schema 

XML Schema is a schema language for XML documents with a rich set of primitive data types as
well as an extensive set of type constructs. The syntax of XML Schema is XML itself, i.e. XML
Schemas are themselves well-formed and valid XML documents. The structure of XML
documents is defined in XML Schema by the constructing a type system of simple and complex
types that describe the elements and sub-elements of the document.

The schema language features are introduced in this section by considering the company.xml
document introduced earlier in this chapter and creating a schema for it.

Primitive Types

XML Schema provides a host of primitive types including xs:string, xs:integer,
xs:decimal, xs:boolean, and xs:date. Simple elements in the XML document can be
defined in the schema as having one of these primitive types. For example,

<xs:element name=dname" type="xs:string"/>

defines the structure for XML element:

<dname>Research</dname>

Simple Types

Simple types are used for elements that do not have attributes and that do not have sub-elements.
They are also used for attributes. Starting with the basic primitive types, XML Schema provides
several constructs to impose restrictions on the values that a particular type can allow from the
domain of the primitive types.

Consider the XML element <dno>6</dno> and the restriction that the department number be in
the range 1 through 50. The XML Schema code that describes the type of the element is shown
below:

 174

<xs:simpleType name="dnoType">
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="1"/>
 <xs:maxInclusive value="50"/>
 </xs:restriction>
</xs:simpleType>

Here, the simple type dnoType is being defined as a restriction on the base type xs:integer
with the minimum value being 1 and the maximum value being 50. The <dno> element is then
described in the schema as:

<xs:element name=dno" type="dnoType"/>

The social security number is restricted to be a 9-digit number and the simple type for it is shown
below:

<xs:simpleType name="ssnType">
 <xs:restriction base="xs:string">
 <xs:pattern value="[0-9]{9}"/>
 </xs:restriction>
</xs:simpleType>

Here, the base type is xs:string and the restriction is based on a regular expression pattern
which indicates that there should be exactly 9 digits. The regular expressions that describe the
pattern are very similar to that of Unix regular expressions. Detailed descriptions of the various
features of XML Schema including that of the regular expressions can be found at the W3C
website: http://www.w3.org/XML/Schema.html

The number of hours per week an employee of the company may work for a project is a decimal
number with two digits after the decimal point and occupying a total of 5 spaces. The type is
defined as follows:

<xs:simpleType name="hoursType">
 <xs:restriction base="xs:decimal">
 <xs:totalDigits value="5"/>
 <xs:fractionDigits value="2"/>
 </xs:restriction>
</xs:simpleType>

Enumerated types are possible in XML Schema where the values are chosen from a given set. For
example, the genderType used in the company example for employees as well as dependents
can be defined as follows:

<xs:simpleType name="genderType">
 <xs:restriction base="xs:string">

 175

 <xs:enumeration value="M"/>
 <xs:enumeration value="F"/>
 </xs:restriction>
</xs:simpleType>

Lists of Simple Types

XML Schema provides rich support for creating lists of simple types and enforcing several
constraints in lists. The following is a list type definition for a list of social security numbers:

<xs:simpleType name="listOfSSNType">
 <xs:list itemType="ssnType"/>
</xs:simpleType>

Restrictions on lists can be expressed using the facets (a fancy name for restrictions!)
xs:length, xs:minLength, and xs:maxLength. For example, to define lists of social
security numbers of length 8, the following code can be used:

<xs:simpleType name="eightListOfSSNType">
 <xs:restriction base="listOfSSNType">
 <xs:length value=”8”/>
 </xs:restriction>
</xs:simpleType>

Complex Types

Elements that have attributes or those that have sub-elements are said to have complex types and
XML Schema provides the ability to compose complex types from simple types. For example, the
following element found within the <employee> element describes a dependent:

<dependent>
 <dependentName>Abner</dependentName>
 <sex>M</sex>
 <dob>29-FEB-1932</dob>
 <relationship>Spouse</relationship>
</dependent>

The complex type, dependentType, shown below describes the structure of the
<dependent> element:

<xs:complexType name="dependentType">
 <xs:sequence>
 <xs:element name="dependentName" type="xs:string"/>
 <xs:element name="sex" type="genderType"/>
 <xs:element name="dob" type="xs:string"/>
 <xs:element name="relationship" type="xs:string"/>

 176

 </xs:sequence>
</xs:complexType>

The complex type describes the structure as containing four sub-elements in a particular order. The
<xs:sequence> construct specifies that the order of the sub-element is as specified in the type
definition. To define the <dependents> element that includes one or more <dependent>
elements, another complex type can be defined as follows:

<xs:complexType name="dependentsType">
 <xs:sequence>
 <xs:element name="dependent" type="dependentType"
 minOccurs="1" maxOccurs="unbounded"/>
 </xs:sequence>
</xs:complexType>

Note the minOccurs and maxOccurs attributes that specify that there can be one or more
occurrences of the <dependent> sub-elements within the <dependents> element.

