
CHAPTER

3
Embedded SQL

Oracle SQL, introduced in the previous chapter, is not a language that can be
used to build sophisticated database applications, but it is a very good language
for defining the structure of the database and generating ad hoc queries. However,
to build applications, the power of a full-fledged high-level programming language
is needed. Embedded SQL provides such an environment to develop application
programs. The basic idea behind embedded SQL is to allow SQL statements in
a program written in a high-level programming language such as C or C++. By
embedding SQL statements in a C/C++ program, one can now write application
programs in C/C++ that interact (read and write) with the database. Oracle provides
a tool, called Pro*C/C++, which allows for applications to be developed in the C or
C++ language with embedded SQL statements. The Pro*C/C++ preprocessor parses
the embedded program and converts all SQL statements to system calls in C/C++ and
produces a C/C++ program as its output. This C/C++ program can be compiled in
the usual manner to produce the executable version of the application program. This
chapter introduces concepts and techniques needed to write successful embedded
SQL programs in Oracle using the C or C++ language. Most of the concepts are
introduced using the C language. A separate section is devoted to C++ programs.

3.1 Host Variables
Since SQL statements are to be embedded within the C program, there is a need
for a mechanism to pass values between the C program environment and the SQL
statements that communicate with the Oracle database server. Special variables,
called host variables, are defined in the embedded program for this purpose. These

93

94 Embedded SQL

host variables are defined between the begin declare section and end declare
section directives of the preprocessor as follows:

EXEC SQL begin declare section;

int cno;

varchar cname[31];

varchar street[31];

int zip;

char phone[13];

EXEC SQL end declare section;

The data types of the host variables must be compatible with the data types of the
columns of the tables in the database. Figure 3.1 shows data types in C that are
compatible with commonly used data types in Oracle. The char data type in Oracle
is mapped to the char data type in C. The char(N) data type in Oracle is mapped
to an array of characters in C. Notice that the size of the C array is one more than the
size of the character string in Oracle. This is due to the fact that C character strings
require an additional character to store the end-of-string character (\0). Oracle’s
Pro*C preprocessor provides a varchar array data type in C that corresponds to the
varchar(N) Oracle data type. Again, the size of the C varchar array is one more
than the maximum size of the varchar string of Oracle. The varchar array in C is
declared as

varchar cname[31];

and the Pro*C preprocessor produces the following C code corresponding to the
above declaration:

/* varchar cname[31]; */

struct {

unsigned short len;

unsigned char arr[31];

} cname;

Note that the varchar array variable cname has been transformed into a structure
(with the same name) containing two fields: arr and len. The arr field will store
the actual string and the len field will store the length of the character string. When
sending a varchar value to the database, it is the responsibility of the programmer
to make sure that both fields, arr and len, are assigned proper values. When
receiving such a value from the database, both fields are assigned appropriate values
by the system. The date data type is mapped to a fixed-length (10 characters,
corresponding to the default date format in Oracle) character string in C. The

3.1 Host Variables 95

Figure 3.1 Compatible Oracle and C data types.

Oracle Data Type C Data Type

char char

char(N) char array[N+1]

varchar(N) varchar array[N+1]

date char array[10]

number(6) int

number(10) long int

number(6,2) float

numeric data types are appropriately mapped to small int, int, long int, float,
or double, depending on their precisions in Oracle.

The host variables are used in the usual manner within C language constructs;
however, when they are used in the embedded SQL statements, they must be
preceded by a colon (:). Some examples of their usage are shown in the following
code fragment.

scanf("%d",&cno);

EXEC SQL select cname

into :cname

from customers

where cno = :cno;

scanf("%d%s%s%d%s",&cno,cname.arr,street.arr,&zip,phone);

cname.len = strlen(cname.arr);

street.len = strlen(street.arr);

EXEC SQL insert into customers

values (:cno,:cname,:street,:zip,:phone);

The select statement in the above example has an additional clause, the into clause,
which is required in embedded SQL since the results of the SQL statements must be
stored someplace. The select into statement can be used only if it is guaranteed
that the query returns exactly one or zero rows. A different technique is used to
process queries that return more than one row. This technique, which uses the
concept of a cursor, is discussed in Section 3.5. Note that all occurrences of the
host variables within the embedded SQL statements are preceded by a colon. Also,
the len fields of all varchar arrays in C are set to the correct lengths before sending
the host variables to the database.

96 Embedded SQL

3.2 Indicator Variables
A null value in the database does not have a counterpart in the C language environ-
ment. To solve the problem of communicating null values between the C program
and Oracle, embedded SQL provides indicator variables, which are special integer
variables used to indicate if a null value is retrieved from the database or stored in
the database. Consider the orders table of the mail-order database. The following
is the declaration of the relevant host and indicator variables to access the orders
table.

EXEC SQL begin declare section;

struct {

int ono;

int cno;

int eno;

char received[12];

char shipped[12];

} order_rec;

struct {

short ono_ind;

short cno_ind;

short eno_ind;

short received_ind;

short shipped_ind;

} order_rec_ind;

int onum;

EXEC SQL end declare section;

The code below reads the details of a particular row from the orders table into the
host variables declared above and checks to see whether the shipped column value
is null. A null value is indicated by a value of −1 for the indicator variable. The
database server returns a value of 0 for the indicator variable if the column value
retrieved is not null.1

scanf("%d",&onum);

EXEC SQL select *

into :order_rec indicator :order_rec_ind

1. The indicator variable is also used for other purposes—for example, it is used to indicate the length of a
string value that was retrieved from the database and that was truncated to fit the host variable into which it
was retrieved.

3.3 SQL Communications Area (sqlca) 97

from orders

where ono = :onum;

if (order_rec_ind.shipped_ind == -1)

printf("SHIPPED is Null\n");

else

printf("SHIPPED is not Null\n");

To store a null value into the database, a value of −1 should be assigned to the
indicator variable and the indicator variable should be used in an update or insert
statement. For example, the following code sets the shipped value for the order with
order number 1021 to null.

onum = 1021;

order_rec_ind.shipped_ind = -1;

EXEC SQL update orders

set shipped = :order_rec.shipped indicator

:order_rec_ind.shipped_ind

where ono = :onum;

Notice that the order_rec.shipped value is undefined, because it will be ignored
by the database server.

3.3 SQL Communications Area (sqlca)
Immediately after the Oracle database server executes an embedded SQL statement,
it reports the status of the execution in a variable called sqlca, the SQL commu-
nications area. This variable is a structure with several fields, the most commonly
used one being sqlcode. Typical values returned in this field are shown below.

sqlca.sqlcode Interpretation

0 SQL statement executed successfully

> 0 No more data present or values not found

< 0 Error occurred while executing SQL statement

To include the sqlca definition, the following statement must appear early in
the program:

EXEC SQL include sqlca;

Here are two code fragments that illustrate the use of sqlca.sqlcode.

Error check: Consider the following code fragment, which attempts to add a new
row into the customers table.

98 Embedded SQL

EXEC SQL set transaction read write;

EXEC SQL insert into customers values

(custseq.nextval,:customer_rec.cname,

:customer_rec.street,:customer_rec.zip,

:customer_rec.phone);

if (sqlca.sqlcode < 0) {

printf("\n\nCUSTOMER (%s) DID NOT GET ADDED\n",

customer_rec.cname.arr);

EXEC SQL rollback work;

return;

}

EXEC SQL commit;

After starting a transaction to read and write to the database,2 this program
fragment attempts to insert a new row into the customers table using the EXEC
SQL insert into statement. There could be several reasons why this statement
may not execute successfully, among them primary key constraint violation,
data type mismatches, and wrong number of columns in the insert statement.
The value of sqlca.sqlcode is checked to see if it is less than 0. If an error
is indicated, a message is sent to the user and the transaction is rolled back.
Otherwise, the transaction is committed and the row is successfully inserted.

Not found check: Consider the following code fragment:

EXEC SQL select zip, city

into :zipcode_rec

from zipcodes

where zip = :customer_rec.zip;

if (sqlca.sqlcode > 0) {

zipcode_rec.zip = customer_rec.zip;

printf("Zip Code does not exist; Enter City: ");

scanf("%s",zipcode_rec.city.arr);

zipcode_rec.city.len = strlen(zipcode_rec.city.arr);

EXEC SQL set transaction read write;

EXEC SQL insert into zipcodes (zip, city)

values (:zipcode_rec);

EXEC SQL commit;

}

2. Transactions will be covered in Section 3.9.

3.4 Connecting to Oracle 99

In this code fragment, a particular zip code value is checked to see if it is already
present in the zipcodes table using the EXEC SQL select into statement. If
the zip code (indicated by the host variable :customer_rec.zip) is not found
in the zipcodes table, Oracle returns a positive integer in sqlca.sqlcode. This
is checked for in the program fragment, and the user is prompted for the City
value for this zip code and a new row is added to the zipcodes table.

3.4 Connecting to Oracle
The SQL connect statement is used to establish a connection with Oracle. Such
a connection must be established before any embedded SQL statements can be
executed. The following code fragment illustrates the use of the connect statement.
The fragment, when executed, will prompt the user for the Oracle user name
and password. If the connection is not established in three tries, the program
exits.

