69

CHAPTER 4

Relational Database Management System: MySQL

This chapter introduces the student to the MySQL database management system and PHP, the
programming language used to program applications that access a MySQL database. The
discussion in this chapter is not specific to any version of MySQL and all examples would work
with MySQL 4.0 or higher version.

The COMPANY database of the Elmasri/Navathe text is used throughout this chapter. In Section
4.1, a larger data set is introduced for the COMPANY database. In Section 4.2, the mysgl utility is
introduced which allows the users to interact with the database including running commands,
executing SQL statements, and running MySQL scripts. In Section 4.3 PHP programming with
MySQL is introduced through a complete Web browsing application for the COMPANY database.
Finally, in Section 4.4 an online address book application is discussed with interfaces for adding,
deleting, listing and searching a collection of contacts coded in HTML as well as in PhP.

4.1 COMPANY Database

Consider the COMPANY database state shown in Figure 5.6. Let us assume that the company is
expanding with 3 new departments: Software, Hardware, and Sales. The Software department has
2 locations: Atlanta and Sacramento, the Hardware department is located in Milwaukee, and the
Sales department has 5 locations: Chicago, Dallas, Philadelphia, Seattle, and Miami.

The Software department has 3 new projects: OperatingSystems, DatabaseSystems,
and Middleware andthe Hardware department has 2 new projects: InkjetPrinters and
LaserPrinters. The company has added 32 new employees in this expansion process.

The updated COMPANY database is shown in the following tables.

DEPARTMENT DNAME DNUMBER MGRSSN MGRSTARTDATE
Research 5 333445555 22-May-78
Administration 4 987654321 1-Jan-85
Headquarters 1 888665555 19-Jun-71
Software 6/ 111111100 15-May-99
Hardware 7 444444400 15-May-98
Sales 8/ 555555500 1-Jan-97

PROJECT PNAME PNUMBEF PLOCATION DNUM
ProductX 1 Bellaire
ProductY 2 Sugarland
ProductZ 3 Houston
Computerization 10 Stafford
Reorganization 20 Houston
Newbenefits 30 Stafford
OperatingSystems 61 Jacksonville
DatabaseSystems 62 Birmingham
Middleware 63 Jackson
InkjetPrinters 91 Phoenix
LaserPrinters 92 LasVegas
DEPT_LOCATIONS DNUMBER DLOCATION
1 Houston
4 Stafford
5 Bellaire
5 Sugarland
5 Houston
6 Atlanta
6 Sacramento
7 Milwaukee
8 Chicago
8 Dallas
8 Philadephia
8 Seattle
DEPENDENT ESSN DEPENDENT_NAME SEX

333445555 Alice
333445555 Theodore
333445555 Joy
987654321 Abner
123456789 Michael
123456789 Alice
123456789 Elizabeth
444444400 Johnny
444444400 Tommy
444444401 Chris
444444402 Sam

F
M
F
M
M
F
F
M
M
M
M

NN OO ~—=~O0010O

BDATE RELATION
5-Apr-76 Daughter
25-Oct-73 Son
3-May-48 Spouse
29-Feb-32 Spouse
1-Jan-78 Son
31-Dec-78 Daughter
B-May-57 Spouse
4-Apr-97 Son
7-Jun-93 Son
19-Apr-63 Spouse
14-Feb-64 Spouse

70

WORKS_ON ESSN

123456783
123456783
666884444
453453453
453453453
333445555
333445555
333445555
333445555
9939887777
993887777
987987387
987987387
987654321
987654321
888665555
111111100
111111101
111111102
111111103
222222200
222222201
222222202
222222203
222222204
222222205
333333300
333333301
444444400
444444401
444444402
444444403
555555500
555555501
666666601
666666603
666666604
666666605
666666606
666666607
666666608
666666609
666666610
666666611
666666612
666666613
666666613
666666613

PNO

HOURS

32.5
7.5
40
20
20
10
10
10
10
30
10
35

20
15
null
40
40
40
40
40
48
40
40
40
40
40
46
40
40
40
40
40
44
40
40
40
40
40
40
40
40
40
40
40
30
10
10

71

EMPLOYEE
FNAME
James
Franklin
Jennifer
John
Alicia
Ramesh
Joyce
Ahmad
Jared
Alex
John
Jon
Justin
Brad
Evan
Josh
Andy
Tom
Jenny
Chris
Kim
Jeff
Bonnie
Alec
Sam
Nandita
Bob

Jill
Kate
Lyle
Billie
Jon
Ray
Gerald
Arnold
Helga
Naveen
Carl
Sammy

MINIT LNAME

E
-
S
B
J
K
A
V
D
D
C
C

null

GMBO>PO0OI>PTCOQSICTXOONOIO>MOGOCMO

Borg
Wong
Wallace
Smith
Zelaya
Narayan
English
Jabbar
James
Freed
James
Jones
Mark
Knight
Wallis
Zell
Vile
Brand
Vos
Carter
Grace
Chase
Bays
Best
Snedder
Ball
Bender
Jarvis
King
Leslie
King
Kramer
King
Small
Head
Pataki
Drew
Reedy
Hall

SSN

888665555
333445555
987654321
123456789
999887777
666884444
453453453
987987987
111111100
444444400
555555500
111111101
111111102
111111103
222222200
222222201
222222202
222222203
222222204
222222205
333333300
333333301
444444401
444444402
444444403
555555501
666666600
666666601
666666602
666666603
666666604
666666605
666666606
666666607
666666608
666666609
666666610
666666611
666666612