A similar type definition is made for the <locations> element within the <department>
element as follows:

<xs:complexType name="locationsType">
 <xs:sequence>
 <xs:element name="location" type="xs:string"
 minOccurs="1" maxOccurs="unbounded"/>
 </xs:sequence>
</xs:complexType>

A sample XML fragment that conforms to the above type definition is:

<locations>
 <location>Atlanta</location>
 <location>Sacramento</location>
</locations>

Consider the following XML fragment from the company XML file:

<manager mssn="111111100">
 <startDate>15-MAY-1999</startDate>
</manager>

This describes a manager and includes an attribute as well as a sub-element. A complex type to
describe such a structure is shown below:

<xs:complexType name="managerType">
 <xs:sequence>

 177

 <xs:element name="startDate" type="xs:string"/>
 </xs:sequence>
 <xs:attribute name="mssn" type="ssnType"/>
</xs:complexType>

Attributes are described after all the sub-elements are described. In this case there is only one sub-
element, startDate.

Elements that have attributes and have empty content (i.e. no sub-elements) are also classified
under complex types. For example, consider the following element in the <department>
element.

<projectsControlled pnos="61 62 63"/>

The complex type definition for this element is shown below:

<xs:complexType name="projsControlType">
 <xs:attribute name="pnos" type="listOfPnoType"/>
</xs:complexType>

Elements with Simple Content and Attributes

Describing the structure of an element with simple content and with attributes is done by using the
<xs:simpleContent> construct in XML Schema. Such an element appears in the company
XML document as follows:

<worker essn="555555500">40.0</worker>

The complex type to describe this element is shown below:

<xs:complexType name="workerType">
 <xs:simpleContent>
 <xs:extension base="hoursType">
 <xs:attribute name="essn" type="ssnType"/>
 </xs:extension>
 </xs:simpleContent>
</xs:complexType>

Within the <simpleContent> construct, the hoursType type is extended by adding an
attribute. Now, to enclose one or more <worker> elements within the <workers> element such
as:

<workers>
 <worker essn="555555500">40.0</worker>
 <worker essn="555555501">44.0</worker>
 <worker essn="666666605">40.0</worker>

 178

</workers>

the following complex type is defined:

<xs:complexType name="workersType">
 <xs:sequence>
 <xs:element name="worker" type="workerType"
 minOccurs="1" maxOccurs="unbounded"/>
 </xs:sequence>
</xs:complexType>

Complete XML Schema File

The complete XML Schema file for the company document is constructed as follows:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 definitions of all simple and complex types
 …
 …
 <xs:element name="companyDB" type="companyDBType"/>
</xs:schema>

The file starts with the XML version statement followed by the <xs:schema> element. Within
this element, all simple and complex types are defined. Finally the root element <companyDB> is
defined. The entire schema file (company.xsd) along with the XML document file
(company.xml) is available along with this lab manual.

Exercises 

NOTE: All references to Exercises and Laboratory Exercises in the following problems refer to the
numbering in the Elmasri/Navathe text.

1. Write and execute XQuery expressions for the following queries on the company.xml
document:

a. Retrieve the names and addresses of employees who work for the “Research”
department.

b. For every project located in “Stafford”, retrieve the project number, the controlling
department number, and the department’s manager’s last name, address, and birth
date.

c. Retrieve the names of all employees who have two or more dependents.
d. Retrieve the names of managers who have at least one dependent.
e. Retrieve the names of employees who work on all projects controlled by

department “5”.
2. Write and execute XQuery expressions for all queries of laboratory exercise 6.34 on page

192 of the Elmasri/Navathe textbook (6th edition).

 179

3. Consider the mail order database described in problem 2 of the Exercises in Chapter 1 of
this lab manual.

a. Create a XML representation of the data described there (you should invent your
own data instances).

b. Write a XML Schema specification for the XML document constructed in part a.
c. Write expressions in XQuery to answer all queries of problem 2 of the Exercises in

Chapter 2 of this lab manual.
4. Consider the grade book database described in problem 6 of the Exercises in Chapter 1 of

this lab manual.
a. Create a XML representation of the data described there (you should invent your

own data instances).
b. Write a XML Schema specification for the XML document constructed in part a.
c. Write expressions in XQuery to answer all queries of problem 3 of the Exercises in

Chapter 2 of this lab manual.
5. Consider the bibliography XML document, bib.xml, provided along with this lab manual.

a. Write a XML Schema specification for the XML document.
b. Write expressions in XQuery to answer the following queries:

i. Find articles that have "Temporal" in their titles.
ii. Find all articles authored by "Raghu Ramakrishnan".

iii. Find number of articles with more than 3 authors.
iv. Produce a listing of URLs of articles for each author. Output should consist

of author names followed by list of URLS, sorted by author names.
v. Find all articles that are over 40 pages long.

