
 103

CHAPTER 5 

Database Design (DBD) Toolkit 

This chapter introduces a toolkit written in SWI-Prolog (a freely available Prolog system for the
Unix as well as the Windows operating systems) that allows the student to learn and test out the
various concepts, definitions, and algorithms associated with relational database design using
functional dependency theory.

The DBD system is available as SWI-Prolog source code in a single file, dbd.pl. This file needs
to be consulted (read into the Prolog interpreter’s memory) before invoking any of the DBD
predicates.

5.1 Coding Relational Schemas and Functional Dependencies 

The DBD system uses lists to code the relational schemas and functional dependencies. Variables
in Prolog begin with an upper-case letter and hence attributes of relational schemes are coded as
Prolog constants – terms that begin with a lower-case letter. Consider the following relational
schema and associated set of functional dependencies:

R(A,B,C,D,E)
F = { A → B, AC → D, E → AB, AD → E, ABC → D }

These will be coded as the following Prolog predicates in DBD:

schema([a,b,c,d,e]).
fds([[[a],[b]], [[a,c],[d]], [[e],[a,b]],
 [[a,d],[e]], [[a,b,c],[d]]]).

5.2 Invoking the SWIProlog Interpreter 

Once the SWI-Prolog system is installed in your server or local computer, the interpreter is
invoked using the following terminal command:

$ pl

Here $ is the command prompt. In the rest of the chapter, all user inputs are shown in bold font
and system displays in regular font.

After printing a welcome message, the interpreter responds with the following prompt:

?-

 104

At this prompt, the user may enter a Prolog query to invoke a predicate. In order to invoke one of
the predicates of the DBD system, the user must first load Prolog interpreter’s memory with the
DBD program using the following command/query:

?- ['dbd.pl'].

Note that all commands/queries to Prolog end with a period (“.”) symbol. To exit the Prolog
system, the halt command/query is entered at the Prolog prompt as follows:

?- halt.

To solve a particular problem using the DBD system, the student will usually create a file
containing the code to represent the relational schema and the functional dependencies. In addition,
one or more Prolog rules may be included to execute predicates to solve the problem at hand. For
example, consider the problem of finding one or more candidate keys for the relational schema and
functional dependencies mentioned earlier in the section. The student will create a text file with the
following code:

schema([a,b,c,d,e]).
fds([[[a],[b]], [[a,c],[d]], [[e],[a,b]],
 [[a,d],[e]], [[a,b,c],[d]]]).
answer(K) :- schema(R), fds(F), candkey(R,F,K).

The first two predicates (schema and fds) code the relational schema and functional
dependencies. The third rule invokes the candkey predicate of the DBD system to find the
candidate keys for R and F. The answer is captured in the answer predicate with one argument.
Let us assume that the above code is present in a file called example.pl. The following
interaction with the SWI-Prolog system shows the steps necessary to find the answer(s) to the
problem:

$ pl
Welcome to SWI-Prolog (Multi-threaded, Version 5.4.7)
Copyright (c) 1990-2003 University of Amsterdam.
SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,
and you are welcome to redistribute it under certain conditions.
Please visit http://www.swi-prolog.org for details.

For help, use ?- help(Topic). or ?- apropos(Word).

?- ['dbd.pl'].
% dbd.pl compiled 0.02 sec, 30,740 bytes

Yes
?- ['example.pl'].
% example.pl compiled 0.00 sec, 1,116 bytes

Yes
?- answer(K).

K = [c, e] ;

 105

K = [a, c] ;

No
?- answer(K).

K = [c, e]

Yes
?- halt.
$

The user inputs are shown in bold font. After invoking the interpreter, the user first loads the DBD
system code (dbd.pl). The user then loads the code to solve the problem at hand
(example.pl). Finally, the user submits the query, answer(K), to determine the candidate keys.
By default, every Prolog system responds with the first answer to the query and waits for user
input. At this point the user has two choices: press the ENTER key to stop looking at further
answers to the query or press the semi-colon key to request Prolog to display the next answer to
the query. In the above screen capture, both options are shown.

5.3 DBD System Predicates 

The DBD system predicates are discussed in this section. Almost all of the predicates take as input
the relation schema R and a set of functional dependencies F. R and F must be coded properly as
indicated in earlier sections. In particular, the attribute names must begin with a lower-case letter.
The predicate names themselves also must begin with a lower-case letter.

