
 69

CHAPTER 4 

Relational Database Management System: MySQL 

This chapter introduces the student to the MySQL database management system and PHP, the
programming language used to program applications that access a MySQL database. The
discussion in this chapter is not specific to any version of MySQL and all examples would work
with MySQL 4.0 or higher version.

The COMPANY database of the Elmasri/Navathe text is used throughout this chapter. In Section
4.1, a larger data set is introduced for the COMPANY database. In Section 4.2, the mysql utility is
introduced which allows the users to interact with the database including running commands,
executing SQL statements, and running MySQL scripts. In Section 4.3 PHP programming with
MySQL is introduced through a complete Web browsing application for the COMPANY database.
Finally, in Section 4.4 an online address book application is discussed with interfaces for adding,
deleting, listing and searching a collection of contacts coded in HTML as well as in PhP.

4.1 COMPANY Database 

Consider the COMPANY database state shown in Figure 5.6. Let us assume that the company is
expanding with 3 new departments: Software, Hardware, and Sales. The Software department has
2 locations: Atlanta and Sacramento, the Hardware department is located in Milwaukee, and the
Sales department has 5 locations: Chicago, Dallas, Philadelphia, Seattle, and Miami.

The Software department has 3 new projects: OperatingSystems, DatabaseSystems,
and Middleware and the Hardware department has 2 new projects: InkjetPrinters and
LaserPrinters. The company has added 32 new employees in this expansion process.

The updated COMPANY database is shown in the following tables.

 70

 71

 72

 73

4.2 mysql Utility 

MySQL database system provides an interactive utility, called mysql, which allows the user to
enter SQL commands interactively. One can also include one or more SQL statements in a file and
have them executed within mysql using the source command.

In the following discussion, we will assume that your MySQL administrator has created a database
called company4, created a MySQL user5 called book, and has granted all rights to the
company database to the book user.

The following mysql session creates the department table:

$ mysql -u book -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 1485 to server version: 4.1.9-standard

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> use company
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Database changed
mysql> source create-department.sql;
Query OK, 0 rows affected (0.04 sec)

mysql> show tables;
+-------------------+
| Tables_in_company |
+-------------------+
| department |
| foo |
+-------------------+
2 rows in set (0.00 sec)

mysql> exit;
Bye
$

4 The administrator command to create a MySQL user is: create user book identified by 'book';
Here the user id is book and the password is also book.
5 The administrator command to create a database called company and to assign all rights to the book user is:
grant all on company.* to 'book'@'hostname.domain.edu';

 74

In the above mysql session, the user invokes the mysql program with the userid book and the
–p option to specify the password in a separate line. After connecting to the database server, the
use company command is executed to start using the company database. Then, the source
command is executed on the file create-department.sql that contains the following SQL
statement:

CREATE TABLE department (
 dname varchar(25) not null,
 dnumber integer(4),
 mgrssn char(9) not null,
 mgrstartdate date,
 primary key (dnumber),
 key (dname)
);

Note: The data types supported in different DBMSs may have slightly different names; Please
consult MySQL documentation to learn about all data types supported.

Bulk Loading of Data

MySQL provides a “load” command that can load data stored in a text file into a table. The
following mysql session illustrates the loading of the data located in department.csv file
into the department table. In the following example, the load command is directly entered at
the mysql prompt. It may be a good idea to create a script file with the load command and use
the source command to execute the load command. This way, if there are any syntax errors,
these can be corrected in the script file and the load command can be re-executed.

$ mysql -u raj -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 1493 to server version: 4.1.9-standard

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> use company;
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Database changed
mysql> LOAD DATA LOCAL INFILE "department.csv"
INTO TABLE department FIELDS TERMINATED BY ","
OPTIONALLY ENCLOSED BY ‘”’;
Query OK, 6 rows affected (0.00 sec)
Records: 6 Deleted: 0 Skipped: 0 Warnings: 0

 75

mysql> select * from department;
+----------------+---------+-----------+--------------+
| dname | dnumber | mgrssn | mgrstartdate |
+----------------+---------+-----------+--------------+
Research	5	333445555	1978-05-22
Administration	4	987654321	1985-01-01
Headquarters	1	888665555	1971-06-19
Software	6	111111100	1999-05-15
Hardware	7	444444400	1998-05-15
Sales	8	555555500	1997-01-01
+----------------+---------+-----------+--------------+
6 rows in set (0.00 sec)

mysql> exit;
Bye
$

The LOAD DATA command takes the name of the data file as parameter and other information
such as field terminator symbols (in this case the comma) and loads the data into the table. For
more details on the load command, please consult the MySQL documentation.