BDATE
10-Nov-27
8-Dec-45
20-Jun-31
9-Jan-55
19-Jul-58
15-Sep-52
31-Jul-62
29-Mar-59
10-Oct-66
9-Oct-50
30-dun-75
14-Nov-67
12-Jan-66
13-Feb-68
16-Jan-58
22-May-54
21-Jun-44
16-Dec-66
11-Nov-67
21-Mar-60
23-0ct-70
7-Jan-70
19-Jun-56
18-Jun-66
31-Jul-77
16-Apr-69
17-Apr-68
14-Jan-66
16-Apr-66
9-Jun-63
1-Jan-60
22-Aug-64
16-Aug-49
15-May-62
19-May-67
11-Mar-69
23-May-70
21-Jun-77
11-dan-70

ADDRESS

450 Stone, Houston, TX
638 Voss, Houston, TX
291 Berry, Bellaire, TX

731 Fondren, Houston, TX
3321 Castle, Spring, TX
971 Fire Oak, Humble, TX
5631 Rice, Houston, TX
980 Dallas, Houston, TX
123 Peachtree, Atlanta, GA
4333 Pillsbury, Milwaukee, WiI

7676 Bloomington, Sacramento, (

111 Allgood, Atlanta, GA

2342 May, Atlanta, GA

176 Main St., Atlanta, GA

134 Pelham, Milwaukee, WI
266 McGrady, Milwaukee, W
1967 Jordan, Milwaukee, WI
112 Third St, Milwaukee, WI
263 Mayberry, Milwaukee, WI
565 Jordan, Milwaukee, WI
6677 Mills Ave, Sacramento, CA
145 Bradbury, Sacramento, CA
111 Hollow, Milwaukee, WI
233 Solid, Milwaukee, WI

987 Windy St, Milwaukee, WI
222 Howard, Sacramento, CA
8794 Garfield, Chicago, IL
6234 Lincoln, Chicago, IL
1976 Boone Trace, Chicago, IL
417 Hancock Ave, Chicago, IL
556 Washington, Chicago, IL
1988 Windy Creek, Seattle, WA
213 Delk Road, Seattle, WA
122 Ball Street, Dallas, TX

233 Spring St, Dallas, TX

101 Holyoke St, Dallas, TX
198 EIm St, Philadelphia, PA
213 Ball St, Philadelphia, PA
433 Main Street, Miami, FL

SEX SALARY

EEETMEEEETMETMNTTMEEEETETTTT I EEEEEEEEEEETETT=E M

55000
40000
43000
30000
25000
38000
25000
25000
85000
89000
81000
45000
40000
44000
92000
56000
53000
62500
61000
43000
79000
44000
70000
60000
48000
62000
96000
36000
44000
41000
38000
41500
44500
29000
33000
32000
34000
32000
37000

72

SUPERSSN DN

null

888665555
888665555
333445555
987654321
333445555
333445555
987654321
null

null

null

111111100
111111100
111111100
null

222222200
222222200
222222200
222222201
222222201
null

333333300
444444400
444444400
444444400
555555500
null

666666600
666666600
666666601
666666603
666666603
666666604
666666602
666666602
666666602
666666607
666666610
666666611

73

4.2 mysqgl Utility

MySQL database system provides an interactive utility, called mysqgl, which allows the user to
enter SQL commands interactively. One can also include one or more SQL statements in a file and
have them executed within mysqgl using the source command.

In the following discussion, we will assume that your MySQL administrator has created a database
called company®, created a MySQL user’ called book, and has granted all rights to the
company database to the book user.

The following mysgl session creates the department table:

$ mysgl -u book -p

Enter password:

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 1485 to server version: 4.1.9-standard

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.
mysgl> use company

Reading table information for completion of table and column names
You can turn off this feature to get a gquicker startup with -A
Database changed

mysqgl> source create-department.sqgl;

Query OK, 0 rows affected (0.04 sec)

mysgl> show tables;

o +
| Tables in company |
o +
| department |
| foo |
o +

mysqgl> exit;
Bye
$

* The administrator command to create a MySQL user is: create user book identified by 'book';
Here the user id is book and the password is also book.

> The administrator command to create a database called company and to assign all rights to the book user is:
grant all on company.* to 'book'@'hostname.domain.edu';

74

In the above mysgl session, the user invokes the mysql program with the userid book and the
—p option to specify the password in a separate line. After connecting to the database server, the
use company command is executed to start using the company database. Then, the source
command is executed on the file create-department.sql that contains the following SQL
statement:

CREATE TABLE department (

dname varchar (25) not null,
dnumber integer (4),
mgrssn char (9) not null,

mgrstartdate date,
primary key (dnumber),
key (dname)

) ;

Note: The data types supported in different DBMSs may have slightly different names; Please
consult MySQL documentation to learn about all data types supported.

Bulk Loading of Data

MySQL provides a “load” command that can load data stored in a text file into a table. The
following mysql session illustrates the loading of the data located in department.csv file
into the department table. In the following example, the load command is directly entered at
the mysqgl prompt. It may be a good idea to create a script file with the 1oad command and use
the source command to execute the 1oad command. This way, if there are any syntax errors,
these can be corrected in the script file and the 1 0ad command can be re-executed.

$ mysgl -u raj -p

Enter password:

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 1493 to server version: 4.1.9-standard

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysgl> use company;
Reading table information for completion of table and column names
You can turn off this feature to get a gquicker startup with -A

Database changed

mysqgl> LOAD DATA LOCAL INFILE "department.csv"
INTO TABLE department FIELDS TERMINATED BY ","
OPTIONALLY ENCLOSED BY ‘7',

Query OK, 6 rows affected (0.00 sec)

Records: 6 Deleted: 0 Skipped: 0 Warnings: 0

mysqgl> select * from department;

Research

Software
Hardware
Sales

mysgl> exit;

Bye
$

The LOAD DATA command takes the name of the data file as parameter and other information
such as field terminator symbols (in this case the comma) and loads the data into the table. For
more details on the 1 oad command, please consult the MySQL documentation.