EXEC SQL begin declare section;

varchar userid[10], password[15];

EXEC SQL end declare section;

int loginok=FALSE,logintries=0;

do {

printf("Enter your USERID: ");

scanf("%s", userid.arr);

userid.len = strlen(userid.arr);

printf("Enter your PASSWORD: ");

system("stty -echo");

scanf("%s", password.arr);

password.len = strlen(password.arr);

system("stty echo");

printf("\n");

EXEC SQL connect :userid identified by :password;

if (sqlca.sqlcode == 0)

loginok = TRUE;

else

printf("Connect Failed\n");

logintries++;

} while ((!loginok) && (logintries <3));

if ((logintries == 3) && (!loginok)) {

100 Embedded SQL

printf("Too many tries at signing on!\n");

exit(0);

}

The userid and password values cannot be provided as literal strings in the connect
statement. They must be provided in host variables, as is shown in the above
program fragment. Here, these variables are assigned values entered by the user;
however, if the values were already known, these variables could be initialized as
follows:

strcpy(userid.arr,"UUUU");

userid.len = strlen(userid.arr);

strcpy(password.arr,"PPPP");

password.len = strlen(password.arr);

where UUUU is the user name and PPPP is the associated password.
To disconnect from the database, which should be done at the end of the

program, the following statement is used:

EXEC SQL commit release;

This commits any changes that were made to the database and releases any locks
that were placed during the course of the execution of the program.

3.5 Cursors
When an embedded SQL select statement returns more than one row in its result,
the simple form of the select into statement cannot be used anymore. To process
such queries in embedded SQL, the concept of a cursor—a mechanism that allows
the C program to access the rows of a query one at a time—is introduced. The
cursor declaration associates a cursor variable with an SQL select statement. To
start processing the query, the cursor must first be opened. It is at this time that the
query is evaluated. It is important to note this fact, since the query may contain host
variables that could change while the program is executing. Also, the database tables
may be changing (other users are possibly updating the tables) while the program
is executing. Once the cursor is opened, the fetch statement can be used several
times to retrieve the rows of the query result, one at a time. Once the query results
are all retrieved, the cursor should be closed.

The syntax for cursor declaration is

EXEC SQL declare 〈cur-name〉 cursor for
〈select-statement〉
[for {read only | update [of 〈column-list〉]}];

3.5 Cursors 101

where 〈cur-name〉 is the name of the cursor and 〈select-statement〉 is any SQL select
statement associated with the cursor. The select statement, which may involve host
variables, is followed by one of the following two optional clauses:

for read only

or

for update [of 〈column-list〉]

The for update clause is used in cases of positioned deletes or updates, discussed
later in this section. The for read only clause is used to prohibit deletes or updates
based on the cursor. If the optional for clause is left out, the default is for read
only.

A cursor is opened using the following syntax:

EXEC SQL open 〈cur-name〉;

When the open statement is executed, the query associated with the cursor is
evaluated, and an imaginary pointer points to the position before the first row of
the query result. Any subsequent changes to the host variables used in the cursor
declaration or changes to the database tables will not affect the current cursor
contents.

The syntax for the fetch statement is

EXEC SQL fetch 〈cur-name〉 into
〈host-var〉, ..., 〈host-var〉;

where 〈host-var〉 is a host variable possibly including an indicator variable.
The syntax of the close cursor statement is

EXEC SQL close 〈cur-name〉;

The following procedure illustrates the use of a cursor to print all the rows in
the customers table.

void print_customers() {

EXEC SQL declare customer_cur cursor for

select cno, cname, street, zip, phone

from customers;

102 Embedded SQL

EXEC SQL set transaction read only;

EXEC SQL open customer_cur;

EXEC SQL fetch customer_cur into

:customer_rec indicator :customer_rec_ind;

while (sqlca.sqlcode == 0) {

customer_rec.cname.arr[customer_rec.cname.len] = ’\0’;

customer_rec.street.arr[customer_rec.street.len] = ’\0’;

printf("%6d %10s %20s %6d %15s\n",

customer_rec.cno,customer_rec.cname.arr,

customer_rec.street.arr,customer_rec.zip,

customer_rec.phone);

EXEC SQL fetch customer_cur into

:customer_rec indicator :customer_rec_ind;

}

EXEC SQL close customer_cur;

EXEC SQL commit;

}

Positioned Deletes and Updates
Cursors can also be used with the delete and update statements, which are referred
to as positioned deletes or updates. When cursors are used for positioned deletes
or updates, they must have exactly one table (the table from which the rows are to
be deleted or updated) in the from clause of the main select statement defining the
cursor. When used in this manner, the cursor declaration will have a for update
clause, which is optionally followed by a list of columns. If such a list is provided,
then only those columns that are listed there can be updated using the update
statement. To do a positioned delete, the for update clause should not be followed
by any list of columns. The following example illustrates a positioned delete.

EXEC SQL declare del_cur cursor for

select *

from employees

where not exists

(select ’a’

from orders

where orders.eno = employees.eno)

for update;

EXEC SQL set transaction read write;

EXEC SQL open del_cur;

3.6 Mail-Order Database Application 103

EXEC SQL fetch del_cur into :employee_rec;

while (sqlca.sqlcode == 0) {

EXEC SQL delete from employees

where current of del_cur;

EXEC SQL fetch del_cur into :employee_rec;

}

EXEC SQL commit release;

This program fragment deletes all employees who do not have any orders. The cursor
is defined using the for update clause and involves only the employees table in
its from clause. Positioned updates are done in a similar manner.

3.6 Mail-Order Database Application
An application program, written and compiled using Oracle’s Pro*C, is presented in
this section. This program allows the user to interact with the mail-order database
and provides the following functionality:

. Add customer: The user is prompted for the name, street address, phone, and zip
code for the new customer. The customer number is generated internally using
the sequence custseq. To maintain the referential integrity constraint (zip must
also exist in the zipcodes table), the zip code is checked against the zipcodes
table. If not present, the user is prompted for the city corresponding to the zip
code and an entry is made in the zipcodes table before the new customer is
added. The insert statement is used in this function.

. Print customers: This function simply prints all the customers present in the
database. A simple cursor is used to accomplish this task.

. Update customer: The user is given the opportunity to update the street address,
zip code, and phone number for a given customer. If the user updates the zip
code, a similar check as in the Add Customer function is made to maintain the
referential integrity constraint. The update statement is used to make the update
in the database.

. Process order: The function keeps prompting for a valid employee number until
it receives one from the user. If the customer is new, the Add Customer function
is invoked; otherwise the customer number is requested from the user. An order
number is then generated internally, using the sequence orderseq, and the parts
and quantities are requested from the user. Finally, one row corresponding to
this order is made in the orders table and several entries that correspond to this

104 Embedded SQL

order are made in the odetails table. Notice how carefully this function was
designed so that none of the primary and foreign key constraints are violated.

. Remove customer: Given a customer number, this function tries to remove the
customer from the database. If orders exists for this customer, the customer
is not removed. One possibility that existed in this case was to cascade this
delete, by deleting all the rows in the orders table and the odetails table that
correspond to this customer, and then to delete the customer. This cascading of
deletes could be done by providing explicit delete statements in the program;
it could also be done automatically by providing the cascade delete property
when the foreign keys were defined. However, this option was not chosen here.

. Delete old orders: All orders having a shipped date that is five or more years before
the current date are deleted. The corresponding rows in the odetails table are
also deleted to maintain the referential integrity.

. Print invoice: Given an order number, this function prints the invoice for this
order, which includes the customer details, employee details, and parts in the
order, including their quantities and total price. This is a typical reporting
function that uses cursors to get the information from several tables.

To compile this or any other embedded SQL program for Oracle under UNIX,
use the following command, where prog.pc is the name of the file containing the
embedded SQL program.

make -f proc.mk EXE=prog OBJS="prog.o" build

The file proc.mk comes with the Oracle distribution and can be found under
the ORACLE_HOME directory.

The main program is included here.

#include <stdio.h>

#include <string.h>

#define TRUE 1

#define FALSE 0

typedef struct {

int cno; varchar cname[31]; varchar street[31];

int zip; char phone[13];

} customer_record;

typedef struct {

short cno_ind,cname_ind,street_ind,zip_ind,phone_ind;

} customer_indicator_record;

3.6 Mail-Order Database Application 105

typedef struct {

int zip; varchar city[31];

} zipcode_record;

typedef struct {

int eno; varchar ename[31]; int zip; char hdate[12];

} employee_record;

typedef struct {

short eno_ind,ename_ind,zip_ind,hdate_ind;

} employee_indicator_record;

typedef struct {

int ono,cno,eno; char received[12],shipped[12];

} order_record;

typedef struct {

short ono_ind,cno_ind,eno_ind,received_ind,shipped_ind;

} order_indicator_record;

EXEC SQL include sqlca;

void print_menu();

void add_customer();

void print_customers();

void update_customer();

void process_order();

void remove_customer();

void delete_old_orders();

void print_invoice();

void prompt(char [],char []);

void main() {

EXEC SQL begin declare section;

varchar userid[10], password[15];

EXEC SQL end declare section;

char ch;

int done=FALSE,loginok=FALSE,logintries=0;

do {

prompt("Enter your USERID: ",userid.arr);

userid.len = strlen(userid.arr);

printf("Enter your PASSWORD: ");

106 Embedded SQL

system("stty -echo");

scanf("%s", password.arr);getchar();

password.len = strlen(password.arr);

system("stty echo");

printf("\n");

EXEC SQL connect :userid identified by :password;

if (sqlca.sqlcode == 0)

loginok = TRUE;

else

printf("Connect Failed\n");

logintries++;

} while ((!loginok) && (logintries <3));

if ((logintries == 3) && (!loginok)) {

printf("Too many tries at signing on!\n");

exit(0);

}

while (done == FALSE) {

print_menu();

printf("Type in your option: ");

scanf("%s",&ch); getchar();

switch (ch) {

case ’1’: add_customer(); printf("\n"); break;

case ’2’: print_customers(); printf("\n"); break;

case ’3’: update_customer(); printf("\n"); break;

case ’4’: process_order(); printf("\n"); break;

case ’5’: remove_customer(); printf("\n"); break;

case ’6’: delete_old_orders(); printf("\n"); break;

case ’7’: print_invoice();

printf("\nPress RETURN to continue");

getchar(); printf("\n"); break;

case ’q’: case ’Q’: done = TRUE; break;

default: printf("Type in option again\n"); break;

}

};

EXEC SQL commit release;

exit(0);

}

void print_menu() {

3.6 Mail-Order Database Application 107

printf("**\n");

printf("<1> Add a new customer\n");

printf("<2> Print all customers\n");

printf("<3> Update customer information\n");

printf("<4> Process a new order\n");

printf("<5> Remove a customer\n");

printf("<6> Delete old orders \n");

printf("<7> Print invoice for a given order\n");

printf("<q> Quit\n");

printf("**\n");

}

void prompt(char s[], char t[]) {

char c;

int i = 0;

printf("%s",s);

while ((c = getchar()) != ’\n’) {

t[i] = c;

i++;

}

t[i] = ’\0’;

}

After declaring the various record structures and indicator record structures for data-
base access, including the sqlca structure, and declaring the function prototypes,
the main function is defined. The main function first connects to the database and
then presents a menu of choices for the user to select from. It then processes the
user option by calling the appropriate function. The prompt function is a utility
function that displays a prompt and reads a string variable. It is used throughout the
application program.