4.3 MySQL and PHP Programming 

PHP is a very popular Web scripting language that allows the programmers to rapidly develop
Web applications. In particular, PHP is most suited to develop Web applications that access a
MySQL database. In this section, we illustrate the ease of programming with PHP and provide
several examples of Web access to MySQL databases.

Example 1: Consider the problem of finding employee names given their social security number.
To implement this problem as a Web application, we can design two Web pages:

1. The first Web page would contain a HTML form that contains a select list of social
security numbers of employees and a submit button.

2. Upon choosing a social security number and submitting the form in the first Web page

produces the second Web page that lists the name of the employee.

The two Web pages are shown in Figures 4.1 and 4.2.

 76

Figure 4.1: Initial Web Page - Example 1

Figure 4.2: Second Web Page - Example 1

Both these Web pages contain dynamic information (obtained from the database) and therefore can
easily be produced by PHP scripts. The PHP script (p1post.php) that produces the first Web
page is shown below.

 77

<html>
<head>
<title>Simple Database Access</title>
</head>
<body>

<?
$username="user";
$password="password";
$database="company";
mysql_connect(localhost,$username,$password);
@mysql_select_db($database) or die("Unable to select database");
$query="SELECT ssn FROM employee";
$result=mysql_query($query);
$num=mysql_numrows($result);
mysql_close();
?>

<h4>Employee Details for:</h4>
<form method="post" action="p1.php">
<select name="ssn">

<?
$i=0;
while ($i < $num) {
 $ssn=mysql_result($result,$i,"ssn");
 echo "<option>",$ssn,"\n";
 $i++;
}
?>

</select>
<input type="submit" value="Get Employee Details">
</form>
</body>
</html>

A PHP script typically consists of HTML code to display “static” parts of the Web page
interspersed with procedural PHP statements that produce “dynamic” parts of the Web page. The
dynamic content may come from a database such as MySQL and hence most of the PHP
procedural code involves connecting to the database, running queries and using the query result to
produce parts of the Web page.

In the above example script, a simple HTML page is produced which has:

• Some static content such as text headers and a HTML form with a submit button. The
HTML form when submitted invokes the second PHP script called “p1.php”.

 78

• A dynamic “select” GUI element within the HTML form which contains a list of employee
social security numbers for the users to choose from.

PHP statements are enclosed within <? And >?. HTML code can be produced within PHP code
using the “echo” command as is seen in several places in the code. As can be seen, there are two
blocks of PHP code in the example: one to connect to the database and execute a query and the
second to use the results of the query to produce the HTML “select” list options.

The PHP script (p1.php) to produce the second Web page is shown next.

<html>
<head>
<title>Simple Database Access</title>
</head>
<body>
<h4>Employee Information</h4>

<?
$username="user";
$password="password";
$database="company";
$ssn=$_POST['ssn'];
mysql_connect(localhost,$username,$password);
@mysql_select_db($database) or die("Unable to select database");
$query="SELECT * FROM employee where ssn=$ssn";
$result=mysql_query($query);
$num=mysql_numrows($result);
mysql_close();
if ($num == 1) {
 $fname=mysql_result($result,$i,"fname");
 $minit=mysql_result($result,$i,"minit");
 $lname=mysql_result($result,$i,"lname");
 echo "$fname $minit, $lname";
}?>

</body>
</html>

In this script, the employee social security number posted in the first Web page is retrieved using
the PHP statement

$ssn=$_POST['ssn'];

This social security number is then used in an SQL query to retrieve employee name. The script
contains one block of PHP code surrounded by some HTML code.

 79

Example 2: In this example, a PHP script that lists all employees in a given department is shown.
The script takes as input the department number as a “GET” parameter in the URL itself as
follows:

http://localhost/company/p2?dno=4

The Web page produced by the script is shown in Figure 4.3.

Figure 4.3: Web Page for Example 2

The PHP code (p2.php) is shown below:

<html>
<head>
<title>Simple Database Access</title>
</head>
<body>

<?
$username="user";
$password="password";
$database="company";
$dno=$_GET['dno'];
mysql_connect(localhost,$username,$password);
@mysql_select_db($database) or die("Unable to select database");
$query="SELECT lname,salary FROM employee where dno=$dno";
$result=mysql_query($query);

 80

$num=mysql_numrows($result);
mysql_close();
?>

<table border="2" cellspacing="2" cellpadding="2">
<tr>
<th>Last Name</th>
<th>Salary</th>
</tr>

<?
echo "<h4>Employees in Department $dno</h4>";
$i=0;
while ($i < $num) {
 $lname=mysql_result($result,$i,"lname");
 $salary=mysql_result($result,$i,"salary");
?>

<tr>
<td>
<? echo $lname; ?>
</td>
<td>
<? echo $salary; ?>
</td>
</tr>

<?
 $i++;
}
?>

</table>
</body>
</html>

The PHP script performs an SQL query to retrieve employee names and salaries who work for the
given department. This information is then formatted neatly into an HTML table for display. This
example illustrates more intricate embedding of PHP code within HTML code as is seen in the
“while” loop towards the end of the script.