5.3.1 xplus(R,F,X,Xplus) 

The xplus predicate takes as input a relation schema R, a set of functional dependencies F, and a
subset X of R and produces as output the attribute-closure of X under F, i.e. the set of attributes that
are functionally dependent on X. The following shows a sample interaction with the Prolog system
to compute the attribute closure of {A, C} for the relational schema and functional dependencies
mentioned earlier in this chapter (the file e2.pl is assumed to contain the schema and fds
predicates):

?- ['dbd.pl'].
% dbd.pl compiled 0.02 sec, 30,740 bytes

Yes
?- ['e2.pl'].
% e2.pl compiled 0.00 sec, 1,096 bytes

Yes
?- schema(R),fds(F),xplus(R,F,[a,c],Xplus).

R = [a, b, c, d, e]
F = [[[a], [b]], [[a, c], [d]], [[e], [a, b]], [[a, d], [e]], [[a, b, c], [d]]]
Xplus = [a, b, c, d, e]

 106

Yes
?- halt.
$

5.3.2 finfplus(R,F,[X,Y]) 

The finfplus predicate takes as input a relation schema R, a set of functional dependencies F,
and a functional dependency X → Y (in list coded form [X,Y]) and returns “yes” if X → Y is
in the closure of F and “no” otherwise. An example using the same R and F as before follows:

?- ['dbd.pl'].
% dbd.pl compiled 0.02 sec, 30,740 bytes

Yes
?- ['e2.pl'].
% e2.pl compiled 0.00 sec, 1,096 bytes

Yes
 ?- schema(R), fds(F), finfplus(R,F,[[a,b],[c]]).

No
?- schema(R), fds(F), finfplus(R,F,[[a,d],[b]]).

R = [a, b, c, d, e]
F = [[[a], [b]], [[a, c], [d]], [[e], [a, b]], [[a, d], [e]], [[a, b, c], [d]]]

Yes

In the above screen capture we observe that the functional dependency AB → C is not in the
closure of F whereas the functional dependency AD → B is in the closure of F.

5.3.3 fplus(R,F,Fplus) 

The fplus predicate takes as input a relational schema R and a set of functional dependencies F
and returns as output the closure of F in the third parameter. Typically the number of functional
dependencies in the closure of F is large and in the worst case can be exponential in the number of
attributes of R.

Consider the following Prolog code in file e3.pl:

schema([a,b,c,d,e]).
fds([[[a],[b]], [[a,c],[d]], [[e],[a,b]],
 [[a,d],[e]], [[a,b,c],[d]]]).
displayFDs([]) :- nl.
displayFDs([[X,Y]|Rest]) :-
 write(X),write('-->'), write(Y),nl,displayFDs(Rest).
go :- schema(R), fds(F), fplus(R,F,Fplus), displayFDs(Fplus).

 107

This program adds the display rules to the e2.pl file and invokes the displayFDs predicate
on the closure of F. All functional dependencies that are implied by F are displayed by the
following invocation:

?- ['dbd.pl'].
% dbd.pl compiled 0.02 sec, 30,740 bytes

Yes
?- ['e3.pl'].
% e3.pl compiled 0.01 sec, 1,700 bytes

Yes
?- go.
[a]-->[a, b]
[a]-->[b]

…
…

Note: The fplus predicate does not generate any trivial functional dependencies (dependencies
whose RHS attributes are also present in the LHS attributes).

5.3.4 implies(R,F1,F2) and equiv(R,F1,F2) 

The implies predicate takes as input a relational schema R and two sets of functional
dependencies F1 and F2. It returns “yes” if F1 implies F2, i.e. if each functional dependency in
F2 is in the closure of F1; returns “no” otherwise.

The equiv predicate takes as input a relational schema R and two sets of functional dependencies
F1 and F2. It returns “yes” if F1 is equivalent to F2, i.e. if each functional dependency in F2 is in
the closure of F1 and if each functional dependency in F1 is in the closure of F2; returns “no”
otherwise.

Consider the relational schema R(A,B,C) and the two sets of functional dependencies:

F1 = {A → BC, B → A}
F2 = {A → B, A → C}

The above schema and functional dependencies can be coded into a file e4.pl as follows:

schema([a,b,c]).
fds1([[[a],[b,c]], [[b],[a]]]).
fds2([[[a],[b]], [[a],[c]]]).

