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Preface 

Once upon a time, I was quite content to use the excellent text An 
Introduction to the General Theory of Algorithms by M. Machtey and 
P. Young for my graduate theory of computation course. After the pub
lisher declined to reprint the book, I hastily threw together some notes. 
Consequently, much of the organization, notation and actual proofs were 
taken straight from Machtey and Young's book. The notes soon took an 
electronic form. What follows is the result of several semesters' worth of 
embellishments and classroom testing. Over the semesters, many students 
have found typos, suggested clarifications and come up with interesting 
questions that became exercises. This document has been significantly im
proved due to their efforts. I would also like to thank my colleague Bill 
Gasarch for proofreading, discussions, agreements, disagreements and for 
creating a large cardinal number of problems. Ken Regan and the anony
mous referees made several valuable comments. 

The material presented can be covered in a single semester. I have 
resisted the temptation to add material "to be covered, time permitting" 
since what material I would want to add changes from semester to semester. 
If time is tight, or some other pressing topic comes up that must be covered, 
then the material on other models, alternative characterizations of accept
able programming systems, as well as the section on restricted programming 
systems, may be omitted without loss of continuity. 

The title of this book contains the word "recursion," which has several 
meanings, many of which are appropriate. The original meaning of the word 
recurse was "a looking back." Indeed, in this book we look back at the 
fundamental results that shaped the theory of computation as it is today. 
The object of study for most of the book is the partial recursive functions, 
functions that derive their name from the way they are defined, using an 
operator that "looks back" to prior function values. There is also a recursion 
theorem, which enables us to construct programs that can look back on their 
own code. In this treatment, recursion theorems are introduced relatively 
early and used often. 

January 1994 
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Introduction 

The goal of this book is to bring to light certain computational phe
nomena. The features we are interested in pertain to computation and 
not just some particular paradigm of computation such as programming in 
C++ on a workstation running UNIX. As a consequence, the conclusions 
we reach about computation will be valid for today's computing systems 
and the computing systems of the future. In gaining such generality, we 
lose immediate applicability of the results studied to contemporary com
puting practices. The main intellectual benefit to students in this course 
is a broadened intuition about computation. It is assumed that the reader 
has ample experience programming in more than one programming lan
guage. This book will make you think about computing in a new light. 
Some of your current intuitions about computation will be challenged. This 
challenge comes not from radical ideas, but rather from fundamental facts 
concerning computation. What is presented below is not speculation, every 
claim is proven using sufficiently rigorous mathematics. Consequently, the 
reader should have a firm background in discrete mathematics. A course in 
automata theory is also desirable as a prerequisite. 

Most people think about computation in terms of their experiences 
with a real computing system or some formal model of computing. The 
traditional vehicle for studying computation in general is to introduce a 
model and then generalize. Indeed, we will do likewise. Before beginning 
our study, it may be helpful to attempt to define computation indepen
dently of any technical devices. The following definition is intended to be 
used as an intuition - nothing in the remainder of the course depends on 
it. Computation is the movement and transformation of data. The trans
formations are accomplished by moving the data through entities that we 
will call processors. 

Some examples are in order. A personal computer can be regarded as 
a processor, transforming keystrokes, mouse movements, floppy disks and 
electricity from the wall socket into the image you see on the screen. At a 
finer level, each integrated circuit can be viewed as a processor, performing 
some computation by transforming its inputs and moving the result to some 
other integrated circuit. In this case the computation performed is a small 
piece of some larger computation. The above definition of computation is 
applicable at any level of detail. A logic gate is a processor that transforms 
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its inputs. With this general view, computation is ubiquitous. For example, 
your television set is a processor that moves inputs from the controls, the 
cable (or antenna) and the wall socket and transforms them into the vision 
you see on the screen. 

The first section of the book deals with various models of computa
tion. Each of these models implicitly moves and transforms data. A model 
of computation is essentially a programming language. However, one would 
not want to do any actual programming with them. They have few control 
structures, rigid variable names, only simple arithmetic operato:s and no 
built-in functions. The redeeming virtue of these models is that it is easier 
to prove things about them than with a full blown language like Pascal 
with a rich set of control structures. The proofs are complicated enough 
with a syntactically simple language. Using a real programming language 
would only make our arguments notationally extremely cumbersome, with
out adding any additional insight. Three models, each offering a different 
perspective on computing, are presented and shown to have equivalent com
puting power. 

Armed with the intuition that it doesn't really matter which model of 
computation that we use for our study, we will pick a generic one. Programs 
will be referred to by name, functionality and arguments. Freed from deal
ing with the cumbersome details of syntax, we will explore the limitations 
of effective computation in the section on basic recursion theory. Self ref
erence will be introduced as a fundamental and basic tool for constructing 
algorithms. Other tools for manipulating and constructing algorithms will 
be introduced and compared. 

Given firm knowledge about what is and what is not computable, we 
move on to consider the complexity of computing the things that are com
putable. Again our study is quite general. The notion of a complexity mea
sure is formalized. General properties of all complexity measures are shown 
to exist. In this way, we prove results that pertain to complexity when 
viewed as run time and also to complexity viewed as space used. Finally, 
we focus on time and space measures and distinguish the computable func
tions as being either feasible to compute or otherwise. 