Example 3: A COMPANY database browser application is shown in this example. The initial
Web page in this application lists all the departments in the company. By following hyperlinks, the
user may see more details of departments, employees, and projects in three separate Web pages.
The browser program is implemented using four PHP scripts:

(a) companyBrowse.php: This script lists all the departments in the company in a tabular
form as shown in Figure

 81

(b) deptView.php:
(c) empView.php:
(d) projectView.php:

The code for companyBrowse script is shown below:

<html>
<head>
<title>All Departments</title>
</head>
<body>

<?
$username="user";
$password="password";
$database="company";

mysql_connect(“host.domain.edu”,$username,$password);
@mysql_select_db($database) or die("Unable to select database");
$query="SELECT dnumber,dname FROM department order by dnumber";
$result=mysql_query($query);
$num=mysql_numrows($result);
mysql_close();
?>

<h4>Departments of Company</h4>
<table border="2" cellspacing="2" cellpadding="2">
<tr>
<th>
 Department Number</th>
<th>
 Department Name</th>
</tr>

<?
$i=0;
while ($i < $num) {
 $dno=mysql_result($result,$i,"dnumber");
 $dname=mysql_result($result,$i,"dname");
?>

<tr>
<td>
 <a href="deptView?dno=<? echo $dno; ?>">
 <? echo $dno; ?></td>
<td>
 <? echo $dname; ?></td>

 82

</tr>

<?
 $i++;
}
?>

</table>
</body>
</html>

The script performs a simple query on the DEPARTMENT table and outputs the list of department
numbers and names formatted as an HTML table as shown in Figure 4.4.

Figure 4.4: All Departments Web Page – COMPANY database browser

The department numbers in this list are formatted as HTML hyperlinks that, when traversed by the
user, will produce a Web page containing more details of the chosen department. The detailed
department view Web page is shown in Figure 4.5.

 83

Figure 4.5: Department Detail Web Page – COMPANY database browser

The PHP script (deptView.php) that produces the detailed department view is shown below.

<html>
<head>
<title>Department View</title>
</head>
<body>

<?
$username="user";
$password="password";
$database="company";

 84

$dno=$_GET['dno'];
mysql_connect(“host.domain.edu”,$username,$password);
@mysql_select_db($database) or die("Unable to select database");

$query="SELECT dname,mgrssn,mgrstartdate,lname,fname FROM
department,employee where dnumber=$dno and mgrssn=ssn";
$result=mysql_query($query);
$num=mysql_numrows($result);

$dname=mysql_result($result,0,"dname");
$mssn=mysql_result($result,0,"mgrssn");
$mstart=mysql_result($result,0,"mgrstartdate");
$mlname=mysql_result($result,0,"lname");
$mfname=mysql_result($result,0,"fname");

echo "Department: ", $dname;
echo "<P>Manager: ", $mlname, ",
", $mfname, "</BR>";
echo "Manager Start Date: ", $mstart;

echo "<h4>Department Locations:</h4>";
$query="SELECT dlocation FROM dept_locations where dnumber=$dno";
$result=mysql_query($query);
$num=mysql_numrows($result);
$i=0;
while ($i < $num) {
 $dloc=mysql_result($result,$i,"dlocation");
 echo $dloc, "
\n";
 $i++;
}

echo "<h4>Employees:</h4>";
$query="SELECT ssn,lname,fname FROM employee where dno=$dno";
$result=mysql_query($query);
$num=mysql_numrows($result);
?>

<table border="2" cellspacing="2" cellpadding="2">
<tr>
<th>

Employee SSN</th>
<th>

Last Name</th>
<th>

First Name</th>
</tr>

 85

<?
$i=0;
while ($i < $num) {
 $essn=mysql_result($result,$i,"ssn");
 $elname=mysql_result($result,$i,"lname");
 $efname=mysql_result($result,$i,"fname");
?>
<tr>
 <td>
 <a href="empView?ssn=<? echo $essn; ?>">

<? echo $essn; ?></td>
<td>

<? echo $elname; ?></td>
<td>

<? echo $efname; ?></td>
</tr>
<?
 $i++;
}
?>

</table>

<?
echo "<h4>Projects:</h4>";
$query="SELECT pnumber,pname,plocation FROM project where
dnum=$dno";
$result=mysql_query($query);
$num=mysql_numrows($result);
?>