3.6.1 Customer Functions

The customer-related functions are presented here. These functions allow the user
to add a new customer, update the information for an existing customer, and delete
an existing customer from the database. The function to print the list of customers
was presented in Section 3.5.

The following is the add_customer function.

108 Embedded SQL

void add_customer() {

EXEC SQL begin declare section;

customer_record crec;

zipcode_record zrec;

EXEC SQL end declare section;

prompt("Customer Name: ",crec.cname.arr);

crec.cname.len = strlen(crec.cname.arr);

prompt("Street : ",crec.street.arr);

crec.street.len = strlen(crec.street.arr);

printf("Zip Code : ");

scanf("%d",&crec.zip); getchar();

prompt("Phone Number : ",crec.phone);

EXEC SQL select zip, city

into :zrec

from zipcodes

where zip = :crec.zip;

if (sqlca.sqlcode > 0) {

zrec.zip = crec.zip;

prompt("Zip not present; Enter City: ",zrec.city.arr);

zrec.city.len = strlen(zrec.city.arr);

EXEC SQL set transaction read write;

EXEC SQL insert into zipcodes (zip, city)

values (:zrec);

EXEC SQL commit;

}

EXEC SQL set transaction read write;

EXEC SQL insert into customers values

(custseq.nextval,:crec.cname,:crec.street,

:crec.zip,:crec.phone);

if (sqlca.sqlcode < 0) {

printf("\n\nCUSTOMER (%s) DID NOT GET ADDED\n",

crec.cname.arr);

EXEC SQL rollback work;

return;

}

EXEC SQL commit;

}

3.6 Mail-Order Database Application 109

This function requests information for a new customer and inserts the customer into
the database. If the zip code value is not present in the database, this function also
requests the city information and makes an entry into the zipcodes table.

The update_customer function is shown below:

void update_customer() {

EXEC SQL begin declare section;

customer_record crec;

zipcode_record zrec;

int cnum;

varchar st[31];

char ph[13], zzip[6];

EXEC SQL end declare section;

printf("Customer Number to be Updated: ");

scanf("%d",&cnum);getchar();

EXEC SQL select *

into :crec

from customers

where cno = :cnum;

if (sqlca.sqlcode > 0) {

printf("Customer (%d) does not exist\n",cnum);

return;

}

crec.street.arr[crec.street.len] = ’\0’;

printf("Current Street Value : %s\n",crec.street.arr);

prompt("New Street (n<ENTER> for same): ",st.arr);

if (strlen(st.arr) > 1) {

strcpy(crec.street.arr,st.arr);

crec.street.len = strlen(crec.street.arr);

}

printf("Current ZIP Value : %d\n",crec.zip);

prompt("New ZIP (n<ENTER> for same): ",zzip);

if (strlen(zzip) > 1) {

crec.zip = atoi(zzip);

EXEC SQL select zip, city

into :zrec

from zipcodes

where zip = :crec.zip;

110 Embedded SQL

if (sqlca.sqlcode > 0) {

zrec.zip = crec.zip;

prompt("Zip not present; Enter City: ",zrec.city.arr);

zrec.city.len = strlen(zrec.city.arr);

EXEC SQL set transaction read write;

EXEC SQL insert into zipcodes (zip, city)

values (:zrec);

EXEC SQL commit;

}

}

printf("Current Phone Value: %s\n",crec.phone);

prompt("New Phone (n<ENTER> for same): ",ph);

if (strlen(ph) > 1) {

strcpy(crec.phone,ph);

}

EXEC SQL set transaction read write;

EXEC SQL update customers

set street = :crec.street,

zip = :crec.zip,

phone = :crec.phone

where cno = :crec.cno;

if (sqlca.sqlcode < 0) {

printf("\n\nError on Update\n");

EXEC SQL rollback work;

return;

}

EXEC SQL commit;

printf("\nCustomer (%d) updated.\n",crec.cno);

}

This function first prompts the user for the customer number. After checking if the
customer exists in the database, it displays the street address, zip, and phone, and it
then prompts the user for new values. The user may enter n followed by the enter
key if no change is needed for a particular value. If a new zip value is entered, the
city value is prompted in case the new zip is not present in the database, to ensure
the integrity of the database. Finally, an update is made to the customer row in the
customers table.

The remove_customer function is presented below:

3.6 Mail-Order Database Application 111

void remove_customer() {

EXEC SQL begin declare section;

customer_record crec;

int cnum,onum;

EXEC SQL end declare section;

printf("Customer Number to be deleted: ");

scanf("%d",&cnum); getchar();

EXEC SQL select *

into :crec

from customers

where cno = :cnum;

if (sqlca.sqlcode > 0) {

printf("Customer (%d) does not exist\n",cnum);

return;

}

EXEC SQL declare del_cur cursor for

select ono from orders where cno = :cnum;

EXEC SQL set transaction read only;

EXEC SQL open del_cur;

EXEC SQL fetch del_cur into :onum;

if (sqlca.sqlcode == 0) {

printf("Orders exist - cannot delete\n");

EXEC SQL commit;

return;

}

EXEC SQL commit;

EXEC SQL set transaction read write;

EXEC SQL delete from customers

where cno = :cnum;

printf("\nCustomer (%d) DELETED\n",cnum);

EXEC SQL commit;

}

This function first prompts for the customer number. After checking to see if the
customer exists in the database, it checks to see if any orders exist for this customer.

112 Embedded SQL

If orders exist, the delete is aborted; otherwise the customer is deleted from the
database.

3.6.2 Process Orders

The process_order function is shown below:

void process_order() {

EXEC SQL begin declare section;

customer_record crec;

int eenum,cnum,pnum,qqty,ord_lev,qqoh;

EXEC SQL end declare section;

FILE *f1; char ch; int nparts;

EXEC SQL set transaction read only;

do {

printf("Employee Number: ");

scanf("%d",&eenum); getchar();

EXEC SQL select eno

into :eenum

from employees

where eno = :eenum;

if (sqlca.sqlcode > 0)

printf("Employee (%d) does not exist\n",eenum);

} while (sqlca.sqlcode!=0);

EXEC SQL commit;

do {

printf("New Customer (y or n)? ");

scanf("%s",&ch); getchar();

} while ((ch != ’y’) && (ch != ’Y’) &&

(ch != ’n’) && (ch != ’N’));

if ((ch == ’y’) || (ch == ’Y’)) {

add_customer();

EXEC SQL set transaction read only;

EXEC SQL select custseq.currval

into :cnum

from dual;

EXEC SQL commit;

}

3.6 Mail-Order Database Application 113

else {

printf("Customer Number: ");

scanf("%d",&cnum); getchar();

}

EXEC SQL set transaction read only;

EXEC SQL select *

into :crec

from customers

where cno = :cnum;

if (sqlca.sqlcode > 0){

printf("Customer (%d) does not exist\n",cnum);

EXEC SQL commit;

return;

}

EXEC SQL commit;

EXEC SQL set transaction read write;

EXEC SQL insert into orders (ono,cno,eno,received)

values (ordseq.nextval,:cnum,:eenum,sysdate);

if (sqlca.sqlcode != 0) {

printf("Error while entering order\n");

EXEC SQL rollback work;

return;

}

nparts = 0;

do {

printf("Enter pno and quantity,(0,0)to quit: ");

scanf("%d%d",&pnum,&qqty); getchar();

if (pnum != 0) {

EXEC SQL select qoh,olevel

into :qqoh,:ord_lev

from parts

where pno=:pnum;

if (qqoh > qqty) {

EXEC SQL insert into odetails

values (ordseq.currval,:pnum,:qqty);

if (sqlca.sqlcode == 0) {

nparts++;

EXEC SQL update parts

114 Embedded SQL

set qoh = (qoh - :qqty)

where pno=:pnum;

if (qqoh < ord_lev){

EXEC SQL update parts

set qoh = 5*olevel

where pno=:pnum;

f1 = fopen("restock.dat","a");

fprintf(f1,"Replenish part (%d) by (%d)\n",

pnum, 5*ord_lev - qqoh);

fclose(f1);

}

}

else printf("Cannot add part (%d) to order\n",pnum);

}

else

printf("Not enough quantity in stock for (%d)\n",pnum);

}

} while(pnum > 0);

if (nparts > 0)

EXEC SQL commit;

else

EXEC SQL rollback work;

printf("NEW ORDER PROCESSING COMPLETE\n");

}

This function first requests that the user enter a valid employee number, and then
it asks if the customer is new or old. If the customer is new, the function invokes
the routine to add a new customer; otherwise it requests the customer number.
After verifying that the customer is valid, it makes an entry into the orders table
and then repeatedly requests for the part number and quantity of each part being
ordered. Each of these parts is then entered into the odetails table. The function
terminates when the user enters 0 for the part number. If the number of parts added
to the order is more than 0, the transaction is committed; otherwise the transaction
is rolled back and the order entry is erased from the orders table. Although this
function does take user input while a transaction is alive, it is not a good idea in
general, as the database tables may be locked for an indefinite time and other users
would not get access to these tables. One way to fix this problem is to read the parts
to be ordered into an array and perform the database inserts after the user is done
with the input.