1 
Models of Computation 

We begin our study by developing several models of computation, each 
of which reflects all of the features inherent in computation. In an effort to 
simplify the arguments, all artifacts of computation will be absent from our 
models. We will start with existing computational paradigms and remove 
the "bells and whistles" of convenience, arriving at simplified versions of 
each paradigm that contain all the fundamentally important features of the 
original. The simplified versions will be shown to be equivalent in a strong 
sense. This will suggest a model-independent view of computation in terms 
of "programs" computing functions. 

The first artifact of computation that we will dismiss is the notion 
that arguments may be of different types. All our inputs, outputs, tempo
rary variables, etc. will be natural numbers {members ofN). We will argue 
informally that all the other commonly used argument types are included 
solely for convenience of programming and are not essential to computation. 
The argument is based on how computers encode everything into sequences 
of bits. Boolean arguments can be represented by using the first two mem
bers of N, 0 and 1. Floating point numbers, as a consequence of their finite 
representation, are actually rational. Rational numbers are pairs of natu
ral numbers. In the section on coding, we will show how to encode pairs 
of natural numbers as a single natural number. Consequently, members of 
N suffice to represent the rational numbers, and hence, the floating point 
numbers. Natural numbers represent character strings via an index, or po
sition, in some standard list of all strings. For example, a standard list of 
all strings using the alphabet {a ... z} would start by associating 0 with 
the empty string and then numbering the strings in lexicographical order: 
a, b, · · ·, z, aa, ab, · · ·, az, ba, · · ·. 

Analog computation can also be viewed as computing with natural 
numbers. This follows from the observation that any voltage level can 
only be measured in increments determined by the measuring device. Even 
though the voltages are theoretically continuous, all our devices to measure 
voltages render discrete values. For common examples of turning essen
tially analog information into a numeric representation we need look no 
further than the digitally encoded music found in compact disk technology 
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or the digitally encoded images of high definition television and compact 
disk memories. We are now ready to present our first model of computation. 

§1.1 Random Access Machines 

All contemporary computers allow the "random" accessing of their 
memory. An address is sent to the memory which returns the data stored 
at the given address. The name "random access machine" stems from the 
fact that the earlier models were not random access; they were based on 
sequential tapes or they were functional in nature. We will consider these 
models later. As a starting point of our investigation, we will consider a 
model that strongly resembles assembly language programming on a con
ventional computer. The model that we introduce will perform very simple 
operations on registers. Every real-world computer has a fixed amount of 
memory. This memory can be arbitrarily extended, at great loss of effi
ciency, by adding a tape or disk drive. Then the ultimate capacity of the 
machine is limited only by one's ability to manufacture or purchase tapes 
or disks. Not wanting to consider matters of efficiency just yet, our random 
access machine (RAM) will have a potentially infinite set of registers, R1, 
R2, · · ·, each capable of holding any natural number. Notice that we have 
just eliminated main storage and peripheral storage (and their manage
ment) as artifacts of how we (necessarily) perform computations. We will 
be concerned with data, and computation on that data. The issues of input 
and output will not be addressed in any detail. 

RAM programs will be abstractions of assembly language programs in 
the sense that they use a very limited set of instruction types and the only 
control structure allowed is the much maligned branch instruction. There 
is nothing special about our choice of instructions. Among the possible 
choices for instruction sets, the one chosen here is based on some nontech
nical notion of simplicity. RAM programs are finite sequences of very basic 
instructions. Hence, each RAM program will reference only finitely many 
of the registers. Even though the memory capacity of a RAM is unlimited, 
any computation described by a RAM program will access only finitely 
much data, unless, of course, the computation described never terminates. 
In case of a nonterminating computation, the amount of data accessed at 
any given time is finite. Each instruction may have a label, where label 
names are chosen from the list: NO, N1, · · ·. Each instruction is of one of the 
following seven types: 

1. INC Ri Increment (by 1) the contents ofregister Ri. 
2. DEC Ri Decrement (by 1) the contents of register Ri. If Ri contains 0 be

fore this instruction is executed, the contents of Ri remain unchanged. 
3. CLR Ri Place 0 in register Ri. 
4. Ri +--Rj Replace the contents of register Ri with the contents of register 

Rj. The contents of Rj remain unchanged. 



1.1 Random Access Machines 5 

5. JMP Nix If x = a then the next instruction to execute is the closest 
preceding instruction with label Ni. If x = b then the next instruction 
to execute is the closest following instruction with label Ni. The a 
stands for "above" and the b for "below." This unusual convention 
allows for the pasting together of programs without paying attention 
to instruction labels. 

6. Rj JMP Nix Perform a JMP instruction as above if register Rj contains 
aO. 

7. CONTINUE Do nothing. 

Definition 1.1: A RAM program is a finite sequence of instructions such 
that each JMP instruction (conditional or otherwise) has a valid destination, 
e.g., the label referred to in the instruction exists, and the final statement 
is a CONTINUE. 

Definition 1.2: A RAM program halts if and when it reaches the final 
CONTINUE statement. 

Definition 1.3: A RAM program P computes a partial function ¢, of n 
arguments, iff when P is started with x1 , ... , Xn in registers Rl , ... , Rn 
respectively and all other registers used by P contain 0, P halts only if 
¢(xb ... , Xn) is defined and Rl contains the value ¢(x1, ... , Xn)· A partial 
function is RAM computable if some RAM program computes it. 