The following screen capture illustrates the implies and equiv predicates:

?- ['dbd.pl'].
% dbd.pl compiled 0.02 sec, 30,740 bytes

 108

Yes
?- ['e4.pl'].
% e4.pl compiled 0.00 sec, 1,120 bytes

Yes
?- schema(R), fds1(F1), fds2(F2), implies(R,F1,F2).

R = [a, b, c]
F1 = [[[a], [b, c]], [[b], [a]]]
F2 = [[[a], [b]], [[a], [c]]]

Yes
?- schema(R), fds1(F1), fds2(F2), implies(R,F2,F1).

No
?- schema(R), fds1(F1), fds2(F2), equiv(R,F1,F2).

No
?-

5.3.5 superkey(R,F,K) and candkey(R,F,K) 

The superkey and candkey predicates both take a relation schema R and a set of functional
dependencies as input in the first two parameters. The third parameter may be a constant (i.e. an
instantiated list of attributes of R) or a variable.

In case the third parameter is instantiated to a list of attributes the superkey (candkey)
predicate with return “yes” if the instantiated third parameter is a super key (candidate key) of R;
“no” otherwise.

In case the third parameter is a variable, the predicate superkey (candkey) will generate all
super keys (candidate keys) one at a time.

Consider the following e5.pl file containing a relation schema and associated functional
dependencies:

schema([a,b,c]).
fds([[[a],[b,c]], [[b],[a]]]).

The following screen capture illustrates usage of the superkey and candkey predicates:

?- ['dbd.pl'].
% dbd.pl compiled 0.01 sec, 30,428 bytes

Yes
?- ['e5.pl'].
% e5.pl compiled 0.00 sec, 1,124 bytes

Yes

?- schema(R), fds(F), candkey(R,F,K).

 109

R = [a, b, c]
F = [[[a], [b, c]], [[b], [a]]]
K = [b] ;

R = [a, b, c]
F = [[[a], [b, c]], [[b], [a]]]
K = [a] ;

No
?- schema(R), fds(F), superkey(R,F,K).

R = [a, b, c]
F = [[[a], [b, c]], [[b], [a]]]
K = [a, b, c] ;

R = [a, b, c]
F = [[[a], [b, c]], [[b], [a]]]
K = [b, c] ;

R = [a, b, c]
F = [[[a], [b, c]], [[b], [a]]]
K = [b] ;

R = [a, b, c]
F = [[[a], [b, c]], [[b], [a]]]
K = [a, c] ;

R = [a, b, c]
F = [[[a], [b, c]], [[b], [a]]]
K = [a] ;

R = [a, b, c]
F = [[[a], [b, c]], [[b], [a]]]
K = [a, b] ;

No
?- schema(R), fds(F), candkey(R,F,[a,b]).

No
?- schema(R), fds(F), superkey(R,F,[a,b]).

R = [a, b, c]
F = [[[a], [b, c]], [[b], [a]]]

Yes
?-

5.3.6 mincover(R,F,FC) 

The mincover predicate takes as input a relation schema R and a set of functional dependencies
F and returns as output in the third parameter the minimal cover for F.

Consider the following relation schema and functional dependencies in file e6.pl:

 110

schema([a,b,c,d,e]).
fds([[[a],[b,c]], [[b],[a]], [[a,b],[d]], [[a],[d]], [[b,c],[a]]]).

The functional dependencies coded in the file are:

F = {A → BC, B → A, AB → D, A → D, BC → A}

The following screen capture illustrates the mincover predicate usage:

?- ['dbd.pl'].
% dbd.pl compiled 0.02 sec, 30,740 bytes

Yes
?- ['e6.pl'].
% e6.pl compiled 0.00 sec, 1,072 bytes

Yes
?- schema(R),fds(F),mincover(R,F,MinF).

R = [a, b, c, d, e]
F = [[[a], [b, c]], [[b], [a]], [[a, b], [d]], [[a], [d]], [[b, c], [a]]]
MinF = [[[a], [b, c, d]], [[b], [a]]]

Yes
?-

The minimum cover for the set of functional dependencies is

MinF = {A → BCD, B → A}.