3.6 Mail-Order Database Application 115

3.6.3 Delete Old Orders

The delete_old_orders function is shown below:

void delete_old_orders() {

EXEC SQL set transaction read write;

EXEC SQL delete from ospecs

where ono in

(select ono

from orders

where shipped < (sysdate - 5*365));

EXEC SQL delete from orders

where shipped < (sysdate - 5*365);

EXEC SQL commit;

printf("ORDERS SHIPPED 5 YEARS or EARLIER DELETED!\n");

}

This function deletes orders that have been shipped more than five years ago. To
maintain referential integrity, it also deletes the corresponding rows in the odetails
table.

3.6.4 Print Order Invoice

The print_invoice function is shown below:

void print_invoice() {

EXEC SQL begin declare section;

int zzip,cnum,eenum,onum,pnum,qqty;

varchar st[31],eename[31],ccname[31],

ccity[31],ppname[31];

char ph[13];

float sum,pprice;

order_record orec;

order_indicator_record orecind;

EXEC SQL end declare section;

EXEC SQL declare od_cur cursor for

select parts.pno, pname, qty, price

from odetails, parts

where odetails.ono = :onum and

odetails.pno = parts.pno;

116 Embedded SQL

printf("Order Number: ");

scanf("%d",&onum); getchar();

EXEC SQL set transaction read only;

EXEC SQL select *

into :orec indicator :orecind

from orders

where ono = :onum;

if (sqlca.sqlcode == 0) {

EXEC SQL select cno,cname,street,city,

customers.zip, phone

into :cnum,:ccname,:st,:ccity,:zzip,:ph

from customers, zipcodes

where cno = :orec.cno and

customers.zip = zipcodes.zip;

ccname.arr[ccname.len] = ’\0’;

st.arr[st.len] = ’\0’;

ccity.arr[ccity.len] = ’\0’;

printf("***************************************");

printf("***********************\n");

printf("Customer: %s \t Customer Number: %d \n",

ccname.arr, cnum);

printf("Street : %s \n", st.arr);

printf("City : %s \n", ccity.arr);

printf("ZIP : %d \n",zzip);

printf("Phone : %s \n", ph);

printf("--");

printf("----------------------\n");

EXEC SQL select eno, ename

into :eenum, :eename

from employees

where eno = :orec.eno;

eename.arr[eename.len] = ’\0’;

printf("Order No: %d \n",orec.ono);

printf("Taken By: %s (%d)\n",eename.arr, eenum);

printf("Received On: %s\n",orec.received);

printf("Shipped On: %s\n\n",orec.shipped);

3.7 Recursive Queries 117

EXEC SQL open od_cur;

EXEC SQL fetch od_cur

into :pnum, :ppname, :qqty, :pprice;

printf("Part No. ");

printf("Part Name Quan. Price Ext\n");

printf("------------------------------------");

printf("-----------------------\n");

sum = 0.0;

while (sqlca.sqlcode == 0) {

ppname.arr[ppname.len] = ’\0’;

printf("%8d%25s%7d%10.2f%10.2f\n",pnum,

ppname.arr, qqty, pprice, qqty*pprice);

sum = sum + (qqty*pprice);

EXEC SQL fetch od_cur

into :pnum, :ppname, :qqty, :pprice;

}

EXEC SQL close od_cur;

printf("------------------------------------");

printf("-------------------------\n");

printf(" ");

printf("TOTAL: %10.2f\n",sum);

printf("************************************");

printf("**************************\n");

EXEC SQL commit;

}

}

Given an order number, this function prints an invoice for the order. The invoice
includes information about the customer, employee who took the order, details of
the order, prices, and total due.

3.7 Recursive Queries
SQL is a powerful language to express ad hoc queries. But it has its limitations. It
is impossible to express arbitrary recursive queries in SQL. However, the power of
embedded SQL, which gives access to all the features of a high-level programming

118 Embedded SQL

Figure 3.2 emps table.

emps

EID MGRID

Smith Jones

Blake Jones

Brown Smith

Green Smith

White Brown

Adams White

language, can be used to solve recursive queries. Consider a simple relational table
emps defined as follows:

create table emps (

eid integer,

mgrid integer);

This table has two columns: (1) eid, the employee ID, and (2) mgrid, the ID of
the employee’s manager. A possible instance is shown in Figure 3.2. Consider the
following deductive rules that define a recursive query on the emps table:

query(X) :- emps(X,’Jones’);

query(X) :- emps(X,Y), query(Y).

The query gets all the employees who work under Jones at all levels. The first
deductive rule gets the employees who work directly under Jones. The second
deductive rule is a recursive rule stating that if X works under Y and Y is already
in the answer to the query, then X must also be in the answer to the query.

To solve this query using embedded SQL, the following algorithm is used:

insert into query

select eid from emps where mgrid = ’Jones’;

repeat

insert into query

select eid from query,emps where mgrid = a;

until (no more changes to query);

where query is a table with one column named a. Basically, the algorithm first
computes the answers from the first deductive rule. It then repeatedly computes
the answers from the second recursive rule until no more answers are generated.
The program is as follows:

3.7 Recursive Queries 119

#include <stdio.h>

EXEC SQL begin declare section;

int eid, a;

EXEC SQL end declare section;

EXEC SQL include sqlca;

main()

{ int newrowadded;

/* Cursor for emps at next level (Initial answers) */

EXEC SQL declare c1 cursor for

select eid from emps where mgrid = :eid;

/* query(X) if emps(X,Y) and query(Y) */

EXEC SQL declare c2 cursor for

select eid from emps,query where mgrid = a;

/* Cursor to print the answers */

EXEC SQL declare c3 cursor for select a from query;

EXEC SQL create table query(

a integer not null, primary key (a));

/*Get initial answers using Cursor c1*/

printf("Type in employee id:");

scanf("%d",&eid);

EXEC SQL open c1;

EXEC SQL fetch c1 into :a;

while (sqlca.sqlcode == 0) {

EXEC SQL insert into query values (:a);

EXEC SQL fetch c1 into :a;

}

EXEC SQL close c1;

EXEC SQL commit work;

/* repeat loop of algorithm */

do {

newrowadded = FALSE;

EXEC SQL open c2;

EXEC SQL fetch c2 into :a;

while (sqlca.sqlcode == 0) {

EXEC SQL insert into query values (:a);

if (sqlca.sqlcode == 0)

120 Embedded SQL

newrowadded = TRUE;

EXEC SQL fetch c2 into :a;

}

EXEC SQL close c2;

} while (newrowadded);

EXEC SQL commit work;

/*Print results from query table*/

printf("Answer is\n");

EXEC SQL open c3;

EXEC SQL fetch c3 into :a;

while (sqlca.sqlcode == 0) {

printf("%d\n",a);

EXEC SQL fetch c3 into :a;

}

EXEC SQL close c3;

EXEC SQL commit work;

EXEC SQL drop table query;

EXEC SQL commit work;

}/*end of main*/

Note the use of the primary key clause in the query table definition. Checking to
see if any new row was added in the do-while loop in the program is based on the
fact that the only column of query is defined as the primary key, and if a new row
was indeed added, the value of sqlca.sqlcode would be 0.

3.8 Error Handling
Oracle reports any errors or warnings caused by the embedded SQL statements in the
SQL communications area introduced in Section 3.3. There are at least two methods
of handling these errors and warnings in the embedded program: explicit handling
by writing code that inspects the sqlca structure and takes appropriate action, and
implicit handling by using the whenever statement. Both methods are discussed in
this section.

3.8 Error Handling 121

Figure 3.3 The sqlca structure in Oracle.

struct sqlca {

char sqlcaid[8];

long sqlabc;

long sqlcode;

struct {

unsigned short sqlerrml;

char sqlerrmc[70];

} sqlerrm;

char sqlerrp[8];

long sqlerrd[6];

char sqlwarn[8];

char sqlext[8];

};

3.8.1 Explicit Handling

After each database call, errors or warnings are checked and, if necessary, are
processed at that point by the application program. The SQL communications area is
used for this purpose. Earlier in this chapter the sqlcode field of the sqlca structure
was introduced. Now other important fields of the sqlca structure will be discussed.
The sqlca structure as defined in Oracle is shown in Figure 3.3. The individual fields
of the sqlca structure are as follows:

. sqlcaid: A character string that identifies the SQL communications area. It is
equal to ’SQLCA ’.

. sqlabc: The size of the sqlca structure; it is initialized to

sizeof(struct sqlca).

. sqlcode: The status of the most recent SQL statement execution. A 0 value
indicates successful execution of the most recent embedded SQL statement; a
negative value indicates an error in the execution of the most recent embedded
SQL statement; a positive value indicates a warning situation encountered while
executing the most recent embedded SQL statement. A warning occurs when no
data are found as a result of a select or fetch statement or when no rows are
inserted as a result of an insert statement.

. sqlerrm: A substructure that contains the error message. This field should be
accessed only if sqlcode is negative. This substructure contains two fields:

122 Embedded SQL

sqlerrml, the length of the error message, and sqlerrmc, the error message
itself. This error message is limited to 70 characters and is not null terminated.
Therefore, it should be null terminated as follows before it is used in the C
program:

sqlca.sqlerrm.sqlerrmc[sqlca.sqlerrm.sqlerrml] = ’\0’;

If the error message is longer than 70 characters, a call to the sqlglm function
can be made to print the entire error message as follows:

char error_message[512];

long buffer_length, message_length;

buffer_length = sizeof (error_message);

sqlglm(error_message,&buffer_length,&message_length);

printf("%.*s\n", message_length, error_message);

Note that error_message is the buffer in which Oracle would store the entire
error message, buffer_length is the maximum size of the buffer (usually set to
512), and message_length is the actual length of the error message.