Administration
Headquarters

333445555
987654321
888665555
111111100
444444400
555555500

4.3 MySQL and PHP Programming

PHP is a very popular Web scripting language that allows the programmers to rapidly develop
Web applications. In particular, PHP is most suited to develop Web applications that access a
MySQL database. In this section, we illustrate the ease of programming with PHP and provide

several examples of Web access to MySQL databases.

Example 1: Consider the problem of finding employee names given their social security number.
To implement this problem as a Web application, we can design two Web pages:

1. The first Web page would contain a HTML form that contains a select list of social
security numbers of employees and a submit button.

2. Upon choosing a social security number and submitting the form in the first Web page

1978-05-22
1985-01-01
1971-06-19
1999-05-15
1998-05-15
1997-01-01

produces the second Web page that lists the name of the employee.

The two Web pages are shown in Figures 4.1 and 4.2.

76

Figure 4.1: Initial Web Page - Example 1

Figure 4.2: Second Web Page - Example 1

Both these Web pages contain dynamic information (obtained from the database) and therefore can
easily be produced by PHP scripts. The PHP script (plpost.php) that produces the first Web
page is shown below.

77

<html>
<head>
<title>Simple Database Access</title>
</head>
<body>

<?

Susername="user";

Spassword="password";

Sdatabase="company";

mysgl connect (localhost, Susername, Spassword) ;
@mysql_select_db($database) or die("Unable to select database");
Squery="SELECT ssn FROM employee";
Sresult=mysql query ($query);

$num=mysql numrows (Sresult) ;

mysqgl close();

?>

<h4>Employee Details for:</h4>
<form method="post" action="pl.php">
<select name="ssn">

<?

$i=0;

while ($1 < Snum) {
$ssn=mysql result ($result,$i,"ssn");
echo "<option>", $ssn,"\n";
Sit++;

}

2>

</select>

<input type="submit" value="Get Employee Details">
</form>

</body>

</html>

A PHP script typically consists of HTML code to display “static” parts of the Web page
interspersed with procedural PHP statements that produce “dynamic” parts of the Web page. The
dynamic content may come from a database such as MySQL and hence most of the PHP
procedural code involves connecting to the database, running queries and using the query result to
produce parts of the Web page.

In the above example script, a simple HTML page is produced which has:
* Some static content such as text headers and a HTML form with a submit button. The
HTML form when submitted invokes the second PHP script called “p1 .php”.

78

* A dynamic “select” GUI element within the HTML form which contains a list of employee
social security numbers for the users to choose from.
PHP statements are enclosed within <? And >?. HTML code can be produced within PHP code
using the “echo” command as is seen in several places in the code. As can be seen, there are two
blocks of PHP code in the example: one to connect to the database and execute a query and the
second to use the results of the query to produce the HTML “select” list options.

The PHP script (p1 . php) to produce the second Web page is shown next.

<html>

<head>

<title>Simple Database Access</title>
</head>

<body>

<h4>Employee Information</h4>

<?

Susername="user";

Spassword="password";

Sdatabase="company";

$ssn=$ POST['ssn'];

mysgl connect (localhost, Susername, Spassword) ;

@mysql_select_db($database) or die("Unable to select database"):;

Squery="SELECT * FROM employee where ssn=$ssn";

Sresult=mysqgl query ($query);

snum=mysql numrows (Sresult) ;

mysqgl close();

1if (Snum == 1) {
$fname=mysql result (Sresult,$i, "fname");
sminit=mysqgl result (Sresult,$i,"minit");
$lname=mysql result (Sresult,$i, "lname");
echo "S$fname S$Sminit, S$lname";

}2>

</body>
</html>

In this script, the employee social security number posted in the first Web page is retrieved using
the PHP statement

$ssn=$ POST['ssn'];

This social security number is then used in an SQL query to retrieve employee name. The script
contains one block of PHP code surrounded by some HTML code.

79

Example 2: In this example, a PHP script that lists all employees in a given department is shown.
The script takes as input the department number as a “GET” parameter in the URL itself as
follows:

http://localhost/company/p2?2dno=4

The Web page produced by the script is shown in Figure 4.3.

Figure 4.3: Web Page for Example 2

The PHP code (p2 . php) is shown below:

<html>
<head>
<title>Simple Database Access</title>
</head>
<body>

<?

Susername="user";

Spassword="password";

Sdatabase="company";

$dno=$ GET['dno'];

mysgl connect (localhost, Susername, Spassword) ;
@mysql_select_db($database) or die("Unable to select database");
Squery="SELECT lname,salary FROM employee where dno=S$dno";
Sresult=mysql query ($query);

snum=mysql numrows (Sresult) ;

mysgl close();
?>

<table border="2" cellspacing="2" cellpadding="2">

<tr>

80

<th>Last Name</th>

<th>Salary</th>

</tr>

<?

echo "<h4>Employees in Department S$dno</h4>";

$i=0;
while ($i < $num) {

$lname=mysql result (Sresult,$i, "lname");
$salary=mysqgl result(Sresult,$i,"salary");

2>

<tr>

<td><font face="Arial,
<? echo $lname; 2>
</td>
<td><font face="Arial,
<? echo $salary; 2>
</td>

</tr>

<?
Sit++;
}

2>

</table>
</body>
</html>

Helvetica, sans—-serif">

Helvetica, sans—-serif">

The PHP script performs an SQL query to retrieve employee names and salaries who work for the
given department. This information is then formatted neatly into an HTML table for display. This
example illustrates more intricate embedding of PHP code within HTML code as is seen in the
“while” loop towards the end of the script.