5.3.7 ljd(R,F,R1,R2), ljd(R,F,D), and fpd(R,F,D) 

The predicates discussed in this sub-section are related to decompositions of relation schemas. We
represent decompositions using lists of relational schemas. For example, the decomposition D =
{ABC, ABD, BDE} of R = ABCDE is represented as the following Prolog term:

D = [[a,b,c],[a,b,d],[b,d,e]]

Testing for lossless join decomposition

There are two versions of the ljd predicate.

The first version of the ljd predicate takes as input a relation scheme R, a set of functional
dependencies F, and two relation schemas R1 and R2 that are decompositions of R. The predicate
returns “yes” if (R1, R2) is a lossless join decomposition of R; “no” otherwise.

 111

As an example, consider the R = ABC and F = {A → B}. Consider the decomposition of R into
two sub-schemas R1 = AB and R2 = AC. The following screen capture illustrates the use of the
first version of ljd predicate:

?- ['dbd.pl'].
% dbd.pl compiled 0.02 sec, 30,740 bytes

Yes
?- ljd([a,b,c],[[[a],[b]]],[a,b],[a,c]).

Yes
?-

The second version of the ljd predicate takes as input a relation scheme R, a set of functional
dependencies F, and a decomposition D into two or more sub-schemas. D is represented as a list of
relation schemas where each schema is itself a list of attributes. The predicate returns “yes” if D is
a lossless join decomposition of R; “no” otherwise. This version implements the “matrix” method
(Algorithm 11.1 of the Elmasri/Navathe text) to test for lossless join and prints the final matrix.

As an example, consider the following file (named e7a.pl) containing a relational schema, a set
of functional dependencies and a decomposition into more than two sub-schemas:

schema([a,b,c,d,e]).
fds([[[a],[c]], [[b],[c]], [[c],[d]], [[d,e],[c]], [[c,e],[a]]]).
decomp([[a,d],[a,b],[b,e],[c,d,e],[a,e]]).

The following screen capture illustrates the usage of the more general version of the ljd
predicate:

?- ['dbd.pl'].
% dbd.pl compiled 0.02 sec, 30,740 bytes

Yes
?- ['e7a.pl'].
% e7a.pl compiled 0.01 sec, 1,440 bytes

Yes
?- schema(R), fds(F), decomp(D), ljd(R,F,D).
[[a, 1], [b, 1, 2], [a, 3], [a, 4], [b, 1, 5]]
[[a, 1], [a, 2], [a, 3], [a, 4], [b, 2, 5]]
[[a, 1], [a, 2], [a, 3], [a, 4], [a, 5]]
[[a, 1], [b, 4, 2], [a, 3], [a, 4], [a, 5]]
[[a, 1], [b, 5, 2], [a, 3], [a, 4], [a, 5]]

R = [a, b, c, d, e]
F = [[[a], [c]], [[b], [c]], [[c], [d]], [[d, e], [c]], [[c, e], [a]]]
D = [[a, d], [a, b], [b, e], [c, d, e], [a, e]]

Yes
?-

 112

Note that the ljd predicate execution prints the final matrix to the screen; In this case it can be
observed that the third row is turned into an “all-a” row.

Testing for FD-preserving decomposition

The fpd predicate takes as input a relation scheme R, a set of functional dependencies F, and a
decomposition D into two or more sub-schemas. D is represented as a list of relation schemas
where each schema is itself a list of attributes. The predicate returns “yes” if D is a functional
dependency preserving decomposition of R; “no” otherwise.

As an example, consider the following file (named e7b.pl) containing a relational schema, a set
of functional dependencies and a decomposition into sub-schemas:

schema([a,b,c,d]).
fds([[[a],[b]], [[b],[c]], [[c],[d]], [[d],[a]]]).
decomp([[a,b],[b,c],[c,d]]).

The following screen capture illustrates the usage of the fpd predicate:

?- ['dbd.pl'].
% dbd.pl compiled 0.03 sec, 30,740 bytes

Yes
?- ['e7b.pl'].
% e7b.pl compiled 0.00 sec, 1,260 bytes

Yes
?- schema(R), fds(F), decomp(D), fpd(R,F,D).
Considering [a]-->[b]
Xplus=[a, b, c, d]
Considering [b]-->[c]
Xplus=[a, b, c, d]
Considering [c]-->[d]
Xplus=[a, b, c, d]
Considering [d]-->[a]
Xplus=[a, b, c, d]

R = [a, b, c, d]
F = [[[a], [b]], [[b], [c]], [[c], [d]], [[d], [a]]]
D = [[a, b], [b, c], [c, d]]

Yes
?-

Note that the fpd predicate execution prints each functional dependency in F and displays the
attribute closure of the LHS of the functional dependency with respect to the “projected”
functional dependencies. The algorithm implemented in this predicate is from “Jeffrey D. Ullman,
Principles of Database Systems, Second Edition, Computer Science Press, 1982”.