. sqlerrp: A character string field unused at this time.

. sqlerrd: An array of six integers used to record error diagnostic information.
Only sqlerrd[2] and sqlerrd[4] are in use at this time. sqlerrd[2] records
the number of rows processed successfully by a select, insert, update, or
delete statement. For cursors, sqlerrd[2] is assigned 0 when the cursor is
opened and incremented after each fetch. sqlerrd[4] contains the parse error
offset, the position in a dynamic SQL statement that is syntactically incorrect.
sqlerrd[4] is useful only in the context of dynamic SQL statements, which are
discussed in Section 3.10.

. sqlwarn: An array of eight characters used as warning flags having the following
meanings:

sqlca.sqlwarn[0] is set to W if one of the other flags is set.

sqlca.sqlwarn[1] is assigned a nonzero value if a character data value is
truncated when assigned to a host variable.

sqlca.sqlwarn[3] is assigned a nonzero value if in a fetch or a select
into statement the number of columns is not equal to the number of host
variables in the into clause. The value assigned is the smaller of these two
numbers.

3.8 Error Handling 123

sqlca.sqlwarn[4] is assigned a nonzero value if all the rows of a table are
affected by a delete or an update statement.

sqlca.sqlwarn[5] is assigned a nonzero value when the compilation of a
PL/SQL statement fails.

The remaining entries in this array are unused at this time and are initialized
to 0.

. sqlext: A character string field not in use at this time.

Based on the information provided in the sqlca structure, the programmer can
inspect these values and take appropriate action in the embedded SQL program to
handle errors. The sqlca structure can be initialized by using the following define
statement:

#define SQLCA_INIT

3.8.2 Implicit Handling

One of the disadvantages of explicit handling of errors is that the code becomes
cluttered with error-handling statements. To avoid this, the errors can be handled
implicitly using the whenever statement, which is actually a directive to the Pro*C
preprocessor to insert certain statements after each database call in the program
under the scope of the whenever statement. The syntax of the whenever state-
ment is

EXEC SQL whenever 〈condition〉 〈action〉;
where 〈condition〉 is one of the following:

sqlerror : an error situation (sqlcode < 0)

sqlwarning : a warning situation (sqlcode > 0)

not found : data not found (sqlcode = 1403)

and 〈action〉 is one of the following:

continue : ignore condition and continue

do function : call a function

do break : perform a break out of a control

structure

do return : perform a return statement

goto label : branch to a label

stop : stop program and roll back uncommitted

changes

124 Embedded SQL

The whenever statement can be used any number of times in the program. However,
you must be careful, since the scope of the statement is positional, not logical. The
positional nature of the scope of the whenever statement means that it is applicable
to the statements that physically follow it until another whenever statement for the
same 〈condition〉 is encountered. A typical use of the whenever statement is

EXEC SQL whenever sqlerror do

sql_error("ORACLE error--\n");

This is placed at the beginning of the source file, and an error-handling procedure
called sql_error is defined as follows:

void sql_error(char msg[]) {

char error_message[512];

long buffer_length, message_length;

EXEC SQL whenever sqlerror continue;

buffer_length = sizeof (error_message);

sqlglm(error_message,&buffer_length,&message_length);

printf("%.*s\n", message_length, error_message);

EXEC SQL rollback release;

exit(1);

}

This is a procedure that prints the error message using the sqlglm procedure call
and exits the program. Notice the use of the

EXEC SQL whenever sqlerror continue;

statement in this procedure. This ensures that an infinite loop is not created if the
rollback statement or any other database call in this procedure encounters an error.

3.9 Transaction Control
A transaction is a sequence of database statements that must execute as a whole to
maintain consistency. If for some reason one of the statements fails in the transaction,
all the changes caused by the statements in the transaction should be undone to
maintain a consistent database state. Oracle provides the following statements to
create transactions within the embedded SQL program.

. EXEC SQL set transaction read only. This is typically used before a se-
quence of select or fetch statements that do only a read from the database.

3.10 Dynamic SQL 125

The statement begins a read-only transaction. At the end of the sequence of
statements, the commit statement is executed to end the transaction.

. EXEC SQL set transaction read write. This is typically used before a se-
quence of statements that performs some updates to the database. This statement
begins a read-write transaction. The transaction is terminated by either a com-
mit statement that makes the changes permanent in the database or a rollback
statement that undoes all the changes made by all the statements within the
transaction.

. EXEC SQL commit. This statement commits all the changes made in the trans-
action and releases any locks placed on tables so that other processes may access
them.

. EXEC SQL rollback. This statement undoes all the changes made in the course
of the transaction and releases all locks placed on the tables.

Notice the use of these statements in the mail-order database application program
discussed earlier. An important point to note while creating transactions in the
embedded SQL program is that while a transaction is active, user input should be
avoided, if at all possible. This is because the tables are locked by the system during
the transaction, and other processes may not get access to the database tables if these
locks are not released soon. By waiting for user input during a transaction, there is
the danger of a long delay before the input is received by the program, which means
that the transaction could be kept active for long durations.

3.10 Dynamic SQL
The embedded SQL statements seen so far have been static in nature—i.e., they are
fixed at compile time. However, there are situations when the SQL statements to be
executed in an application program are not known at compile time. These statements
are built spontaneously as the program is executing. These are referred to as dynamic
SQL statements, which can be executed through several mechanisms, discussed in
this section.

3.10.1 The execute immediate Statement

The simplest form of executing a dynamic SQL statement is to use the execute
immediate statement. The syntax of the execute immediate statement is

EXEC SQL execute immediate 〈host-var〉;

126 Embedded SQL

where 〈host-var〉 is a host variable defined as a character string and has as its value
a valid SQL statement, which cannot have any built-in host variables. It must be a
complete SQL statement ready to be executed. Furthermore, it is restricted to be one
of the following: create table, alter table, drop table, insert, delete, or
update. Dynamic select statements are not allowed. Another approach is necessary
to perform dynamic selects and is discussed later in this section. An example of the
execute immediate statement is shown below:

#include <stdio.h>

EXEC SQL begin declare section;

char sql_stmt[256];

varchar userid[10], password[15];

EXEC SQL end declare section;

EXEC SQL include sqlca;

void main() {

strcpy(username.arr,"book");

username.len = strlen(username.arr);

strcpy(password.arr,"book");

password.len = strlen(password.arr);

EXEC SQL connect :username identified by :password;

strcpy(sql_stmt,

"update employees set hdate=sysdate where eno = 1001");

EXEC SQL set transaction read write;

EXEC SQL execute immediate :sql_stmt;

EXEC SQL commit release;

exit(0);

}

In the above program, sql_stmt is the host variable that has as its value a valid
SQL update statement. When executed successfully, it sets the hired date value
for employee 1001 to the current date.

3.10.2 The prepare and execute using Statements

One of the drawbacks of the execute immediate statement is that the SQL state-
ment that it executes has to be compiled each time the execute immediate state-
ment is executed. This can cause a lot of overhead if the SQL statement has to be

3.10 Dynamic SQL 127

executed many times in the program. Another problem is that the SQL statement
cannot have host variables, which reduces the flexibility of dynamic statements.
To address these problems, the prepare and execute using statements are intro-
duced. The dynamic SQL statement that needs to be executed is compiled once
using the prepare statement and then executed any number of times using the ex-
ecute using statement. This approach also allows host variables to be present in
the dynamic SQL statement. The syntax of the prepare statement is

EXEC SQL prepare s from :sql_stmt;

where sql_stmt is a host variable defined as a character string and has as its value a
valid SQL statement, which may include host variables. The prepare statement
basically compiles the dynamic SQL statement and stores the compiled form in
the variable s, which need not be declared. The syntax of the execute using
statement is

EXEC SQL execute s using :var1, ..., :varn;

where s is a previously prepared compiled form of an SQL statement, and var1,
..., varn are host variables that will substitute the corresponding host variables in
the dynamic SQL statement (assuming there are n host variables used in the dynamic
SQL statement). An example of this approach is shown below:

#include <stdio.h>

EXEC SQL begin declare section;

char sql_stmt[256];

int num;

varchar userid[10], password[15];

EXEC SQL end declare section;

EXEC SQL include sqlca;

void main() {

strcpy(username.arr,"book");

username.len = strlen(username.arr);

strcpy(password.arr,"book");

password.len = strlen(password.arr);

EXEC SQL connect :username identified by :password;

strcpy(sql_stmt,

"update employees set hdate=sysdate where eno = :n");

EXEC SQL set transaction read write;

128 Embedded SQL

EXEC SQL prepare s from :sql_stmt;

do {

printf("Enter eno to update (0 to stop):>");

scanf("%d",&num);

if (num > 0) {

EXEC SQL execute s using :num;

EXEC SQL commit;

}

} while (num > 0);

EXEC SQL commit release;

exit(0);

}

In the above program, the user is prompted for the employee number several times,
and the particular employee’s hired date is updated using the employee number
entered by the user. Notice that the prepare statement is used once and the execute
using statement is used in a loop several times.

3.10.3 Dynamic Select

The previous approaches discussed cannot be used to do dynamic selects because the
number of columns in the select clause of the select statement and their data types
are unknown at compile time. It is not possible to use the into clause in the select
or the fetch statements, as the number of host variables to be used is unknown. To
solve this problem, a new data structure is introduced, called the SQL Descriptor
Area, or sqlda. This data structure will store the results of the current fetch, and
the embedded program can obtain the current row from the sqlda.