Example 3: A COMPANY database browser application is shown in this example. The initial
Web page in this application lists all the departments in the company. By following hyperlinks, the
user may see more details of departments, employees, and projects in three separate Web pages.
The browser program is implemented using four PHP scripts:

(a) companyBrowse.php: This script lists all the departments in the company in a tabular

form as shown in Figure

(b) deptView.php:
(c) empView.php:
(d) projectView.php:

The code for companyBrowse script is shown below:

<html>
<head>
<title>All Departments</title>
</head>
<body>

<?

Susername="user";
Spassword="password";
Sdatabase="company";

mysgl connect (“host.domain.edu”, Susername, $password) ;

@mysql_select_db($database) or die("Unable to select database"):;

Squery="SELECT dnumber,dname FROM department order by dnumber";
Sresult=mysqgl query ($query);

snum=mysql numrows (Sresult) ;

mysqgl close();

2>

<h4>Departments of Company</h4>

<table border="2" cellspacing="2" cellpadding="2">

<tr>

<th>
Department Number</th>

<th>
Department Name</th>

</tr>

<?
$i=0;
while ($1 < Snum) {
$dno=mysql result (Sresult, $i, "dnumber") ;
$dname=mysql result (Sresult, $i, "dname");
>

<tr>

<td>
<a href="deptView?dno=<? echo S$dno; ?2>">
<? echo $dno; ?></td>

<td>
<? echo S$dname; ?></td>

81

82

</table>
</body>
</html>

The script performs a simple query on the DEPARTMENT table and outputs the list of department
numbers and names formatted as an HTML table as shown in Figure 4.4.

Figure 4.4: All Departments Web Page —- COMPANY database browser

The department numbers in this list are formatted as HTML hyperlinks that, when traversed by the
user, will produce a Web page containing more details of the chosen department. The detailed
department view Web page is shown in Figure 4.5.

Figure 4.5: Department Detail Web Page - COMPANY database browser

The PHP script (deptView.php) that produces the detailed department view is shown below.

<html>
<head>
<title>Department View</title>
</head>
<body>

<?

Susername="user";
Spassword="password";
Sdatabase="company";

83

84

$dno=$ GET['dno'];
mysgl connect (“host.domain.edu”, Susername, $password) ;
@mysql_select_db($database) or die("Unable to select database");

Squery="SELECT dname,mgrssn,mgrstartdate, lname, fname FROM
department, employee where dnumber=$dno and mgrssn=ssn";
Sresult=mysqgl query ($query);

snum=mysql numrows (Sresult) ;

$dname=mysql result (Sresult,0,"dname");
$mssn=mysqgl result(Sresult,0,"mgrssn");
$mstart=mysqgl result(Sresult,0,"mgrstartdate");
$mlname=mysql result (Sresult,0, "lname");
smfname=mysql result (Sresult, 0, "fname");

echo "Department: ", S$dname;

echo "<P>Manager: ", S$mlname, ",
", Smfname, "</BR>";

echo "Manager Start Date: ", Smstart;

echo "<h4>Department Locations:</h4>";
$query="SELECT dlocation FROM dept locations where dnumber=$dno";
Sresult=mysql query ($query);
snum=mysqgl numrows (Sresult) ;
$1=0;
while ($1 < Snum) {
$dloc=mysqgl result (Sresult,$i,"dlocation");
echo $dloc, "
\n";
Sit++;
}

echo "<h4>Employees:</h4>";

Squery="SELECT ssn, lname, fname FROM employee where dno=S$dno";
Sresult=mysqgl query ($query);

$num=mysqgl numrows (Sresult) ;

?>

<table border="2" cellspacing="2" cellpadding="2">

<tr>

<th>
Employee SSN</th>

<th>
Last Name</th>

<th>
First Name</th>

</tr>

85

<?
$i=0;
while ($1i < Snum) {
$essn=mysqgl result(Sresult,$i,"ssn");
$elname=mysqgl result (Sresult,$i,"lname");
$efname=mysqgl result (Sresult,$i,"fname");
>
<tr>
<td>
<a href="empView?ssn=<? echo S$essn; ?2>">
<? echo Sessn; ?></td>
<td>
<? echo $elname; °?></td>
<td>
<? echo $efname; °?></td>
</tr>
<?
Sit++;
}

2>
</table>

<?

echo "<h4>Projects:</h4>";

Squery="SELECT pnumber,pname,plocation FROM project where
dnum=S$dno";

Sresult=mysqgl query($query);

snum=mysqgl numrows (Sresult) ;

?>

<table border="2" cellspacing="2" cellpadding="2">

<tr>

<th>Project
Number</th>

<th>Project
Name</th>

<th>Location</th>
</tr>

<?

$1=0;

while ($1 < Snum) {
spnum=mysqgl result (Sresult,$i, "pnumber") ;
$pname=mysql result (S$result,$i, "pname");
$ploc=mysqgl result (Sresult,$i,"plocation");

?>

86

<tr>

<td>

<a href="projvView?ssn=<? echo S$pnum; ?>"><? echo S$pnum;
?></td>
<td><? echo $pname;
?></td>
<td><? echo $ploc;
?></td>
</tr>
<?