<table border="2" cellspacing="2" cellpadding="2">
<tr>
<th>Project
Number</th>
<th>Project
Name</th>
<th>Location</th>
</tr>

<?
$i=0;
while ($i < $num) {
 $pnum=mysql_result($result,$i,"pnumber");
 $pname=mysql_result($result,$i,"pname");
 $ploc=mysql_result($result,$i,"plocation");
?>

 86

<tr>
 <td>
 <a href="projView?ssn=<? echo $pnum; ?>"><? echo $pnum;
?></td>
<td><? echo $pname;
?></td>
<td><? echo $ploc;
?></td>
</tr>
<?
 $i++;
}

mysql_close();
?>

</body>
</html>

The deptView script executes the following four queries and formats the results of the queries as
shown in the Web page.

SELECT dname,mgrssn,mgrstartdate,lname,fname
FROM department,employee
WHERE dnumber=$dno and mgrssn=ssn

SELECT dlocation
FROM dept_locations
WHERE dnumber=$dno

SELECT ssn,lname,fname
FROM employee
WHERE dno=$dno

SELECT pnumber,pname,plocation
FROM project
WHERE dnum=$dno

Each of these queries uses the PHP variable $dno containing the department number for which
the view is generated.

The department view also contains hyperlinks for employees and projects which when traversed by
the user produces detailed employee and project Web pages. The code for PHP scripts that produce
these Web pages is omitted as they are similar to the deptView script.

 87

4.4 Online Address Book 

In this section an online address/contact book application is illustrated. The application is coded in
PhP and accesses a MySQL database which has the following table:

create table contacts (
 lname varchar(30),
 fname varchar(30),
 email varchar(30),
 homePhone varchar(20),
 cellPhone varchar(20),
 officePhone varchar(20),
 address varchar(100),
 comment varchar(100),
 primary key (lname,fname)
);

The application is capable of the following functions:

(1) ADD a new contact.
(2) DELETE one or more contacts.
(3) SEARCH contacts by substring match on name.
(4) LIST all contacts.

The initial Web page is shown in Figure 4.6. On the left frame, the menu options are listed and the
right frame contains space to display results.

Figure 4.6: Address Book – Main Page

 88

The HTML code that produces this (index.html) page is shown below:

<html>
<head>
<title>Addressbook</title>
</head>
<frameset rows="*" cols="18%,*" framespacing="0"
 frameborder="no" border="0">
 <frame src="mainMenu.html" name="leftFrame" scrolling="No"
 noresize="noresize" id="leftFrame" />
 <frame src="Welcome.html" name="mainFrame" id="mainFrame" />
</frameset>
</html>

The HTML code that produces the left frame (mainMenu.html) is shown below:

<html>
<head>
<title>Addressbook</title>
</head>
<body>
 <p>
 <h2> Address Book</h2>
 <h3>Add</h3>
 <h3>Delete</h3>
 <h3>Search </h3>
 <h3>List All</h3>
</body>
</html>

The HTML code (Welcome.html) to produce the right frame is shown below:

<html>
 <head><title>Addressbook</title></head>
 <body>

 <center>
 <h2>Welcome to the Addressbook App</h2>
 </center>
 </body>
</html>

Add

Upon clicking the “Add” menu option, the form shown in Figure 4.7 is displayed on the right
frame:

 89

Figure 4.7: Address Book – Add Form

Mandatory fields are marked with an “*”. The HTML code (add.html) that produces this Web
page is shown below:

<html>
<head>
<title>Add</title>
</head>
<body>
<h2>Add Contact Information</h2>
<form name="addform" action="add.php" method=post" >
 <table width="60%" border="0" cellpadding="3" cellspacing="12">
 <tr>
 <td width="130">First Name:*</td>
 <td><input name="fname" type="text" size="30" maxlength="30" /></td>
 </tr>
 <tr>
 <td width="130">Last Name:*</td>
 <td><input name="lname" type="text" size="30" maxlength="30" /></td>
 </tr>

 90

 <tr>
 <td width="130">E-mail Address:*</td>
 <td><input name="email" type="text" size="30" maxlength="30" /></td>
 </tr>
 <tr>
 <td width="130"><p>Home Phone:*
xxx-xxx-xxxx</p>
 </td>
 <td><input name="homePhone" type="text" size="30" maxlength="20" /></td>
 </tr>
 <tr>
 <td width="130">Cell Phone :

 xxx-xxx-xxxx</td>
 <td><input name="cellPhone" type="text" size="30" maxlength="20" /></td>
 </tr>
 <tr>
 <td width="130">Office Phone :

 xxx-xxx-xxxx</td>
 <td><input name="officePhone" type="text" size="30"
 maxlength="20" /></td>
 </tr>
 <tr valign="top">
 <td width="130">Address:*</td>
 <td><textarea name="address" cols="25" rows="4"></textarea></td>