The sqlda structure is shown in Figure 3.4. The individual fields of the sqlda
structure are explained with comments next to their definition. Some of these fields
(such as N, M, and Y) of the sqlda structure are initialized when initial space for the
structure is allocated using the sqlald function. Other fields (such as T, F, S, C,
X, and Z) are assigned values when the describe statement is executed. The actual
values (fields V, L, and I) of the columns being retrieved are assigned values when
the fetch statement is executed.

The describe statement returns the names, data types, lengths (including
precision and scale), and null/not null statuses of all the columns in a compiled
form of a dynamic SQL select statement. It must be used after the dynamic SQL

3.10 Dynamic SQL 129

Figure 3.4 The sqlda structure in Oracle.

struct sqlda {

long N; /* Maximum number of columns

handled by this sqlda */

char **V; /* Pointer to array of pointers

to column values */

long *L; /* Pointer to array of lengths

of column values */

short *T; /* Pointer to array of data

types of columns */

short **I; /* Pointer to array of pointers

to indicator values */

long F; /* Actual Number of columns found

by describe */

char **S; /* Pointer to array of pointers

to column names */

short *M; /* Pointer to array of max lengths

of column names */

short *C; /* Pointer to array of actual

lengths of column names */

char **X; /* Pointer to array of pointers

to indicator variable names */

short *Y; /* Pointer to array of max lengths

of indicator variable names */

short *Z; /* Pointer to array of actual lengths

of indicator variable names */

};

statement has been compiled using the prepare statement. The syntax of the
describe statement is

EXEC SQL describe select list for s into da;

where s is the compiled form of the dynamic SQL statement and da is the sqlda
structure.

The cursor manipulation for dynamic selects using the sqlda is done as follows:

130 Embedded SQL

EXEC SQL declare c cursor for s;

EXEC SQL open c using descriptor da;

EXEC SQL fetch c using descriptor da;
.
.
.

EXEC SQL fetch c using descriptor da;

EXEC SQL close c;

Notice the USING DESCRIPTOR phrase used in the open and fetch statements. Also
notice the cursor declaration that specifies the compiled form s of the dynamic select.
These statements should follow the prepare statement.

An embedded SQL program that involves a dynamic select is shown below.
The program has a string variable assigned to the following select statement:

select eno,ename,hdate

from employees

where eno>=1;

/* Dynamic Select Program */

#include <stdio.h>

#include <string.h>

#define MAX_ITEMS 40/* max number of columns*/

#define MAX_VNAME_LEN 30/* max length for column names*/

#define MAX_INAME_LEN 30/* max length of indicator names*/

EXEC SQL begin declare section;

varchar username[20];

varchar password[20];

char stmt[256];

EXEC SQL end declare section;

EXEC SQL include sqlca;

EXEC SQL include sqlda;

SQLDA *da;

extern SQLDA *sqlald();

3.10 Dynamic SQL 131

extern void sqlnul();

int process_select_list();

main() {

int i;

/* Connect to the database. */

strcpy(username.arr,"book");

username.len = strlen(username.arr);

strcpy(password.arr,"book");

password.len = strlen(password.arr);

EXEC SQL connect :username identified by :password;

/* Allocate memory for the SQLDA da and pointers

to indicator variables and data. */

da = sqlald (MAX_ITEMS, MAX_VNAME_LEN, MAX_INAME_LEN);

for (i = 0; i < MAX_ITEMS; i++) {

da->I[i] = (short *) malloc(sizeof(short));

da->V[i] = (char *) malloc(1);

}

strcpy(stmt,

"select eno,ename,hdate from employees where eno>=1");

EXEC SQL prepare s from :stmt;

process_select();

/* Free space */

for (i = 0; i < MAX_ITEMS; i++) {

if (da->V[i] != (char *) 0)

free(da->V[i]);

free(da->I[i]);

}

sqlclu(da);

EXEC SQL commit work release;

exit(0);

}

132 Embedded SQL

void process_select(void) {

int i, null_ok, precision, scale;

EXEC SQL declare c cursor for s;

EXEC SQL open c using descriptor da;

/* The describe function returns their names, datatypes,

lengths (including precision and scale), and

null/not null statuses. */

EXEC SQL describe select list for s into da;

/* Set the maximum number of array elements in the

descriptor to the number found. */

da->N = da->F;

/* Allocate storage for each column. */

for (i = 0; i < da->F; i++) {

/* Turn off high-order bit of datatype */

sqlnul (&(da->T[i]), &(da->T[i]), &null_ok);

switch (da->T[i]) {

case 1 : break; /* Char data type */

case 2 : /* Number data type */

sqlprc (&(da->L[i]), &precision, &scale);

if (precision == 0) precision = 40;

if (scale > 0) da->L[i] = sizeof(float);

else da->L[i] = sizeof(int);

break;

case 12 : /* DATE datatype */

da->L[i] = 9;

break;

}

/* Allocate space for the column values.

sqlald() reserves a pointer location for

V[i] but does not allocate the full space for

the pointer. */

if (da->T[i] != 2)

da->V[i] = (char *) realloc(da->V[i],da->L[i] + 1);

else

da->V[i] = (char *) realloc(da->V[i],da->L[i]);

3.10 Dynamic SQL 133

/* Print column headings, right-justifying number

column headings. */

if (da->T[i] == 2)

if (scale > 0)

printf ("%.*s ", da->L[i]+3, da->S[i]);

else

printf ("%.*s ", da->L[i], da->S[i]);

else

printf ("%-.*s ", da->L[i], da->S[i]);

/* Coerce ALL datatypes except NUMBER to

character. */

if (da->T[i] != 2) da->T[i] = 1;

/* Coerce the datatypes of NUMBERs to float or

int depending on the scale. */

if (da->T[i] == 2)

if (scale > 0) da->T[i] = 4; /* float */

else da->T[i] = 3; /* int */

}

printf ("\n\n");

/* FETCH each row selected and print the

column values. */

EXEC SQL whenever not found goto end_select_loop;

for (;;) {

EXEC SQL fetch c using descriptor da;

for (i = 0; i < da->F; i++) {

if (*da->I[i] < 0)

if (da->T[i] == 4)

printf ("%-*c ",(int)da->L[i]+3, ’ ’);

else

printf ("%-*c ",(int)da->L[i], ’ ’);

else

if (da->T[i] == 3) /* int datatype */

printf ("%*d ", (int)da->L[i],*(int *)da->V[i]);

else if (da->T[i] == 4) /* float datatype */

printf ("%*.2f ", (int)da->L[i],*(float *)da->V[i]);

else /* character string */

printf ("%-*.*s ", (int)da->L[i],

134 Embedded SQL

(int)da->L[i], da->V[i]);

}

printf ("\n");

}

end_select_loop:

EXEC SQL close c;

return;

}

The following characteristics should be noted about the program:

. The sqlda structure needs to be initialized by the function call

da = sqlald (MAX_ITEMS, MAX_VNAME_LEN,

MAX_INAME_LEN);

At this point, N, the maximum number of columns; M, the maximum size
of column names; and Y, the maximum size of indicator variable names, are
initialized.

. Immediately after the sqlda structure is initialized, the space for the indicator
and column value pointers (I and V fields) must be allocated as follows.

for (i = 0; i < MAX_ITEMS; i++) {

da->I[i] = (short *) malloc(sizeof(short));

da->V[i] = (char *) malloc(1);

}

. Before the dynamic statement can be used, it should be compiled using the
following statement:

EXEC SQL prepare s from :stmt;

. The T field has encoded in it the null/not null status of the column in its
high-order bit. To turn it off, use the following procedure call:

/* Turn off high-order bit of datatype */

sqlnul (&(da->T[i]), &(da->T[i]), &null_ok);

. After determining the data types (T field) of each column, the L field must be set
to indicate the maximum lengths of each column value. After this is done, the
actual space to store the column values must be allocated, which is based on the
L field.

. The three data types, Character String (T = 1), Number (T = 2), and
Date (T = 12), are handled in this program.

3.11 Pro*C++ 135

. The sqlprc() function call is used to extract precision and scale from the length
(da->L[i]) of the NUMBER columns.

. The column names are obtained from the S field and are available after the
describe statement has executed.

. The column values are obtained from the V field after the fetch takes place.

. At the end, it is good practice to free the space occupied by the sqlda structure.
This is done by the following:

/* Free space */

for (i = 0; i < MAX_ITEMS; i++) {

if (da->V[i] != (char *) 0)

free(da->V[i]);

free(da->I[i]);

}

sqlclu(da);

3.11 Pro*C++

Oracle’s Pro*C/C++ allows the programmer to embed SQL statements in a C++
program. In this section, three sample programs written in C++ are presented. These
sample programs illustrate various aspects of embedded-SQL programming in C++
such as single answer querying using the select into statement, multiple answer
querying using cursors, and dynamic querying using cursors and the prepare
statement.

3.11.1 Compiling Pro*C++ programs

To compile Pro*C++ programs, use the following command:

make -f proc.mk EXE=prog OBJS="prog.o" cppbuild

where prog.pc is the name of the Pro*C++ program and proc.mk is the Oracle-
supplied makefile.

3.11.2 A Simple Query Example

The following program prompts the user for a member id, then queries the member
table for the member’s last name, address, and email, and prints the information.