There is a subtle difference between asserting the existence of a RAM 
program computing some function and actually being able to produce the 
program. Consider, for example, the problem of trying to decide how many 
times the word "recursion" appears as a substring in some arbitrary but 
fixed infinite random string of symbols from the alphabet {a ... z }. No mat
ter how much of the string we examine, we will never know if we have seen 
all of the occurrences of the word "recursion." However, there exists a RAM 
program that will tell us exactly how many occurrences there are. Owing to 
the possibility of there being infinitely many instances of the word "recur
sion" embedded in the infinite random string, we will use the convention 
that a RAM program can signal that there are exactly n repetitions of the 
word "recursion" in the mystery string by outputting n + 1. The output 0 
will be reserved to indicate the situation where there are infinitely many 
occurrences of the substring we are trying to count. Now, for any natural 
number n, there is a RAM program that computes the constant n function. 
One of these programs will tell us exactly how many occurrences of the 
word "recursion" are in the string. Which program we cannot say, so it will 
be impossible to deliver the RAM program that solves our problem. 

Most assembly languages have more powerful arithmetic instructions. 
Recall that our purpose here is not ease of writing RAM programs, but 
rather ease of proving things about RAM programs. As a first example, the 
following program computes the sum of two arguments. 
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Nl R2 JMP N2b 
INC Rl 
DEC R2 
JMP Nla 

N2 CONTINUE 

Exercise 1.4: Show that exponentiation is RAM computable. 

Exercise 1.5: Show that integer division is RAM computable. 

It should be a straightforward, tedious exercise to show that all your 
favorite assembly language instructions have implementations in the RAM 
programming language described above. In fact, not all seven of the in
struction types are necessary. 

Proposition 1.6: For every RAM program P there is another RAM pro
gram P' computing the same function such that P' only uses statement 
types 1, 2, 6 and 7. 

Proof: Suppose P is a RAM program. We show how to transform P into 
the desired P' in steps, eliminating one type of offending instruction at 
each step. First, we eliminate the unconditional jumps of statement type 5. 
Choose n least such that P makes no reference to register Rn. Form RAM 
program P" from P by replacing each "Nk JMP Nix" instruction with the 
following code segment: 

Nk CLR Rn 
Rn JMP Nix 

Next, we eliminate the register transfers of statement type 4. Choose 
m and n least such that P" makes no reference to register Rm or register 
Rn. Let Nc and Nd be two labels not used in P". Form RAM program P 111 

from P" by replacing each "Nk Ri +-Rj" with the following code segment: 

Nk CLR Ri 
CLR Rn 
CLR Rm 

Nc Rj JMP Ndb 
DEC Rj 
INC Ri 
INC Rn 
Rm JMP Nca 

Nd Rn JMP Ncb 
DEC Rn 
INC Rj 
Rm JMP Nda 

Nc CONTINUE 

Finally, we eliminate the register clear instructions. Let Nc be a label 
not used by P 111 • Choose n large enough such that no register Rm is ref
erenced by P 111 for any m ;::::: n. This will guarantee that register Rn will 
initially contain a zero. Finally, form P' from P 111 by replacing each "Nk 
CLR Ri" instruction with the following code segment: 



Nk Ri JMP Ncb 
DEC Ri 
Rn JMP Nka 

Nc CONTINUE 
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This completes the proof of the Proposition. The end of proofs will 
normally be indicated by the symbol ®· 

§1.2 Partial Recursive Functions 
The next model of computation that we will examine resembles pro

gramming in LISP. Actually, it is the other way around - LISP resembles 
the following computation paradigm. We start by defining the base func
tions. 

The class of base functions contains the zero function Z where Z ( x) = 0 
for each x and the successor function S where S(x) = x + 1 for each x. 
The class of base functions also contains the projection functions. For each 
positive n and each positive j ::=; n there is a projection function Uj such 
that Uj ( x 1. ... , Xn) = xi. Essentially, the projection function selects one of 
its arguments. The situation is analogous to the UNIX convention of using 
$1, $2, · · · to represent individual arguments in the programs that we call 
shell scripts. 

The base functions can be combined to obtain other functions. Large 
classes of functions can be obtained in this fashion. We will look at three 
operations for defining new functions. Since these operators map functions 
to functions, they can (and will) be viewed as closure operators. The first of 
these operators is an iteration operator that is analogous to the well-known 
"for loops" of FORTRAN and other subsequent programming languages. 

Definition 1. 7: A function f of n + 1 arguments is defined by primitive 
recursion from g, a function of n arguments, and h, a function of n + 2 
arguments, iff for each x1, ... , Xn: 

f(xl, ... , Xn, 0) = g(xb ... , Xn) 

f(xb ... ,xn, y + 1) = h(xt. ... , Xn, y, f(xl, ... , Xn, y)). 

For the n = 0 case of the above definition we adopt the convention that a 
function of 0 arguments is a constant. 

The recursion of the above definition is "primitive" because the value 
f(xt.···•xn,y) can be determined from the value of f(xb···,xn,z) for 
some z < y. Forms of recursion that are not primitive will be discussed 
extensively later in the book. 

Definition 1.8: A function f of n arguments is defined by composition 
from g a function of m arguments and functions ht. h2, ... , hm, each of n 
arguments iff for each x1, ... , Xn: 

f(xl, ... ,Xn) = g(hl(Xt. ... , Xn), ... , hm(Xt. ... , Xn)). 

The m = 1 case of the above definition yields the traditional composition 
scheme. 
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We can now define a very large class of functions. This class is large 
enough to include all the functions that we can actually compute today. In 
fact, all the functions we are likely to ever be able to compute are included 
in the following class. 

Definition 1.9: The class of primitive recursive functions is the smallest 
class of functions containing all the base functions that is closed under the 
operations of primitive recursion and composition. 