 </tr>
 <tr valign="top">
 <td width="130">Comment: </td>
 <td><textarea name="comment" cols="25" rows="4"></textarea></td>
 </tr>
 <tr>
 <td width="130"> </td>
 <td><input type="reset" name="Reset" value="Reset" />

 <input type="submit" name="Submit" value="Submit" /></td>
 </tr>
 </table>
 </form>
</body>
</html>

The code to process the submission of the “ADD” form (add.php) is shown below:

<?php
// connect to my sql
$host="localhost"; // Host name
$username="id"; // Mysql username
$password="pwd"; // Mysql password
$db_name="db"; // Database name
$tbl_name="contacts"; // Table name

// Connect to server and select database.
mysql_connect("$host", "$username", "$password")or die("cannot connect");
mysql_select_db("$db_name")or die("cannot select DB");

// retrieve all variables
$fname = @$_POST["fname"];

 91

$lname = @$_POST["lname"];
$email = @$_POST["email"];
$homePhone = @$_POST["homePhone"];
$cellPhone = @$_POST["cellPhone"];
$officePhone = @$_POST["officePhone"];
$address = @$_POST["address"];
$comment = @$_POST["comment"];

// insert information to database
$sql="insert into $tbl_name values”.
 "('$lname','$fname','$email','$homePhone','$cellPhone', ".
 "'$officePhone','$address','$comment')";
$result = mysql_query($sql);
mysql_close();
?>

<html>
<head>
<title>Add processed</title>
<body>
<p> </p>
<p> </p>
<p> </p>
<blockquote>
 <p>
 <h3>Your information is added to database. </h3>
 <body>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
</body>
</html>

The program first connects to the database, then retrieves all submitted data into variables and then
constructs an SQL insert statement. Finally, it executes the insert statement and prints a message.

List All

Upon clicking the “List ALL” option, the Web page shown in Figure 4.8 is shown on the right
frame. This is an alphabetical listing of all contacts, each hyper-linked to go to a detail page.

 92

Figure 4.8: Address Book – List All

The code to display the list is shown below:

<?php
// connect to my sql
$host="localhost"; // Host name
$username="id"; // Mysql username
$password="pwd"; // Mysql password
$db_name="db"; // Database name
$tbl_name="contacts"; // Table name

// Connect to server and select database.
mysql_connect("$host", "$username", "$password")or die("cannot connect");
mysql_select_db("$db_name")or die("cannot select DB");

// show all contact information
$sql="select * from $tbl_name order by lname";
$result = mysql_query($sql);
mysql_close();
?>

<html>
<head>
<title>List</title>
</head>
<body>
<p> </p>
<p> </p>
<p> </p>
<blockquote>
 <p>
 <h2>All Contact Information</h2>

 93

 <?php
 if (mysql_num_rows($result)==0){
 echo "<h4>No data<h4>";
 } else {
 while($row = mysql_fetch_assoc($result)) {
 $lname = $row['lname'];
 $fname = $row['fname'];
 echo "<h4><a href=\"detail.php? ".
 "lname=$lname&fname=$fname\">$lname, $fname<h4>";
 }
 }
 ?>
</blockquote>
</body>
</html>

The program connects to the database and executes a simple query and displays the results on the
Web page. Each contact is hyper-linked to the detail.php program.

Detail

Upon clicking the link, the detail page shown in Figure 4.9 is shown.

Figure 4.9: Address Book – Detail

 94

The code that produces the detail page is shown below:

<?php
// connect to my sql
$host="tinman.cs.gsu.edu"; // Host name
$username="cms"; // Mysql username
$password="cms123"; // Mysql password
$db_name="conf"; // Database name
$tbl_name="contacts"; // Table name

// Connect to server and select database.
mysql_connect("$host", "$username", "$password")or die("cannot connect");
mysql_select_db("$db_name")or die("cannot select DB");

// retrieve all variables
$fname = @$_GET["fname"];
$lname = @$_GET["lname"];

// show all contact information
$sql="select * from $tbl_name where fname='$fname' and lname='$lname'";
$result = mysql_query($sql);
$row = mysql_fetch_assoc($result);
mysql_close();
?>