136 Embedded SQL

#include <iostream.h>

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

EXEC SQL begin declare section;

varchar user[20];

varchar pass[20];

struct memberRecord {

varchar lname[16];

varchar address[50];

varchar email[31];

} mrec;

struct memberindRecord {

short lname_ind;

short addr_ind;

short email_ind;

} mrec_ind;

char mmid[8];

EXEC SQL end declare section;

class member {

char lname[16];

char address[50];

char email[31];

public:

member(const memberRecord&, const memberindRecord&);

friend ostream& operator<<(ostream&, member&);

};

member::member(const memberRecord& m, const memberindRecord& i) {

strncpy(lname, (char *)m.lname.arr, m.lname.len);

lname[m.lname.len] = ’\0’;

3.11 Pro*C++ 137

if (i.addr_ind < 0)

strncpy(address,"NULL",4);

else

strncpy(address, (char *)m.address.arr, m.address.len);

address[m.address.len] = ’\0’;

if (i.email_ind < 0)

strncpy(email,"NULL",4);

else

strncpy(email, (char *)m.email.arr, m.email.len);

email[m.email.len] = ’\0’;

}

ostream& operator<<(ostream& s, member& m) {

return s << m.lname << " " << m.address

<< " " << m.email << endl;

}

#include <sqlca.h>

int main() {

user.len = strlen(strcpy((char *)user.arr, "book"));

pass.len = strlen(strcpy((char *)pass.arr, "book"));

EXEC SQL connect :user identified by :pass;

cout << "\nConnected to ORACLE as user: "

<< (char *)user.arr << endl << endl;

while (1) {

cout << "Enter member number (0 to quit): ";

gets(mmid);

if (strcmp(mmid,"0") == 0)

break;

EXEC SQL select member.lname, member.address,

member.email

into :mrec indicator :mrec_ind

from member

where member.mid = :mmid;

138 Embedded SQL

if (sqlca.sqlcode == 0) {

member m(mrec, mrec_ind);

cout << m;

}

else {

cout << "Not a valid member number." << endl;

cout << sqlca.sqlerrm.sqlerrmc << endl;

}

}

EXEC SQL commit work release;

exit(0);

}

A class called member is declared that has three instance variables lname, address,
and email. The information retrieved from the database is used to create a member
object using the constructor method defined for this class. A method to print the
member object to the output stream is defined.

The main program first connects to the database. It then repeatedly asks the user
for a member id and performs the query to retrieve the necessary information from
the database. This information is sent to the constructor method to create a member
object, which is then sent to the output stream. The address and email information
retrieved from the database is checked for null values in the constructor method
using indicator variables.

An important point to note is that the database-related statements in this program
are exactly the same as would have been written in a Pro*C program. This is indeed
true for any Pro*C++ program.

3.11.3 Multiple Answer Query using Cursors

Consider the following two additional tables in the investment portfolio database.

create table analyst (

aid varchar2 (4),

name varchar2 (15) not null,

password varchar2 (8),

primary key (aid)

);

3.11 Pro*C++ 139

create table rating (

aid varchar2(4),

symbol varchar2(8),

rating number check (rating in (1,2,3,4,5)),

primary key (aid, symbol),

foreign key (aid) references analyst,

foreign key (symbol) references security

);

The analyst table records information about various analysts who rate the securities
on a scale of 1–5. The ratings of securities themselves are recorded in the ratings
table.

The following Pro*C++ program reads rows from the analyst and security
tables and creates the rating table by assigning a random number between 1 and 5
for each analyst-security combination. The net effect of running this program is that
every security gets a rating from each of the analysts.

#include <fstream.h>

#include <iostream.h>

#include <iomanip.h>

#include <string.h>

#include <stdlib.h>

#include <time.h>

#define UNAME_LEN 20

#define PWD_LEN 40

exec sql begin declare section;

varchar username[UNAME_LEN];

varchar password[PWD_LEN];

// Host variables for input

int totalRatIns, totalAnalysts, totalSecurities;

// Host variables for analyst id, security symbol, and rating

varchar analystId[5];

varchar symbol[9];

int rating;

140 Embedded SQL

// indicator variables for analyst id and security symbol

short analystIdInd, symbolInd;

exec sql end declare section;

#include <sqlca.h>

// Error handler

void sql_error (char *msg);

void main() {

// Register sql_error as the error handler

exec sql whenever sqlerror

do sql_error("ORACLE ERROR: ");

cout << "Enter userid : ";

cin >> username.arr;

cout << "Enter your password : ";

cin >> password.arr;

username.len = strlen((char *) username.arr);

password.len = strlen((char *) password.arr);

exec sql connect :username identified BY :password;

cout << "\nConnected to ORACLE as user: "

<< (char *)username.arr << endl;

srand(time(NULL));

totalRatIns = 0;

totalAnalysts = 0;

totalSecurities = 0;

exec sql declare analyst_cur cursor for

select aid

from analyst;

exec sql declare security_cur cursor for

select symbol

from security;

3.11 Pro*C++ 141

exec sql open analyst_cur;

exec sql fetch analyst_cur

into :analystId indicator :analystIdInd;

while (sqlca.sqlcode == 0) {

totalAnalysts++;

exec sql open security_cur;

exec sql fetch security_cur

into :symbol indicator :symbolInd;

while (sqlca.sqlcode == 0) {

totalSecurities++;

exec sql set transaction read write;

rating = 1 + rand()%5;

exec sql insert into rating values

(:analystId,:symbol,:rating);

if (sqlca.sqlcode != 0) {

cout << " Error while inserting rating for "

<< analystId.arr << " symbol "

<< symbol.arr << endl;

exec sql rollback release;

}

else {

cout << " Analyst " << analystId.arr

<< " rated " << symbol.arr

<< " as " << rating << endl;

totalRatIns++;

exec sql commit work;

}

exec sql fetch security_cur

into :symbol INDICATOR :symbolInd;

}

exec sql fetch analyst_cur

into :analystId indicator :analystIdInd;

}

exec sql close analyst_cur;

exec sql close security_cur;

cout << endl << "Total analysts = " << totalAnalysts << endl;

cout << endl << "Total securities = "

<< totalSecurities << endl;

142 Embedded SQL

cout << endl << "Total ratings inserted = "

<< totalRatIns << endl << endl;

// Disconnect from ORACLE

exec sql commit work release;

exit(0);

}

void sql_error(char *msg) {

exec sql whenever sqlerror continue;

cout << msg << sqlca.sqlerrm.sqlerrmc << endl;

exec sql rollback release;

exit(1);

}

The program begins by connecting to the database. It then uses two cursors to
query the analyst and security tables. A nested loop is set up to go through
every analyst-security pair. For each such pair, a random number between 1 and
5 is generated and the values are inserted into the rating table. Appropriate error
checks are made and finally the total number of analysts, securities, and ratings is
printed. Once again, notice how the database-related statements in this program are
exactly the same as in a Pro*C program.

3.11.4 Dynamic SQL Query

The following program uses dynamic SQL to retrieve all the analyst ratings for a
given security symbol.

#include <iostream.h>

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#define UNAME_LEN 20

#define PWD_LEN 40

exec sql begin declare section;

varchar username[UNAME_LEN];

varchar password[PWD_LEN];

3.11 Pro*C++ 143

varchar sqlstmt[80];

varchar aname[16];

varchar symbol[9];

int rating;

exec sql end declare section;

#include <sqlca.h>

// Error handler

void sql_error(char *msg);

main() {

// Register sql_error as the error handler

exec sql whenever sqlerror

do sql_error("ORACLE ERROR: ");

cout << "Enter userid : ";

cin >> username.arr;

cout << "Enter your password : ";

cin >> password.arr;

username.len = strlen((char *) username.arr);

password.len = strlen((char *) password.arr);

exec sql connect :username identified BY :password;

cout << "\nConnected to ORACLE as user: "

<< (char *)username.arr << endl;

strcpy((char *)sqlstmt.arr,

"select a.name, r.rating ");

strcat((char *)sqlstmt.arr,

"from rating r, analyst a ");

strcat((char *)sqlstmt.arr,

"where r.aid = a.aid and r.symbol = :v1");

sqlstmt.len = strlen((char *)sqlstmt.arr);

cout << "Enter Symbol: ";

cin >> symbol.arr;

symbol.len = strlen((char *)symbol.arr);

144 Embedded SQL

cout << (char *)sqlstmt.arr << endl;

cout << " v1 = " << symbol.arr << endl;

exec sql prepare S from :sqlstmt;

exec sql declare c cursor for S;

exec sql open c using :symbol;

exec sql whenever not found do break;

while (1) {

exec sql fetch c into :aname,:rating;

aname.arr[aname.len] = ’\0’;

cout << (char *)aname.arr << " "

<< rating << endl;

}

printf("\nQuery returned %d row%s.\n\n",

sqlca.sqlerrd[2],

(sqlca.sqlerrd[2] == 1) ? "" : "s");

exec sql close c;

exec sql commit release;

exit(0);

}

void sql_error(char *msg) {

cout << endl << msg << endl;

sqlca.sqlerrm.sqlerrmc[sqlca.sqlerrm.sqlerrml] = ’\0’;

cout << sqlca.sqlerrm.sqlerrmc << endl;

exec sql whenever sqlerror continue;

exec sql close c;

exec sql rollback release;

exit(1);

}

After connecting to the database, the program assigns the SQL query to a string
variable. The SQL query has a place holder for the security symbol. The user is
prompted for the security symbol for which the ratings are to be retrieved. The
prepare statement is used to create a compiled form of the SQL statement. A cursor
is then declared for this prepared statement. The cursor is opened by providing the
actual value for the place holder in the query. The rows of the cursor are retrieved
one at a time and the ratings are sent to the output stream.

Exercises 145

Exercises
Grade Book Database Problems

3.1 Write an embedded SQL program that prompts the user for the student ID and prints
a report for the student containing information about all the courses taken by the
student and the average and grade obtained by the student in these courses. The
format of the report is shown below:

Student ID: 1111

Student NAME: Nandita Rajshekhar

TERM LINENO CNO TITLE AVERAGE GRADE

---- ------ ------ -------- ------- -----

F96 1031 CSc481 Automata 98.50 A
.
.
.