Some examples are now in order. First we will show that the addi
tion function is primitive recursive. We do so in detail. By composition, a 
function h of three arguments is defined that increments its third argument. 

Now the desired function A is defined by primitive recursion: 

A(x,O) = Uf(x) 

A(x,y+ 1) = h1(x,y,A(x,y)). 

A similar exercise in the formalization yields a multiplication function. 
By composition, 

By primitive recursion, 

M(x, 0) = Z(x) 

M(x,y+ 1) = h2(x,y,M(x,y)). 

Division can be obtained by iterating subtraction, which can be ob
tained by iterating a function that simply subtracts 1 from its argument. 
This simple function, called the predecessor function, is defined below. The 
subtraction is "proper" in that no value less than zero can ever be produced. 
By primitive recursion: 

PR(O) = 0 

PR(x + 1) = U'f(x, PR(x)). 

In what follows we will use an informal style of showing that functions 
are primitive recursive. Rather than use a projection function, we will just 
give the desired argument omitting the others. The more conventional infix 
operator "+" will be used so that A(x, y) becomes x + y. Similarly, x will 
be used for multiplication and __:._ will be used for proper subtraction. To 
illustrate this informal style, we define some functions that will be useful 
for testing conditions. 
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sg(O) = 0 

sg(x + 1) = 1 

sg(O) = 1 

sg(x + 1) = 0 

lx-yl =(x-'-y)+(y-'-x) 

E(x,y) = sg(lx- yl) 

l(x,y)=sg(lx-yl) 

The sg and sg functions can be used to turn any function into a func
tion with range {0, 1 }. By interpreting 0 as "false" and 1 as "true" a 0,1 
valued function represents a predicate. Logical predicates that can be rep
resented by 0,1 valued primitive recursive functions are called primitive 
recursive predicates. 

Exercise 1.10: Supply the formal versions of the above definitions. 

Exercise 1.11: Show that rm(x, y) = 'the remainder left after dividing x 
by y' is primitive recursive. 

Exercise 1.12: Show that integer division is primitive recursive. Make, 
and state, a convention about division by 0. 

Exercise 1.13: Show that f(x) ='the largest integer less than or equal to 
y'x' is primitive recursive. 

Exercise 1.14: Suppose that f is primitive recursive. Show that 

is primitive recursive. 

Exercise 1.15: Suppose that f is primitive recursive. Show that 

is primitive recursive. 

Exercise 1.16: Show that iff is primitive recursive then so is g defined 
by 

{
maxi::=:; y[f(xl, ... ,xn,i) =OJ 

g(x1, ... , Xn, y) = 
y+1 

if such ani 
exists 

otherwise. 
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Exercise 1.17: Show that if f is primitive recursive then so is 9 defined 
by 

9(x1, ... , Xn, y) = exists { mini~ y[f(x1, ... , Xn, i) = 0] if such ani 

y + 1 otherwise. 

Exercise 1.18: Suppose that 91,92 and 93 are primitive recursive functions 
of n arguments, and that h1 and h2 are primitive recursive predicates of n 
arguments. Show that f, a function of n arguments, defined as follows is 
primitive recursive: 

{ 
91(x1, · · · ,xn) if h1(x1, · · · ,xn), 

!( ... )- 92(x1,···,xn) ifh2(x1,···,xn)and 
XI, ,Xn - h ( ) not 1 x1, · · ·, Xn , 

93(x1,···,xn) otherwise. 

Exercise 1.19: State and prove an n-ary version of the previous exercise. 
You start with n primitive recursive functions and n -1 primitive recursive 
predicates. The resulting scheme is called course of values recursion. 

Exercise 1.20: Show that the primitive recursive predicates are closed 
under the operations of and, or, not, and implication. 

The primitive recursive functions can be defined over strings directly 
instead of over the natural numbers. For example, consider the following 
definition of the primitive recursive functions over strings of O's and 1's. 
The empty string is denoted by f and plays the role of zero. x denotes 
an arbitrary string of O's and 1's. Juxtaposition denotes concatenation of 
strings. The base functions include E(x) = f instead of Z. The E stands 
for "erase." There are two successor functions: So(x) = xO and S1(x) = xl. 
The projection functions are defined in the same manner as for primitive 
recursive functions over natural numbers. The composition function is also 
defined in the same manner. Definition by primitive recursion is given by 
the following schema: 

/(t:, X2, ... , Xn) = 9(x2, ... , Xn) 

f(y0, X2, ... , Xn) = ho(y, f(y, X2, ... , Xn), X2, ... , Xn) 

f(y1, X2, ... , Xn) = h1(y, f(y, X2, .. ·, Xn), X2, · · ·, Xn) 

In the above case we say that f is defined from 9, ho and h1. 

Exercise 1.21: Show, using the full formalism, that the functions dell and 
con below are primitive recursive: 

dell(x) = { f . 
x w1th the last character removed 

con(x, y) = xy 

Exercise 1.22: Define the primitive recursive functions over variables that 
are pairs of natural numbers. 
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Exercise 1.23: Prove that each primitive recursive function is defined on 
all its arguments. Hint: Use a structural induction over the number of ap
plications of primitive recursion and composition used to define a function. 

As a consequence of the previous exercise, each primitive recursive 
function is defined on all of its arguments. Such functions are called total 
because they are defined on the total possible domain (IN). We are seeking 
an alternative characterization of the RAM computable functions. Notice 
that not all RAM programs halt on all inputs. Below is a simple example 
of a RAM program that never halts. 