<html>
<head>
<title>Detail</title>
</head>
<body>
<p> </p>
<p> </p>
<p> </p>
<blockquote>
 <table width="60%" border="0" cellpadding="5" cellspacing="15">
 <tr>
 <td colspan="2"><p><h2><?php echo "$lname, $fname"; ?></h2></td>
 </tr>
 <tr>
 <td width="130">First Name :</td>
 <td><?php echo $row['fname']; ?></td>
 </tr>
 <tr>
 <td width="130">Last Name :</td>
 <td><?php echo $row['lname']; ?></td>
 </tr>
 <tr>
 <td width="130">E-mail Address :</td>
 <td><?php echo $row['email']; ?></td>
 </tr>
 <tr>
 <td width="130"><p>Home Phone :

 </p> </td>
 <td><?php echo $row['homePhone']; ?></td>
 </tr>

 95

 <tr>
 <td width="130">Cell Phone :</td>
 <td><?php echo $row['cellPhone']; ?></td>
 </tr>
 <tr>
 <td width="130">Office Phone :</td>
 <td><?php echo $row['officePhone']; ?></td>
 </tr>
 <tr valign="top">
 <td width="130">Address :</td>
 <td><?php echo $row['address']; ?></td>
 </tr>
 <tr valign="top">
 <td width="130">Comment :</td>
 <td><?php echo $row['comment']; ?></td>
 </tr>
 </table>
 </p>
</blockquote>
</body>
</html>

The above code connects to the database and performs a query to get details of the requested
contact. It then displays the data for the contact in a tabular format.

Delete

The delete contact interface is shown in Figure 4.10. The list of contacts is presented to the user
along with a check box to the left of each contact. The user may choose one or more contacts and
submit for deletion.

Figure 4.10: Address Book – Delete

 96

The code to display the delete interface as well as to process the delete request (delete.php) is
shown below:

<?php
// connect to my sql
$host="localhost"; // Host name
$username="id"; // Mysql username
$password="pwd"; // Mysql password
$db_name="db"; // Database name
$tbl_name="contacts"; // Table name

// Connect to server and select database.
mysql_connect("$host", "$username", "$password")or die("cannot connect");
mysql_select_db("$db_name")or die("cannot select DB");

// delete record
$delete = @$_POST["delete"];
if ($delete == "Delete") {
 $dfname = @$_POST["dfname"];
 $dlname = @$_POST["dlname"];
 $checkbox = @$_POST["checkbox"];
 // delete record
 foreach ($checkbox as $index){
 $sql = "delete from $tbl_name where fname='$dfname[$index]' ".
 "and lname='$dlname[$index]'";
 $result = mysql_query($sql);
 }
}

// show all contact information
$sql="select * from $tbl_name order by lname";
$result = mysql_query($sql);
mysql_close();
?>

<html
<head>
<title>Delete</title>
</head>
<body>
<p> </p>
<p> </p>
<p> </p>
<blockquote>
<p>
<h2>Delete Contact Information</h2>
<form name="myform" method="post" action="delete.php">
<table width="40%" border="0">
<?php
 $index=0;
 while($row = mysql_fetch_assoc($result)) {
 $lname = $row['lname'];
 $fname = $row['fname'];
 echo "<tr><td width=\"25\" valign=\"top\">".
 "<input type=\"checkbox\" name=\"checkbox[]\" value=\"$index\" />";
 echo "</td><td valign=\"bottom\"><h4><a href=\"detail.php? ".

 97

 "lname=$lname&fname=$fname\">$lname, $fname<h4></td></tr>";
 echo "<input type=\"hidden\" name=\"dfname[]\" value=\"$fname\" />";
 echo "<input type=\"hidden\" name=\"dlname[]\" value=\"$lname\" />";
 $index++;
 }

 echo "<tr><td width=\"25\" valign=\"top\"> </td>".
 "<td valign=\"bottom\"><input type=\"submit\" name=\"delete\"";
 echo "value=\"Delete\" /> ".
 "<input type=\"reset\" name=\"Submit2\" value=\"Clear\" /></td></tr>";
?>
</table>
</form>

<?php
 if (mysql_num_rows($result)==0)
 echo "<h4>No data<h4>";
?>
</p>
</blockquote>
</body>
</html>

In the first part of the code, the database connection is established and if the delete submission is
detected, the corresponding record is deleted from the database. Then, the listing of all contacts is
produced along with the check boxes within an HTML form.

Search

The search interface is shown in Figure 4.11.