Si++;
}

mysqgl close();
2>

</body>
</html>

The deptView script executes the following four queries and formats the results of the queries as
shown in the Web page.

SELECT dname,mgrssn,mgrstartdate, lname, fname
FROM department, employee
WHERE dnumber=$dno and mgrssn=ssn

SELECT dlocation
FROM dept locations
WHERE dnumber=S$dno

SELECT ssn, lname, fname
FROM employee
WHERE dno=$dno

SELECT pnumber, pname,plocation
FROM project
WHERE dnum=$dno

Each of these queries uses the PHP variable $dno containing the department number for which
the view is generated.

The department view also contains hyperlinks for employees and projects which when traversed by
the user produces detailed employee and project Web pages. The code for PHP scripts that produce
these Web pages is omitted as they are similar to the deptView script.

87

4.4 Online Address Book

In this section an online address/contact book application is illustrated. The application is coded in
PhP and accesses a MySQL database which has the following table:

create table contacts (
lname wvarchar (30),
fname wvarchar(30),
email wvarchar (30),
homePhone varchar (20),
cellPhone wvarchar (20),
officePhone varchar (20),
address varchar (100),
comment varchar (100),
primary key (lname, fname)

)

The application is capable of the following functions:
(1) ADD a new contact.
(2) DELETE one or more contacts.
(3) SEARCH contacts by substring match on name.
(4) LIST all contacts.

The initial Web page is shown in Figure 4.6. On the left frame, the menu options are listed and the
right frame contains space to display results.

Figure 4.6: Address Book — Main Page

88

The HTML code that produces this (index.html) page is shown below:

<html>
<head>
<title>Addressbook</title>
</head>
<frameset rows="*" cols="18%,*" framespacing="0"
frameborder="no" border="0">
<frame src="mainMenu.html" name="leftFrame" scrolling="No"
noresize="noresize" id="leftFrame" />
<frame src="Welcome.html" name="mainFrame" id="mainFrame" />
</frameset>
</html>

The HTML code that produces the left frame (mainMenu.html) is shown below:

<html>

<head>

<title>Addressbook</title>

</head>

<body>
<p>
<h2> Address Book</h2>
<h3>Add</h3>
<h3>Delete</h3>
<h3>Search </h3>
<h3>List All</h3>

</body>

</html>

The HTML code (Welcome.html) to produce the right frame is shown below:

<html>
<head><title>Addressbook</title></head>
<body>

<center>
<h2>Welcome to the Addressbook App</h2>
</center>
</body>
</html>

Add

Upon clicking the “Add” menu option, the form shown in Figure 4.7 is displayed on the right
frame:

89

Figure 4.7: Address Book — Add Form

Mandatory fields are marked with an “*”. The HTML code (add.html) that produces this Web
page is shown below:

<html>
<head>
<title>Add</title>
</head>
<body>
<h2>Add Contact Information</h2>
<form name="addform" action="add.php" method=post" >
<table width="60%" border="0" cellpadding="3" cellspacing="12">
<tr>
<td width="130">First Name:*</td>
<td><input name="fname" type="text" size="30" maxlength="30" /></td>
</tr>
<tr>
<td width="130">Last Name:*</td>
<td><input name="lname" type="text" size="30" maxlength="30" /></td>
</tr>

<tr>

<td width="130">E-mail Address:*</td>

<td><input name="email" type="text" size="30" maxlength="30"

</tr>
<tr>

90

/></td>

<td width="130"><p>Home Phone:*
xxx—-xxx-xxxx</p>

</td>

<td><input name="homePhone" type="text" size="30" maxlength="20"

</tr>

<tr>
<td width="130">Cell Phone :

xxx—-xxx—-xxxx</td>

<td><input name="cellPhone" type="text" size="30" maxlength="20"

</tr>
<tr>
<td width="130">Office Phone :

xxx—-xxx—-xxxx</td>
<td><input name="officePhone" type="text" size="30"
maxlength="20" /></td>
</tr>
<tr valign="top">
<td width="130">Address:*</td>

<td><textarea name="address" cols="25" rows="4"></textarea></td>

</tr>
<tr valign="top">
<td width="130">Comment: </td>

<td><textarea name="comment" cols="25" rows="4"></textarea></td>

</tr>
<tr>
<td width="130"> </td>
<td><input type="reset" name="Reset" value="Reset"

<input type="submit" name="Submit" value="Submit"
</tr>
</table>
</form>
</body>
</html>

/>

/></td>

The code to process the submission of the “ADD” form (add . php) is shown below:

<?php
// connect to my sqgl
Shost="localhost"; // Host name

Susername="id"; // Mysgl username
Spassword="pwd"; // Mysqgl password
$db_name="db"; // Database name

$tbl name="contacts"; // Table name

// Connect to server and select database.

/></td>

/></td>

mysgl connect ("$host", "Susername", "S$password")or die("cannot connect");

mysgl select db("$db name")or die("cannot select DB");

// retrieve all variables
$fname = @$ POST["fname"];

91

$lname = @$ POST["lname"];

Semail = @$ POST["email"];

ShomePhone = @$ POST["homePhone"];
ScellPhone @S _POST["cellPhone"];
SofficePhone = @$ POST["officePhone"];
Saddress = @$ POST["address"];
Scomment = @$ POST["comment"];

// insert information to database

$sgl="insert into $tbl name values”.
"('$lname', '$Sfname’', 'Semail', 'ShomePhone', 'ScellPhone', ".
"'SofficePhone', '$Saddress', 'Scomment ') ";

Sresult = mysqgl query($sql);

mysqgl close();

>

<html>
<head>
<title>Add processed</title>
<body>
<p> </p>
<p> </p>
<p> </p>
<blockguote>
<p>
<h3>Your information is added to database. </h3>
<body>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
</body>
</html>

The program first connects to the database, then retrieves all submitted data into variables and then
constructs an SQL insert statement. Finally, it executes the insert statement and prints a message.