Nl INC Rl 
JMP Nla 
CONTINUE 

Hence, there are RAM programs that compute functions that are not 
primitive recursive. Many people would argue that all the functions that are 
actually computed in practice are primitive recursive. The simple example 
above illustrates that there are computable functions that are not primitive 
recursive. This motivates the final operator for producing functions from 
functions. This operator is a "search" operator that is analogous to the 
well-known "while loops" of Pascal and other languages. There is a subtle 
point in the following definition. 

Definition 1.24: A function f of n arguments is defined by minimalization 
from a function h of n + 1 arguments iff f(xl, ... , xn) is the least y such 
that h(x1, ... , Xn, y) = 0 and (the subtle point) h(x1, ... , Xn, z) is defined 
for each z ::::; y. Such a y may not exist, in which case f(xt, ... , Xn) is 
undefined. In any case, we will denote"! defined from h by minimalization" 
by: 

The only effective way of computing a function f defined by minimal
ization from his to first compute h(x1, ... , Xn, 0), then h(xt, ... , Xn, 1), · · ·, 
until the desired value is found. In other words, any calculation of such an 
f must search for the answer, testing each potential value in turn. Conse
quently, there are two ways for such a function f to be divergent. Firstly, 
there may be not be a value of y such that h(xt, ... , Xn, y) = 0. Secondly, 
it may the case that h( Xt, ... , Xn, y) = 0, for some y, but there is also a 
value z < y such that h(xt, ... , Xn, z) is undefined. 

Definition 1.25: The class of partial recursive functions is the smallest 
class of functions containing the base functions that is closed under the 
operations of primitive recursion, composition and minimalization. 
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Definition 1.26: The class of recursive functions consists of all the partial 
recursive functions that are total functions. 

Exercise 1.27: Prove or disprove: There exists a recursive function with 
range {0} that is not primitive recursive. 

Exercise 1.28: Prove or disprove: There exists a recursive function with 
range {0, 1} that is not primitive recursive. 

Exercise 1.29: Does the closure of the primitive recursive functions under 
the operation of minimalization yield precisely the partial recursive func
tions? 

The partial recursive functions appear to be quite different from the 
RAM computable functions. The RAM programs suggest an imperative 
implementation while a functional programming approach is more suitable 
for the partial recursive functions. We will prove that the RAM computable 
functions are precisely the partial recursive functions. Toward that goal, we 
present our first theorem. 

Theorem 1.30: Every partial recursive function is RAM computable. 

Proof. This proof is a structural induction argument. For the base case, 
we show that the RAM computable functions contain the base functions. 
The inductive step(s) start with some partial recursive functions that are 
assumed to be RAM computable and show that if they are combined via 
the operations of primitive recursion, composition and/ or minimalization, 
then the resultant function is RAM computable. The induction is over the 
implicit structure of the partial recursive functions. Each partial recursive 
function, '1/J, is defined in terms of other partial recursive functions. Then 
'1/J will follow the functions used to define it in the ordering of the partial 
recursive functions. Hence, an ordering of the partial recursive functions is 
induced by their definitions. The base functions form the beginning of the 
ordering. The implicit induction hypothesis assumes that all functions prior 
to '1/J in this unspecified ordering are RAM computable. The induction step 
then uses the definition of '1/J to show that '1/J is RAM computable. There 
will be a case for each possible way that '1/J could have been defined from 
partial recursive functions that appear before '1/J in the ordering. 

The proof makes no explicit reference to the time or space utilization 
of the RAM programs that are constructed. However, a careful reading of 
the proof will reveal that the number of steps needed by the RAM programs 
constructed in the proof is proportional to the number of function invoka
tions required to unravel the partial recursive definition. The constant of 
proportionality is also small. The space utilized to store the variables will 
be the same in both models. Further discussions of resource utilization will 
be postponed to later chapters. 



A program for Z is: 

NO CLR Rl 
CONTINUE 

A program for S is: 

NO INC Rl 
CONTINUE 

A program for Uj is: 

NO Rh-Rj 
CONTINUE 
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Hence, all the primitive recursive base functions are RAM computable. 

This completes the base case of the structural induction. Next, we proceed 

to show that· if we combine only functions that we know are RAM com

putable using the rules of constructing partial recursive functions, then the 

result will be a RAM computable function. Hence, there will be one induc

tive clause for each technique of constructing partial recursive functions. 

We start with the rule of primitive recursion, and then proceed to consider 

composition and minimalization. 

Suppose that f, a function of n + 1 arguments, is defined by primitive 

recursion from g and h. Suppose P9 is a RAM program computing g and Ph 

is a RAM program computing h. Suppose that neither P9 nor Ph references 

any register Rj for j ;::: k. Let Nl be a label that is not used in Ph. Below 

is a program computing f. 
The program initially saves the arguments in registers that are not used 

by either P9 or Ph and initializes an iteration counter. The first interesting 

step of the computation is to compute g on the given arguments. This is 

done by inserting a copy of P9 in the new program. Then the program below 

starts executing the main loop. The test for the termination condition is 

done first. Each pass through the loop starts with a restoration of arguments 

so that when Ph is run, its inputs will be found in the first few registers 

and all the other registers that it uses will contain 0. The iteration counters 

are updated, as part of the argument formation for the next iteration. 
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Rk + 1 +-Rl save arguments 