Figure 4.11: Address Book – Search

 98

The search interface consists of a keyword text box along with options for choosing first name, last
name or both for the search. The code (search.html) to produce the interface is shown below:

<html>
<head>
<title>Search HTML</title>
</head>
<body>
<p> </p>
<p> </p>
<p> </p>
<blockquote>
<p>
<h2>Search Contact Information</h2>
<form action="result.php" method=post>
 <table width="60%" border="0" cellpadding="5" cellspacing="20">
 <tr>
 <td width="115">Key Word : </td>
 <td><input name="keyword" type="text" size="50" maxlength="50" /></td>
 </tr>
 <tr>
 <td width="115">Seach in </td>
 <td><input name="searchin" type="radio" value="fname" checked/>
 First Name </td>
 </tr>
 <tr>
 <td width="115"> </td>
 <td><input name="searchin" type="radio" value="lname" />
 Last Name </td>
 </tr>
 <tr>
 <td width="115"> </td>
 <td><input name="searchin" type="radio" value="both" />
 First Name and Last Name </td>
 </tr>

 <tr>
 <td> </td>
 <td><input type="reset" name="Reset" value="Clear" />

 <input type="submit" name="Submit" value="Search" /></td>
 </tr>
 </table>
</form>
</p>
</blockquote>
</body>
</html>

The above is a straightforward coding of an HTML form with the relevant form elements enclosed
within it. Upon submission of the search form, the following program (result.php) is called.

<?php
// connect to mysql
$host="localhost"; // Host name

 99

$username="id"; // Mysql username
$password="pwd"; // Mysql password
$db_name="db"; // Database name
$tbl_name="contacts"; // Table name

// Connect to server and select database.
mysql_connect("$host", "$username", "$password")or die("cannot connect");
mysql_select_db("$db_name")or die("cannot select DB");

// retrieve all variables
$keyword = @$_POST["keyword"];
$searchin = @$_POST["searchin"];

// execute query
$sql="select * from $tbl_name";
$result = mysql_query($sql);
mysql_close();
?>

<html>
<head>
<title>Results</title>
</head>
<body>
<p> </p>
<p> </p>
<p> </p>
<blockquote>
<p>
<h2>Result</h2>
<?php
 $i =0;
 while($row = mysql_fetch_assoc($result)) {
 $lname = $row['lname'];
 $fname = $row['fname'];
 if ($searchin == "both"){
 // search in last name & first name
 if ((preg_match("/$keyword/i",$fname))||
 (preg_match('/$keyword/',$lname))){
 echo "<h4><a href=\"detail.php? ".
 "lname=$lname&fname=$fname\">$lname, $fname<h4>";
 $i++;
 }
 } else if($searchin == "fname"){
 // search in first name
 if (preg_match("/$keyword/i",$fname)){
 echo "<h4><a href=\"detail.php?.
 "lname=$lname&fname=$fname\">$lname, $fname<h4>";
 $i++;
 }
 } else {
 // search in last name
 if (preg_match("/$keyword/i",$lname)){
 echo "<h4><a href=\"detail.php? ".
 "lname=$lname&fname=$fname\">$lname, $fname<h4>";
 $i++;
 }

 100

 }
 }
 if ($i == 0)
 echo "<h4>No match result.<h4>";
?>
</blockquote>
</body>
</html>

The above code connects to the database and executes a query to retrieve all contacts. Then, for
each contact the appropriate filter is applied and only those contacts that pass the filter test are
displayed in the Web page.

Exercises 

NOTE: All references to Exercises and Laboratory Exercises in the following problems refer to the
numbering in the Elmasri/Navathe text.

1. Consider the ER-schema generated for the CONFERENCE_REVIEW database in
Laboratory Exercise 7.34 for which the relational database was created in Laboratory
Exercise 9.13.

a. Create the database tables in MySQL.
b. Create comma separated data files containing data for at least 10 papers, 15 authors,

and 8 reviewers. You must assign authors to papers, assign a contact author, and
assign reviewers to papers. It is possible for some authors to be reviewers. In such a
case, the reviewer should not be assigned to a paper in which he or she is an author.
You should also create data for the individual reviews for each paper. The values
for various rankings must be between 1 and 10.

c. Using the MySQL loader command, load the data created in (b) into the database.
d. Write SQL queries for the following and execute then in a MySQL interactive

session.
i. Retrieve the email and names of authors who have submitted more than one

paper for review.
ii. Retrieve the email id of the contact author, the title of paper submitted by

that author, and the average rating received on its reviews such that the
average rating was above 8.0.

iii. Retrieve the paper id, title, and average ratings received for all papers sorted
in decreasing order of average rating. Do not show any papers below an
average rating of 3.0.

iv. Retrieve the email and names of reviewers along with the average ratings
they gave to papers assigned to them. Sort the result in increasing order of
average rating.

v. Retrieve the paper id and title of papers along with the author name and
email id such that the author is also a reviewer.