3.2 Write an embedded SQL program that prompts the user for the term and line number
for a course and prints a course report containing information about the students
enrolled in the course, their scores in each of the components, and their average and
grade for the course. At the end of the report, the total number of A, B, C, D, and
F grades awarded in the course should be listed along with the course average (the
average of the individual student averages). The report should be sorted based on
the student name. The format of the report is shown below:

CSc 481 Automata (LineNo 1585) W98

SID LNAME FNAME EXAM1 EXAM2 HW QUIZ AVG GRADE

2243 Green Tony 76 78 225 100 89.10 A

0213 Jones Pat 60 67 166 94 74.12 C
.
.
.

Total As: 5

Total Bs: 3

Total Cs: 3

Total Ds: 2

Total Fs: 1

Course Average: 78.66

146 Embedded SQL

3.3 Write an embedded SQL program that prints a report containing all courses taught
along with total number of students in each course. The report should also contain
the number of students enrolled in courses per calendar year and must end with a
grand total of all students in all courses. The courses must be sorted according to
the term and calendar year—i.e., the courses for earlier calendar years must appear
before the courses for later calendar years. Within a year, the courses must be listed
according to the term order: winter, spring, summer, fall. You may assume that
the last two characters of the term column contains a two-digit year, and the possible
values of the term column are wXX, spXX, suXX, and fXX, where XX is the two-digit
year. The format of the report is shown below:

Term CNO Course-Title #Students Year-Total

---- ------ ------------- --------- ----------

w97 CSc226 Programming I 24

sp97 CSc227 Programming II 32

f97 CSc343 Assembly Prog 27

83

sp98 CSc226 Programming I 39

f98 CSc343 Assembly Prog 22

61
.
.
.
--

Total number of students: 697

3.4 Write an embedded SQL program that will perform the task of entering student
scores for a given component in a course. The program should first prompt for the
term and line number for the course. It should then list all the components of the
course, request the user to select the component for which the scores are to be
entered, prompt the user for the names of the students enrolled in the course, one
at a time, and read in the scores for each of the students for the selected component.
The program should process these scores by inserting the appropriate row in the
scores table. The program should be robust and should handle all possible error
situations, such as invalid term, invalid line number, invalid component selection,
and invalid scores.

To verify that this program indeed worked, write another embedded SQL pro-
gram that prompts the user for the term, line number, and component name and
prints the scores for all the students for this component.

3.5 Write an embedded SQL program that will perform the task of updating student
scores and dropping students from a course. The program should begin by prompt-

Exercises 147

ing the user for the term and line number of the course. It should then display the
following menu:

(1) Display Students

(2) Display Student Score

(3) Update Student Score

(4) Drop Student from Course

(5) Quit

The Display Students option, when selected by the user, should display the
names of all the students enrolled in the course. The Display Student Score
option, when selected by the user, should prompt the user for the student ID
and component name and then display the student’s score in the component. The
Update Student Score option, when selected, should prompt the user for the
student ID and component name, display the current score, and request the user
to enter the new score. It should then update the database with the new score. The
Drop Student from course option, when selected, will prompt the user for the
student ID and then drop the student from the course (delete the row in the enrolls
table). Since the scores table has a foreign key referring to the enrolls table, the
corresponding rows must first be deleted from the scores table before the student
row is deleted from the enrolls table. The program should be robust and should
handle all possible error situations.

Mail-Order Database Problems
3.6 Write an embedded SQL program that will produce a report containing the ten most

ordered parts during a calendar year. The program should prompt for a year and
then produce a report with the following format:

YEAR: 1997

Rank PNO Part-Name Quantity-Ordered

--

1. 10506 Land Before Time I 98

2. 10507 Land Before Time II 87
.
.
.

10. 10900 Dr. Zhivago 24

--

3.7 Write an embedded SQL program that will produce a performance report for all
employees. The report should contain the number and name of the employee along
with the total sales generated by the employee. The report should also contain the

148 Embedded SQL

hire date of the employee and the number of months from the hire date to the
current date. In addition, the report should list the average sales per 12 months
(called RATING) for each employee. This average can be used to compare the sales
performances of the employees. The report should be sorted in decreasing order of
this average performance rating and should have the following format:

PERFORMANCE REPORT

Dated: 12 April 1998

RANK ENO ENAME HIRED-ON MONTHS TOTAL-SALES RATING

1. 1000 Jones 12-DEC-95 29 2,900 1200

2. 3000 Smith 01-JAN-92 76 6,500 1027

3. 2000 Brown 01-SEP-92 68 4,000 706

3.8 Write an embedded SQL program that will produce a mailing list of customers living
in a given city. The program should prompt the user for a city and then produce the
report. The format of the report is a simple listing of customers and their mailing
addresses, similar to a mailing label program output.

3.9 Write an embedded SQL program that will update an incorrect zip code in the
database. The program should prompt the user for the incorrect and then the correct
zip code. It should then replace all the occurrences of the incorrect zip code by the
correct zip code in all the tables.

To verify that the program did work, write another embedded SQL program that
reads in a zip code and prints all the customers and employees living at that zip code.
This program should be run before and after the previous program is executed in
order to verify the execution of the previous program.

3.10 Write an embedded SQL program that reads data from a text file and updates the
qoh column in the parts table. The text file consists of several lines of data, with
each line containing a part number followed by a positive quantity. The qoh value in
the parts table for the part should be increased by the quantity mentioned next to
the part number. Assume that the last line of the text file ends with a part number of
0 and a quantity of 0. The dynamic SQL statements PREPARE and EXECUTE USING
should be used to accomplish this task.

Investment Portfolio Database Problems
3.11 Write an embedded SQL program that will print the current portfolio for a member.

The program should prompt the user for the member id and then print the current
portfolio in the following format:

Exercises 149

MY PORTFOLIO

Symbol Shares Current Market Purchase Gain %Gain

PPS Value Price

ORCL 100.00 23.25 2325.00 2708.06 -383.06 -14.14

SEG 100.00 30.00 3000.00 3244.62 -244.62 -7.53

Security Value: 5325.00 5952.68 -627.68 -10.54

Cash Balance: 94047.33

Account Value: 99372.33

3.12 Write an embedded SQL program to view the ratings of a particular security. The
program should prompt the user for the security symbol and produce the ratings list
as follows:

Symbol: ORCL

Company: Oracle Corporation

Ratings: Strong Buy (rating = 1) : *****

Buy (rating = 2) : **

Hold (rating = 3) : **

Sell (rating = 4) :

Strong Sell (rating = 5) :

Consensus: 1.67

The number of stars after each rating is the number of analysts rating the start with
that particular rating. The Consensus is the weighted mean of the ratings.

3.13 Write an embedded SQL program that prompts the user for the month and year and
produces a monthly transaction log with the following format:

MONTHLY TRANSACTION REPORT

05/1999

Date Type Symbol Shares PPS Commission Amount

20-MAY-1999 buy ORCL 100.00 26.81 26.80 2708.05

20-MAY-1999 buy SEG 100.00 32.12 32.11 3244.61

3.14 Write an embedded SQL program that prompts the user for a substring of a company
name and prints the price quotes for all securities whose company name has the

150 Embedded SQL

substring. For example, if the user provided Qu as the substring, the following quotes
(in the format specified) must be generated:

Symbol Company Last Sale Ask Bid

--

QNTM Quantum Corp 19.93 20.00 19.93

EAGL Quotes 0.00 37.87 37.75

BMY Bristol-Myers Squibb 66.00 null null

--

Recursive Query Problems
3.15 Recursive queries are easily expressed in rule-based languages such as Datalog or

Prolog. Rules are generally of the form

P :- Q1, Q2, ..., Qn

and are interpreted as follows:

if Q1 and Q2 and ... and Qn then P

Consider the database table

parent(child,childs_parent)

that records information about persons and their parents. The following set of
recursive rules describes certain family relationships based on the parent relation:

sibling(X,Y) :- parent(X,Z), parent(Y,Z), X <> Y.

cousin(X,Y) :- parent(X,Xp), parent(Y,Yp),

sibling(Xp,Yp).

cousin(X,Y) :- parent(X,Xp), parent(Y,Yp),

cousin(Xp,Yp).

related(X,Y) :- sibling(X,Y).

related(X,Y) :- related(X,Z), parent(Y,Z).

related(X,Y) :- related(Z,Y), parent(X,Z).

The rule for sibling says that if two different persons X and Y have the same parent
Z, then X and Y are siblings. The other rules are interpreted in a similar manner. Write
an embedded SQL program that implements the following menu-based application
that queries the family relationship database.

Exercises 151

MENU

(1) Given person, find all siblings

(2) Given person, find all cousins

(3) Given person, find all related persons

(4) Given two persons, test to see if they are

siblings, cousins or related

(5) Quit

3.16 Consider a database describing a network of train connections in a large metropolitan
train system. Assume that there are several lines and that trains operate between
stations on particular lines. A relation, called leg, contains data indicating which
two stations are directly connected without any intermediate stops. This relation
has 3 columns: line, depart, and arrive. A row in this table indicates a direct
connection starting at depart station and arriving at arrive station without stops
on the line named line. A second relation, called interchange, records information
about stations where it is possible to transfer from one line to another. This table
has 3 columns: station, line1, and line2. A row in this table indicates that it
is possible to transfer from line1 to line2 in the station named station. Now,
consider the following rules that define a trip:

trip(L,S,E) :- leg(L,S,E).

trip(L,S,E) :- leg(L,S,I), trip(L,I,E).

trip(L,S,E) :- interchange(I,L,M), trip(L,S,I), trip(M,I,E).

The first rule states that if there is a direct connection between two stations then
a trip can be made between those two stations. The second rule is a recursive rule
which allows trips to be made on the same line and the third rule allows trips to be
made with a possible change of lines. Write an embedded SQL program which will
prompt the user for a starting station and a starting line and print all stations on the
train network to which a trip can be made from the starting station and line.