List All

Upon clicking the “List ALL” option, the Web page shown in Figure 4.8 is shown on the right
frame. This is an alphabetical listing of all contacts, each hyper-linked to go to a detail page.

Figure 4.8: Address Book — List All

The code to display the list is shown below:

<?php

// connect to my sqgl
Shost="localhost"; // Host name
Susername="id"; // Mysgl username
Spassword="pwd"; // Mysqgl password
$db_name="db"; // Database name
$tbl name="contacts"; // Table name

// Connect to server and select database.

mysgl connect ("$host", "Susername", "Spassword")or die("cannot connect");

mysgl select db("$db name")or die("cannot select DB");

// show all contact information

$sqgl="select * from $tbl name order by lname";
Sresult = mysqgl query($sql);

mysqgl close();

?>

<html>
<head>
<title>List</title>
</head>
<body>
<p> </p>
<p> </p>
<p> </p>
<blockguote>

<p>

<h2>All Contact Information</h2>

92

93

<?php
if (mysgl num rows ($result)==0) {
echo "<h4>No data<h4>";
} else {
while (Srow = mysql fetch assoc($result)) {
Slname = Srow['lname'];
Sfname = Srow['fname'];

echo "<h4><a href=\"detail.php? ".
"Iname=S$lname&fname=Sfname\">$1lname, S$fname<h4></1i>";

}

}

>

</blockquote>

</body>
</html>

The program connects to the database and executes a simple query and displays the results on the
Web page. Each contact is hyper-linked to the detail.php program.

Detail

Upon clicking the link, the detail page shown in Figure 4.9 is shown.

Figure 4.9: Address Book — Detail

94

The code that produces the detail page is shown below:

<?php
// connect to my sqgl
Shost="tinman.cs.gsu.edu"; // Host name

Susername="cms"; // Mysgl username
Spassword="cms123"; // Mysqgl password
$db_name="conf"; // Database name

$tbl name="contacts"; // Table name

// Connect to server and select database.
mysgl connect ("$host", "Susername", "S$password")or die("cannot connect");
mysgl select db("$db name")or die("cannot select DB");

// retrieve all variables
S$fname = @$ GET["fname"];
$lname = @$ GET["lname"];

// show all contact information

$sgl="select * from $tbl name where fname='S$fname' and lname='$lname'";
Sresult = mysqgl query($sql);

Srow = mysqgl fetch assoc(Sresult);

mysgl close();

?>

<html>

<head>
<title>Detail</title>
</head>

<body>

<p> </p>
<p> </p>
<p> </p>

<blockguote>
<table width="60%" border="0" cellpadding="5" cellspacing="15">
<tr>
<td colspan="2"><p><h2><?php echo "$lname, $fname"; ?></h2></td>
</tr>
<tr>

<td width="130">First Name :</td>
<td><?php echo $row['fname']; ?></td>
</tr>
<tr>
<td width="130">Last Name :</td>
<td><?php echo $row['lname']; °?></td>
</tr>
<tr>
<td width="130">E-mail Address :</td>
<td><?php echo S$row['email']; °?></td>

</tr>

<tr>
<td width="130"><p>Home Phone :

</p> </td>

<td><?php echo $row|['homePhone']; ?></td>
</tr>

95

<tr>
<td width="130">Cell Phone :</td>
<td><?php echo $row['cellPhone']; ?2></td>
</tr>
<tr>
<td width="130">0ffice Phone :</td>
<td><?php echo S$row['officePhone']; ?></td>
</tr>
<tr valign="top">
<td width="130">Address :</td>
<td><?php echo S$row['address']; ?></td>
</tr>
<tr valign="top">
<td width="130">Comment :</td>
<td><?php echo S$row['comment']; ?></td>
</tr>
</table>
</p>
</blockquote>
</body>
</html>

The above code connects to the database and performs a query to get details of the requested
contact. It then displays the data for the contact in a tabular format.

Delete
The delete contact interface is shown in Figure 4.10. The list of contacts is presented to the user

along with a check box to the left of each contact. The user may choose one or more contacts and
submit for deletion.

Figure 4.10: Address Book — Delete

96

The code to display the delete interface as well as to process the delete request (delete.php) is
shown below:

<?php

// connect to my sqgl
Shost="localhost"; // Host name
Susername="id"; // Mysgl username
$Spassword="pwd"; // Mysqgl password
$db_name="db"; // Database name
$tbl name="contacts"; // Table name

// Connect to server and select database.
mysgl connect ("$host"”, "Susername", "S$Spassword")or die("cannot connect");
mysgl select db("$db name")or die("cannot select DB");

// delete record
Sdelete = @S _POST["delete"];
if ($Sdelete == "Delete") {
$dfname = @$ POST["dfname"];
$dlname = @$ POST["dlname"];
Scheckbox = @$ POST["checkbox"];
// delete record
foreach ($checkbox as $index) {
$sql = "delete from $tbl name where fname='Sdfname[$Sindex]' ".
"and lname='S$dlname[$index]'";
Sresult = mysqgl query($sql);

}

// show all contact information

Ssgl="select * from S$tbl name order by lname";
Sresult = mysql query($sqgl);

mysgl close();

?>

<html

<head>

<title>Delete</title>

</head>

<body>

<p> </p>

<p> </p>

<p> </p>

<blockguote>

<p>

<h2>Delete Contact Information</h2>
<form name="myform" method="post" action="delete.php">
<table width="40%" border="0">

<?php
$index=0;
while ($Srow = mysqgl fetch assoc(Sresult)) {
Slname = S$Srow['lname'];
Sfname = S$Srow['fname'];

echo "<tr><td width=\"25\" valign=\"top\">".
"<input type=\"checkbox\" name=\"checkbox[]\" value=\"$index\" />";
echo "</td><td valign=\"bottom\"><h4><a href=\"detail.php? ".