2. Consider the SQL schema generated for the GRADE_BOOK database in Laboratory

Exercise 8.28 for which the relational database was created in Laboratory Exercise 9.13.

 101

a. Create the database tables in MySQL.
b. Create comma separated data files containing data for at least 20 students and 3

courses with an average of 8 students in each course. Create data for 3 to 4 grading
components for each course. Then, create data to assign points to each student in
every course they are enrolled in for each of the grading components.

c. Using the MySQL loader command, load the data created in (b) into the database.
d. Write SQL queries for the following and execute them in a MySQL interactive

session.
i. Retrieve the course numbers, titles, and term of courses in which student

with id=1234 has enrolled.
ii. Retrieve the term, section number, and course numbers along with their total

enrollments.
iii. Retrieve the term, section number, and course numbers of courses in which

there is a grading component that has a weight of more than 50 and has
fewer than 10 students.

iv. Retrieve the names of students who have enrolled in all courses taught by
the instructor in the Fall 2005 term.

3. Consider the SQL schema generated for the ONLINE_AUCTION database in Laboratory

Exercise 8.29 for which the relational database was created and populated in Laboratory
Exercise 9.14.

a. Create the database tables in MySQL.
b. Create comma separated data files containing data for at least 20 items with at least

10 buyers and at least 10 sellers. Observe the queries below and make sure that your
data will be appropriate for those queries.

c. Using the MySQL loader command, load the data created in (b) into the database.
d. Write SQL queries for the following and execute then in a MySQL interactive

session.
i. Retrieve item numbers and descriptions of items that are still active (i.e.

bidding has not closed) along with their current bidding price.
ii. Retrieve the item numbers and descriptions of all items in which the

member with member id abc24 is the winner.
iii. Retrieve the member ids and names of members who have an average rating

of 8.0 or above.
iv. Retrieve the bidding history for the item with item number i246. The

bidding history should contain a chronological listing of all bids till the
current time including the member id of the bidder and the bidding price.

v. Retrieve the item number and titles of items that fall under the
/COMPUTER/HARDWARE/PRINTER category and have “HP” in their
titles and on which bidding has not yet closed sorted by time of bid closing.

4. Consider the CONFERENCE_REVIEW database of Laboratory Exercise 7.34 for which the

relational database was created and populated in Laboratory Exercise 9.12. There are three
types of users of the system: contact author, reviewer, and administrator. The contact
author should be able to sign in and submit a paper to the conference; the reviewer should
be able to submit reviews of papers assigned to him or her; and the administrator should be

 102

able to assign reviewers to papers (at least three reviewers to each paper) as well as print a
report of all papers sorted by average rating assigned by reviewers. The reviewers and
administrator have pre-assigned user ids and passwords, however, contact authors must
register themselves first before they can start using the system. Write a PhP-based
application that implements the following functions:

a. A user registration page that allows a contact author to register their email and other

information with the system. They choose a password in the registration page.
b. A user login page with GUI textbox elements to accept user id and password and

radio buttons to choose between contact author, reviewer, and administrator. A
separate menu for each user should be displayed after authentication.

c. The contact author should be able to enter details of his paper submission and
upload a file.

d. The reviewer should be able to choose one of his assigned papers and submit a
review for the paper.

e. The administrator should be able to assign at least three reviewers to each paper.
The administrator should also be able to display a report of all papers sorted by
average rating (high to low).

5. Consider the GRADE_BOOK database of Laboratory Exercise 8.28 for which the relational

database was created and populated in Laboratory Exercise 9.13. Write and test PhP scripts
that access the MySQL database that implements the following two functions for a given
course section (the course number, term, and section information will be provided as GET
parameters in the URL itself):

i. Allows the instructor to enter the points/scores for a particular grading
component. The instructor should be able to choose a grading component
using a pull down list.

ii. Allows the instructor to view the scores for all components for all students
in a tabular form with one row per student and one column per grading
component.

6. Consider the ONLINE_AUCTION database of Laboratory Exercise 8.29 for which the

relational database was created and populated in Laboratory Exercise 9.14 in MySQL.
Write PhP scripts to implement an online auction Web site. A member may register
himself/herself and choose his/her password. After that, they may sign into the system. The
following functions should be implemented:

a. A buyer should be able to search items by entering a keyword. The result of the
search should be a listing of items, each with a hyper-link. Upon clicking on the
hyper-link, a detailed page describing the item should be displayed. On this page,
the user may place a bid on the item.

b. A seller should be able to place an item for sale by providing all details of the item
along with auction deadlines etc.

c. Buyers and sellers should be able to look at a list of all items on which bidding has
ended.

d. Buyers and sellers should be able to place a rating as well as view ratings on
transactions they are involved in.