Rk +n +-Rn 
CLR Rk+n+1 initialization of 

iteration number 
Rk +-Rn+ 1 count the number of 

iterations (y + 1) 
Pg compute g(x1, ... , Xn) 

Rk + n+ 2 +-Rl save function value 
Nl Rk JMP N2b test for termination 

Rl+-Rk + 1 restore arguments 

Rn +-Rk +n 
Rn + 1 +-Rk + n + 1 
Rn + 2 +-Rk + n + 2 
CLR Rn+3 clear scratch registers 

CLR Rk-1 
ph compute h(x1, ... , Xn, 

Rk + n + 1,Rk + n + 2) 
Rk +n+ 2 +-Rl save function value 
INC Rk + n + 1 prepare for next iteration 
DEC Rk update counter 
JMP Nla 

N2 CONTINUE 

Hence, the result of combining RAM computable functions by primitive 
recursion will always result in a RAM computable function. Now, continuing 
with the inductive step, we proceed to consider combining RAM programs 
by composition. 

Suppose f, a function of n arguments, is defined by composition from 
g and ht. ... , hm. Let P9 , Pt, ... , Pm be RAM programs computing g, 

h 1, ... , hm respectively. Suppose that no register Rj is referenced by any 
of those programs for any j > k. The following RAM program computes f. 

As before, the program starts by saving the arguments. The P1 is 
computed, and the result is saved in a register that will not be used by 
any of the other programs P2 , ••• , Pm. One by one, the arguments are 
restored and relevant registers are cleared before each of the programs P2, 
... , Pm is run. After each program is executed, the result is stored in a 
register that will not be referenced by the other programs that are part of 
the composition. When all the subcomputations are completed, the results 
are gathered to be in position for the running of program P9 • 



NO Rk+ 1+--Rl 

Rk+n+-Rn 
pl 
Rk+n+ 1+--Rl 
Rl+-Rk+ 1 

Rn +-Rk+n 
CLR Rn+ 1 

CLR Rk 
p2 
Rk+n+2 +-Rl 

Rl+-Rk + 1 

Rn+-Rk+n 
CLR Rn+ 1 

CLR Rk 
Pm 
Rk+n+m+-Rl 
Rl+-Rk+n+ 1 

Rm+-Rk+n+m 
CLR Rm+ 1 

CLR Rk 
Pg 
CONTINUE 
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save arguments 

compute h1(x1, ... ,xn) 
save result 
restore arguments 

clear scratch registers 

compute h2(xb ... , Xn) 
save result 

restore arguments 

clear scratch registers 

compute hm(Xb ... , Xn) 
save result 
set up arguments to 

compute g 

clear scratch registers 

compute g 

Hence, if RAM computable functions are combined by composition, the 
result is a RAM computable function. The proof is completed by considering 
the use of RAM computable functions in minimalizations. Suppose that f, 
a function of n arguments, is defined by minimalization from h. Let Ph be 
a RAM program computing h. Again, let k be such that no register Rj, for 
j > k, is referenced in Ph. Let N1 be a label that is not used in Ph. The 
following program computes f. As before, the initial arguments are saved 
in registers that won't be used by program Ph. The main loop is entered. 
The first part of the loop is to restore the arguments and clear all the other 
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registers that program Ph will access. The code for program Ph is executed 
and the result is saved. Finally, the loop ends with a test for termination. 

Rk + 1-Rl 

Rk+n-Rn 
CLR Rk+n+ 1 

Nl Rl-Rk + 1 

Rn-Rk+n 
Rn + 1 -ak + n + 1 
CLR Rn+2 

CLR Rk 
ph 
Rl JMP N2b 
INC Rk+n+ 1 
JMP Nla 

N2 Rl-Rk + n + 1 
CONTINUE 

save arguments 

initialize search variable 
restore arguments 

set search variable 
clear scratch registers 

compute h(xl. ... , Xn, Rk + n + 1) 
check if done 
increment search variable 
try again 

To show that the RAM computable functions are precisely the par
tial recursive functions, we must show that every RAM program com
putes a partial recursive function. To do so, we will encode RAM programs 
as natural numbers and devise a partial recursive function rp such that 
rp(x, Y1. ... , Yn) is the value obtained by running the xth RAM program on 
arguments Y1, ... , Yn· As a bonus, the development of the coding scheme 
will yield some valuable insights about computation. 

§1.3 Pairing and Coding 

A pairing function is a one-to-one, invertible mapping from pairs of 
natural numbers onto IN. We will develop primitive recursive functions ( ·, ·), 
11'1 and 11'2 such that for any x and y, 71'1 ( (x, y)) = x and 71'2 ( (x, y)) = y. 
Below is a picture of how we will map pairs of natural numbers onto the 
natural numbers. 
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0 1 2 3 4 

0 0 2 5 9 / 

1 1 4 8 / 

2 3 7 / 

3 6 / 

/ 

The above picture suggests the following enumeration of pairs of nat
ural numbers: 

(0,0),(1,0),(0,1),(2,0),(1,1),(0,2),(3,0), ... 

----~ -----Qth 1"' 

counterdiagonals 

The counterdiagonals refer to tracing the counterdiagonals of the above 
diagram replacing each number with the pair that it represents. Notice that 
on the nth counterdiagonal there are only pairs (x, y) such that x + y = n. 
Furthermore, all the pairs (x, y) such that x + y = n are found on the nth 
counterdiagonal. There are n+ 1 pairs on the nth counterdiagonal. Suppose 
x + y = n. The pair ( x, y) is the y + 1st pair on the nth counterdiagonal. 
Hence, 

(x, y) = 1 + 2 + ... + (x + y) + y. 