97

"Ilname=$1lname&fname=Sfname\">$1lname, S$fname<hi4></td></tr>";
echo "<input type=\"hidden\" name=\"dfname[]\" value=\"S$fname\" />";
echo "<input type=\"hidden\" name=\"dlname[]\" value=\"S$lname\" />";
Sindex++;

echo "<tr><td width=\"25\" valign=\"top\"> </td>".
"<td valign=\"bottom\"><input type=\"submit\" name=\"delete\"";
echo "value=\"Delete\" /> ".
"<input type=\"reset\" name=\"Submit2\" value=\"Clear\" /></td></tr>";
2>
</table>
</form>

<?php
if (mysgl num rows (Sresult)==0)
echo "<h4>No data<h4>";
>
</p>
</blockquote>
</body>
</html>

In the first part of the code, the database connection is established and if the delete submission is
detected, the corresponding record is deleted from the database. Then, the listing of all contacts is
produced along with the check boxes within an HTML form.

Search

The search interface is shown in Figure 4.11.

Figure 4.11: Address Book — Search

98

The search interface consists of a keyword text box along with options for choosing first name, last
name or both for the search. The code (search.html) to produce the interface is shown below:

<html>
<head>
<title>Search HTML</title>
</head>
<body>
<p> </p>
<p> </p>
<p> </p>
<blockqgquote>
<p>
<h2>Search Contact Information</h2>
<form action="result.php" method=post>
<table width="60%" border="0" cellpadding="5" cellspacing="20">
<tr>
<td width="115">Key Word : </td>
<td><input name="keyword" type="text" size="50" maxlength="50" /></td>
</tr>
<tr>
<td width="115">Seach in </td>
<td><input name="searchin" type="radio" value="fname" checked/>
 First Name </td>
</tr>
<tr>
<td width="115"> </td>
<td><input name="searchin" type="radio" value="lname" />
 Last Name </td>
</tr>
<tr>
<td width="115"> </td>
<td><input name="searchin" type="radio" value="both" />
 First Name and Last Name </td>
</tr>

<tr>
<td> </td>
<td><input type="reset" name="Reset" value="Clear" />

<input type="submit" name="Submit" value="Search" /></td>
</tr>
</table>
</form>
</p>
</blockquote>
</body>
</html>

The above is a straightforward coding of an HTML form with the relevant form elements enclosed
within it. Upon submission of the search form, the following program (result.php) is called.

<?php
// connect to mysqgl
Shost="localhost"; // Host name

Susername="id"; // Mysgl username
S$Spassword="pwd"; // Mysql password
$db_name="db"; // Database name
$tbl name="contacts"; // Table name

// Connect to server and select database.
mysgl connect ("$host", "Susername", "S$Spassword")or die("cannot connect");
mysgl select db("$db name")or die("cannot select DB");

// retrieve all variables
Skeyword = @$ POST["keyword"];
$searchin = @$ POST["searchin"];

// execute query

$sgl="select * from $tbl name";
Sresult = mysqgl query($sql);
mysqgl close();

?>

<html>

<head>
<title>Results</title>
</head>

<body>

<p> </p>
<p> </p>
<p> </p>

<blockguote>
<p>
<h2>Result</h2>
<?php
$i =0;
while ($Srow = mysqgl fetch assoc(Sresult)) {
Slname = Srow['lname'];
Sfname = Srow['fname'];
if (S$Ssearchin == "both") {

// search in last name & first name
if ((preg match("/$keyword/i", $fname)) | |
(preg match ('/$keyword/"', $lname))) {
echo "<h4><a href=\"detail.php? ".
"lname=$lname&fname=$fname\">$1lname, $fname<h4></1i>";
Si++;
}
} else if ($searchin == "fname") {
// search in first name
if (preg match("/$keyword/i", $fname)) {
echo "<h4><a href=\"detail.php?.
"lname=$lname&fname=$fname\">$1lname, $fname<h4></1li>";
Si++;
}
} else {
// search in last name
if (preg match("/$keyword/i", $lname)) {
echo "<h4><a href=\"detail.php? ".
"lname=$lname&fname=$fname\">$1lname, S$fname<h4></1li>";
Si++;

99

}

if

?>

}

echo

($1 == 0)
"<h4>No match result.<h4>";

</blockquote>
</body>
</html>

100

The above code connects to the database and executes a query to retrieve all contacts. Then, for
each contact the appropriate filter is applied and only those contacts that pass the filter test are
displayed in the Web page.

Exercises

NOTE: All references to Exercises and Laboratory Exercises in the following problems refer to the
numbering in the Elmasri/Navathe text.

l.

Consider the ER-schema generated for the CONFERENCE REVIEW database in
Laboratory Exercise 7.34 for which the relational database was created in Laboratory

Exercise 9.13.

a. Create the database tables in MySQL.

b. Create comma separated data files containing data for at least 10 papers, 15 authors,
and 8 reviewers. You must assign authors to papers, assign a contact author, and
assign reviewers to papers. It is possible for some authors to be reviewers. In such a
case, the reviewer should not be assigned to a paper in which he or she is an author.
You should also create data for the individual reviews for each paper. The values
for various rankings must be between 1 and 10.

c. Using the MySQL loader command, load the data created in (b) into the database.

d. Write SQL queries for the following and execute then in a MySQL interactive
session.