 113

5.3.8 is3NF(R,F) and threenf(R,F,D) 

The is3NF predicate takes as input a relation schema R and a set of associated functional
dependencies and returns “yes” if the relation schema is in 3NF; “no” otherwise.

The threenf predicate takes as input a relation schema R and a set of associated functional
dependencies and returns in the third parameter a decomposition of R into 3NF. The threenf
predicate implements Algorithm 11.4 of the Elmasri/Navathe text.

As an example, consider the following file (named e8.pl) containing a relational schema and a
set of functional dependencies:

schema([a,b,c,d]).
fds([[[a,b],[c]],[[b],[d]],[[b,c],[a]]]).

The following screen capture illustrates the 3NF test as well as a 3NF decomposition of the
relation schema.

?- ['dbd.pl'].
% dbd.pl compiled 0.02 sec, 30,740 bytes

Yes
?- ['e8.pl'].
% e8a.pl compiled 0.01 sec, 932 bytes

Yes
?- schema(R), fds(F), is3NF(R,F).

No
?- schema(R), fds(F), threenf(R,F,R3NF).

R = [a, b, c, d]
F = [[[a, b], [c]], [[b], [d]], [[b, c], [a]]]
R3NF = [[a, b, c], [b, d]]

Yes
?-

As can be seen in the above interaction with the DBD system, the schema R = ABCD is not in 3NF
and is decomposed into 3NF sub-schemas ABC and BD.

5.3.9 isBCNF(R,F) and bcnf(R,F,D) 

The isBCNF predicate takes as input a relation schema R and a set of associated functional
dependencies and returns “yes” if the relation schema is in BCNF; “no” otherwise.

The bcnf predicate takes as input a relation schema R and a set of associated functional
dependencies and returns in the third parameter a decomposition of R into BCNF. The bcnf
predicate implements Algorithm 11.3 of the Elmasri/Navathe text.

 114

As an example, consider the same e8.pl file used in the previous sub-section.

The following screen capture illustrates the BCNF test as well as a BCNF decomposition of the
relation schema.

?- ['dbd.pl'].
% dbd.pl compiled 0.02 sec, 30,740 bytes

Yes
?- ['e8.pl'].
% e8.pl compiled 0.00 sec, 928 bytes

Yes
?- schema(R), fds(F), isBCNF(R,F).

No
?- schema(R), fds(F), bcnf(R,F,D).
Scheme to decompose = [a, b, c, d] Offending FD: [b]-->[d]
Final Result is:
[a, b, c]
[b, d]

R = [a, b, c, d]
F = [[[a, b], [c]], [[b], [d]], [[b, c], [a]]]
D = [[a, b, c], [b, d]];

As can be seen in the above interaction with the DBD system, the schema R = ABCD is not in
BCNF and is decomposed into BCNF sub-schemas ABC and BD. Note that the bcnf predicate
implementation also prints out the schema that is being decomposed along with the “offending”
functional dependency.

Exercises 

For all the problems in this set of exercises, use the predicates in the DBD system to answer the
questions.

Chapter 10 (Elmasri/Navathe Text) Problems:

1. Consider the following two sets of functional dependencies:

F = {A → C, AC → D, E → AD, E → H}
G = {A → CD, E → AH}

Check whether they are equivalent.

2. Consider the relation schema

 EMP_DEPT(ename,ssn,bdate,address,dnumber,dname,dmgrssn)

 115

 and the following set G of functional dependencies on EMP_DEPT:

 ssn → ename, bdate, address, dnumber

dnumber → dname, dmgrssn

 Calculate the closures {ssn}+ and {dnumber}+.

3. Is the set of functional dependencies G in Exercise 2 minimal? If not, find a minimal set of
functional dependencies that is equivalent to G.

4. Consider the universal relation R = { A,B,C,D,E,F,G,H,I} and the set of

functional dependencies:

 F = {AB → C, A → DE, B → F, F → GH, D → IJ}

 What is the key for R? Decompose R into 3NF relations.