Clearly, this is a primitive recursive function. 
To define the inverse functions 1r1 and 1r2 we employ the auxiliary 

function cd such that cd( n) is the number of the counterdiagonal on which 
the nth pair lies. The first entry on the counterdiagonal containing the nth 
pair is (cd(n), 0). The key to this auxiliary function is the observation that 
nand n+ 1lie on the same counterdiagonal iff n+ 1 < (cd(n) + 1, 0). Hence, 

cd(O) = 0 

cd(n + 1) = cd(n) + ((n + 2)..:. (cd(n) + 1, 0)). 

Since 1r2(n) is the position of the nth pair on the cd(n)th counterdiagonal 
we have: 

1r2(n) = n..:. (cd(n), 0) 

Recall that 1r1(n) + 1r2(n) = cd(n). Hence: 

1r1(n) = cd(n) ..:.1r2(n). 

Clearly, (·, ·), 1r1 and 1r2 are primitive recursive. 
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Exercise 1.31: Give full formal primitive recursive definitions of(·,·), 1r1 
and 1r2. 

Exercise 1.32: Give a closed form expression for (·, -). 

Exercise 1.33: Show that (x, y) ~ x and (x, y) ~ y, for all x and y. 

Once we have a pairing function, it is an easy matter to devise one
to-one and invertible codings from n-tuples of natural numbers onto IN. 
For example (x, y, z) denotes (x, (y, z) ). Since 0 decodes to the pair (0,0), 
(xb ... , Xn, 0) = (xb ... , Xn, 0, 0) = (xb ... , Xn, 0, 0, 0). Notice that if ann
tuple is encoded into some number x and more than n values are extracted 
from x then the decoding functions are still defined. This makes it possible 
to define a function II of three arguments such that if n ~ 2, 1 ~ i ~ n, 
and (zb···,zn) = x then II(i,n,x) = Zi· 

Exercise 1.34: Show that the function II defined above is primitive recur
sive. 

Exercise 1.35: Define a primitive recursive function F as follows: 

F(x,y) = II(y+ 1,1r1(x) + 1,1r2(x)). 

Now define a sequence of partial recursive functions as: 

dx(Y) = { F(x, y)- 1 if 0 < F(x, y) andy< 1r1(x) + 1, 
undefined otherwise. 

Show that the sequence of functions do, d1, · · · contains all the partial 
recursive functions with finite domain and that if dx = dy then x = y, for 
any values x andy. 

A very important observation can now be made. Since any number 
of arguments can be unambiguously coded into a single natural number, 
having multiple arguments to a program (or function) is a matter of con
venience and not essential to the computation. Just as multiple argument 
types turned out to be an artifact of computation, so are the number of ar
guments. The important ramification for our study of computation is that 
we may assume without loss of generality that all the functions we are in
terested in computing are functions of a single argument. This will greatly 
simplify our proof that every RAM computable function is partial recursive 
and proofs of other, deeper, results yet to come. 

We now describe how to code a RAM program into a single integer. To 
begin, the coding of individual instructions is described. There are only five 
types of instruction to consider. The instruction schemes and their codes 
are given in the table below: 

Ni INC Rj 
Ni DEC Rj 
Ni CONTINUE 
Ni Rj JMP Nka 
Ni Rj JMP Nkb 

coded as (1, i, j, 0) 
coded as (2, i, j, 0) 
coded as (3, i, 1, 0) 
coded as (4, i, j, k) 
coded as (5, i, j, k) 
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If the RAM program we are trying to encode does not have labels for 
each instruction, then supply each unlabeled instruction with the least label 
that is not used by the original program. It is now easy to define primitive 
recursive functions giving type, line label and the register referenced for 
any instruction. If the instruction is a JMP instruction, then there is a func
tion giving the destination of the jump. Suppose x is the coding of some 
instruction. 

Typ(x) = JI(1,4,x) 

Nam(x) = JI(2,4,x) 

Reg(x) = 1I(3,4,x) 

Jmp(x) = 1I(4,4,x) 

It is possible to tell if a given x encodes an instruction. There is a 
primitive recursive predicate I nst( x) that is true iff x encodes an instruc
tion. Informally, Inst(x) is true iff 1 ::::; Typ(x) ::::; 5 and 1 ::::; Reg(x) and 
Typ(x) ::::; 3 implies Jmp(x) = 0 and Typ(x) = 3 implies Reg(x) = 1. 

Exercise 1.36: Give a primitive recursive definition of Inst. 

Let P be a RAM program containing only instructions of the above five 
types. Say P = h, ... , In. Let P denote the code for program P, similarly 
for instructions. Then, 

Useful primitive recursive functions giving the length, program part and 
individual instructions of some P = x are defined as: 

Ln(x) = 17(1,2,x) 

Pg(x) = 17(2, 2, x) 

Line(i,x) = JI(i,Ln(x),Pg(x)) 

As was the case with instructions, there is a primitive recursive predi
cate that is true of a given x iff there is some RAM program P such that 
P = x. Prog(x) is true iff 

1. Every line of Pg(x) is a valid instruction, and 
2. The last instruction of Pg(x) is a CONTINUE, and 
3. Every JMP instruction has a destination label on some instruction of 

Pg(x). 

Exercise 1.37: Formally show that Prog(x) is a primitive recursive pred
icate. 