1.

11.

1il.

1v.

Retrieve the email and names of authors who have submitted more than one
paper for review.

Retrieve the email id of the contact author, the title of paper submitted by
that author, and the average rating received on its reviews such that the
average rating was above 8.0.

Retrieve the paper id, title, and average ratings received for all papers sorted
in decreasing order of average rating. Do not show any papers below an
average rating of 3.0.

Retrieve the email and names of reviewers along with the average ratings
they gave to papers assigned to them. Sort the result in increasing order of
average rating.

Retrieve the paper id and title of papers along with the author name and
email 1d such that the author is also a reviewer.

Consider the SQL schema generated for the GRADE BOOK database in Laboratory
Exercise 8.28 for which the relational database was created in Laboratory Exercise 9.13.

101

a. Create the database tables in MySQL.

b. Create comma separated data files containing data for at least 20 students and 3
courses with an average of 8 students in each course. Create data for 3 to 4 grading
components for each course. Then, create data to assign points to each student in
every course they are enrolled in for each of the grading components.

c. Using the MySQL loader command, load the data created in (b) into the database.

d. Write SQL queries for the following and execute them in a MySQL interactive
session.

i. Retrieve the course numbers, titles, and term of courses in which student
with 1d=1234 has enrolled.

1. Retrieve the term, section number, and course numbers along with their total
enrollments.

ii. Retrieve the term, section number, and course numbers of courses in which
there is a grading component that has a weight of more than 50 and has
fewer than 10 students.

iv. Retrieve the names of students who have enrolled in all courses taught by
the instructor in the Fall 2005 term.

3. Consider the SQL schema generated for the ONLINE AUCTION database in Laboratory
Exercise 8.29 for which the relational database was created and populated in Laboratory
Exercise 9.14.

a. Create the database tables in MySQL.

b. Create comma separated data files containing data for at least 20 items with at least
10 buyers and at least 10 sellers. Observe the queries below and make sure that your
data will be appropriate for those queries.

c. Using the MySQL loader command, load the data created in (b) into the database.

d. Write SQL queries for the following and execute then in a MySQL interactive
session.

1. Retrieve item numbers and descriptions of items that are still active (i.e.
bidding has not closed) along with their current bidding price.

ii. Retrieve the item numbers and descriptions of all items in which the
member with member id albbc24 is the winner.

iii. Retrieve the member ids and names of members who have an average rating
of 8.0 or above.

iv. Retrieve the bidding history for the item with item number 1246. The
bidding history should contain a chronological listing of all bids till the
current time including the member 1d of the bidder and the bidding price.

v. Retrieve the item number and titles of items that fall under the
/COMPUTER/HARDWARE/PRINTER category and have “HP” in their
titles and on which bidding has not yet closed sorted by time of bid closing.

4. Consider the CONFERENCE REVIEW database of Laboratory Exercise 7.34 for which the
relational database was created and populated in Laboratory Exercise 9.12. There are three
types of users of the system: contact author, reviewer, and administrator. The contact
author should be able to sign in and submit a paper to the conference; the reviewer should
be able to submit reviews of papers assigned to him or her; and the administrator should be

102

able to assign reviewers to papers (at least three reviewers to each paper) as well as print a
report of all papers sorted by average rating assigned by reviewers. The reviewers and
administrator have pre-assigned user ids and passwords, however, contact authors must
register themselves first before they can start using the system. Write a PhP-based
application that implements the following functions:

a. A user registration page that allows a contact author to register their email and other
information with the system. They choose a password in the registration page.

b. A user login page with GUI textbox elements to accept user id and password and
radio buttons to choose between contact author, reviewer, and administrator. A
separate menu for each user should be displayed after authentication.

c. The contact author should be able to enter details of his paper submission and
upload a file.

d. The reviewer should be able to choose one of his assigned papers and submit a
review for the paper.

e. The administrator should be able to assign at least three reviewers to each paper.
The administrator should also be able to display a report of all papers sorted by
average rating (high to low).

Consider the GRADE BOOK database of Laboratory Exercise 8.28 for which the relational
database was created and populated in Laboratory Exercise 9.13. Write and test PhP scripts
that access the MySQL database that implements the following two functions for a given
course section (the course number, term, and section information will be provided as GET
parameters in the URL itself):

1. Allows the instructor to enter the points/scores for a particular grading
component. The instructor should be able to choose a grading component
using a pull down list.

ii. Allows the instructor to view the scores for all components for all students
in a tabular form with one row per student and one column per grading
component.

Consider the ONLINE AUCTION database of Laboratory Exercise 8.29 for which the
relational database was created and populated in Laboratory Exercise 9.14 in MySQL.
Write PhP scripts to implement an online auction Web site. A member may register
himself/herself and choose his/her password. After that, they may sign into the system. The
following functions should be implemented:

a. A buyer should be able to search items by entering a keyword. The result of the
search should be a listing of items, each with a hyper-link. Upon clicking on the
hyper-link, a detailed page describing the item should be displayed. On this page,
the user may place a bid on the item.

b. A seller should be able to place an item for sale by providing all details of the item
along with auction deadlines etc.

c. Buyers and sellers should be able to look at a list of all items on which bidding has
ended.

d. Buyers and sellers should be able to place a rating as well as view ratings on
transactions they are involved in.