5. Repeat Exercise 4 for the same R but a different set of functional dependencies

 G = {AB → C, BD → EF, B → F, F → GH, D → IJ}

6. Consider a relation R(A,B,C,D,E) with the following functional dependencies:

 F = {AB → C, CD → E, DE → B}

 Is AB a candidate key of this relation? If not, is ABD?

7. Consider the relation R, which has attributes that hold schedules of courses and sections at

a university;
 R = {courseno,secno,offeringdept,credithours,courselevel,
 instructorssn,semester,year, Dayshours,roomno,
 noofstudents}

 Suppose the following functional dependencies hold on R:

 courseno → offeringdept,credithours,courselevel

 courseno,secno,semester,year →
 dayshours,roomno,noofstudents,instructorssn

 roomno,dayshours,semester,year →
 instructorssn,courseno,secno

 Find the candidate keys for R and decompose the relation into 3NF relations.

 116

Chapter 11 (Elmasri/Navathe Text) Problems:

8. Consider the relation schema

LOTS(propertyid,countyname,lotno,area,price,taxrate)

and associated set of functional dependencies:

propertyid → countyname,lotno,area,price,taxrate
countyname,lotno → propertyid,area,price,taxrate
countyname → taxrate
area → price

 Determine if the decomposition of LOTS into

LOTS1AX(propertyis,area,lotno)
LOTS1AY(area,countyname)
LOTS1B(area,price)
LOTS2(countyname,taxrate)

 is a lossless join decomposition?

9. Consider the universal relation R = { A,B,C,D,E,F,G,H,I} and the set of

functional dependencies:

 F = {AB → C, A → DE, B → F, F → GH, D → IJ}

Determine the candidate keys for R, find a minimal cover for F, and decompose R into 3NF
relations.

10. Consider the universal relation R = { A,B,C,D,E,F,G,H,I} and the set of

functional dependencies:

G = {AB → C, BD → EF, B → F, F → GH, D → IJ}

Determine the candidate keys for R, find a minimal cover for F, and decompose R into 3NF
relations.

11. Consider the universal relation R = { A,B,C,D,E,F,G,H,I} and the set of
functional dependencies:

 F = {AB → C, A → DE, B → F, F → GH, D → IJ}

Decompose R into BCNF relations. Repeat the exercise for

G = {AB → C, BD → EF, B → F, F → GH, D → IJ}

 117

12. Consider a relation R(A,B,C,D,E) with the following functional dependencies:

 F = {AB → C, CD → E, DE → B}

Determine the candidate keys for R and decompose R into 3NF relations and into BCNF
relations.

Repeat the exercise for

R = {courseno,secno,offeringdept,credithours,courselevel,

 instructorssn,semester,year, Dayshours,roomno,
 noofstudents}

 and F containing the following functional dependencies:

courseno → offeringdept,credithours,courselevel,

 courseno,secno,semester,year →
 dayshours,roomno,noofstudents,instructorssn

 roomno,dayshours,semester,year →
 instructorssn,courseno,secno

13. Consider the following decompositions for the relation schema

 R(a,b,c,d,e,f,g,h,i)

 and the set of associated functional dependencies:

 F = {ab → c, a → de, b → f, f → gh, d → ij}.

 Determine whether each of the following decompositions has the (a) dependency
 preservation property, and (b) the lossless join property with respect to F:

i. D1 = {R1,R2,R3,R4,R5};

 R1 = {a,b,c}, R2 = {a,d,e}, R3 = {b,f}, R4 = {f,g,h},
 R5 = {d,i,j}.

ii. D2 = {R1,R2,R3};
 R1 = {a,b,c,d,e}, R2 = {b,f,g,h}, R3 = d,i,j}

iii. D3 = {R1,R2,R3,R4,R5};
 R1 = {a,b,c,d}, R2 = {d,e}, R3 = {b,f}, R4 = {f,g,h},
 R5 = {d,i,j}.

 118

14. Consider the relation REFRIG(modelno,year,price,manufplant,color)
which is abbreviated as REFRIG(m,y,p,mp,c) and the set of functional dependencies

 F = {m → mp, {m,y} → p, mp → c}

iv. Evaluate each of the following as candidate keys: {m}, {m,y}, {m,c}.
v. Test if REFRIG is in 3NF? In BCNF?

vi. Test if the decomposition D = {R1(m,y,p), R2(m,mp,c)} is lossless.