To simulate the execution of a RAM program with a partial recursive 
function we need to encode the contents of the registers. Suppose RAM 
program P never makes reference to any register Ri for any i > n. Let r i 
denote the value held by register Ri. Initially, ri will be 0, for i > n. No 
execution of P will modify any register Ri, fori> n. Hence, 

(rt, ... ,rn,O,O, ... ,O) = (rt, ... ,rn,O). 
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To unambiguously code all the registers into a single natural number, we 
need only produce a bound on n, based only on the value of P. This bound 
is supplied by the properties of our pairing function and the observation: 

Reg(Line(i,x))::::; Line(i,x)::::; Pg(x)::::; x. 

As a consequence of our coding of RAM programs we can make an 
observation that will turn out to be fundamental. There is a list, Po, P1, 
... , of all the RAM programs and nothing but RAM programs. If Prog( i) 
is true, then Pi is the RAM program P such that P = i. If Prog( i) is false, 
then Pi is some innocuous program that never halts on any input. 

§1.4 Simulating an Execution of a RAM Program 

Recall that we started encoding RAM programs so as to be able to 
show that every RAM computable function is partial recursive. In what 
follows, x will denote P for some RAM program P and y will denote the 
contents of P's registers at some point in the simulation. 

Proposition 1.38: Suppose Pis a RAM program, x = P, and i is such 
that 1 ::::; i::::; Ln(x). Then the following functions are primitive recursive: 

1. N extline( i, x, y) is the number of the next instruction executed after 
the ith instruction of P is executed with the contents of the registers 
coded by y; 

2. Nextcont(i,x,y) is the code of the register contents after executing 
the ith instruction of P with register contents coded by y; 

3. Comp(x, y, m) = (i, z) where after running program P for m steps 
starting with register contents coded by y, i is the number of the next 
instruction to be executed and z codes the contents of the registers. 

Proof. 
( 1) In the event that the ith instruction is not a JMP instruction we 

know that Nextline(i,x,y) = i + 1. Suppose Line(i,x) encodes a JMP in
struction. Then it must be that 4 ::::; Typ( Line( i, x)) ::::; 5 and the contents 
of the register that is tested is II(Reg(Line(i,x)),x,y). If this register con
tains a nonzero value, then again N extline( i, x, y) = i + 1. If the jump is 
"above" then Nextline(i,x,y) is maxj::::; i such that [Nam(Line(j,x)) = 
Jmp(Line(i,x))]. If the jump is "below" then Nextline(i,x,y) is mini< 
j ::::; Ln(x) such that [Nam(Line(j,x)) = Jmp(Line(i,x))]. Notice that 
the search for j is bounded above. The upper bound serves to contain the 
functions N extline within the primitive recursive functions. See exercise 
1.16. 

Exercise 1.39: Formalize the definition of N extline. 
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Notice that as a nice consequence of the definition of N extline is that 
if the ith instruction executed is the final CONTINUE then Nextline(i, x, y) > 
Ln(x). 

(2) Two auxiliary primitive recursive functions are needed: Add(j, x, y ), 
the (coded) result of incrementing Rj in the group of registers coded by 
y, and Sub(j, x, y), the analogous function for decrements. The parameter 
x serves as bound on the number of registers coded by y. Consequently, 
Sub(j, x, y) is the least z ~ y such that II(j, x, z) = II(j, x, y) ...:... 1 and for 
each k ~ x, if k =/; j then II(k,x,z) = II(k,x,y). Finding a bound on size 
of the code for the registers after an increment is a little more difficult. If 
y codes a group of (at most x) registers, then by the monotonicity of the 
pairing function, y is larger than the number stored in any of the registers. 
So y + 1 will be a value that is at least as large as any value that is stored 
in the registers after one of them is incremented. Consequently, a bound on 
the size of the coded register contents after an increment is given by: 

(J1 + 1, ... ,y + 1). 
"' x times 

Using the above bound suggests a search strategy to be used by Add that 
is similar to the one used by Sub. 

Exercise 1.40: Give formal definitions of Add and Sub. 

Now, 

{ 
Add(Reg(Line(i,x)),x,y) 

Nextcont(i,x,y) = ~ub(Reg(Line(i,x)),x,y) 

(3) The final definition needed is simply: 

Comp(x, y, 0) = (1, y) 

Comp(x, y, m + 1) = 

ifTyp(Line(i,x)) = 1 
ifTyp(Line(i,x)) = 2 
if Typ( Line( i, x)) ~ 3. 

(Nextline(1r1(Comp(x, y, m)), x, 1r2(Comp(x, y, m))), 

N extcont( 1r1 ( Comp( x, y, m), x, 1r2( Comp( x, y, m))))). 

Only two more pieces are needed to complete the simulation. These 
are the initial register contents and an indication of how many steps to 
simulate. Since we need only consider functions of a single argument (say 
y), the first piece is easy: (y,O). However, RAM program P may never halt 
on input y. Consequently, our calculation of how many steps to simulate 
will be given by a partial, not primitive, recursive function: 

End(x,y) = JLm[7r1(Comp(x,y,m)) = Ln(x)]. 

The result of running the xth RAM program on input y is given by: 
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1/J(x,y) = 1r1(1r2(Comp(x, (y,O),End(x, (y,O))))). 

Some peculiar results may come out of trying to evaluate 1/J(x, y) if x 
does not code a RAM program. To rectify this we define a partial recursive 
function of a single argument thus: 

{ 1/J(x, y) if Prog(x), 
if>univ( (x, y)) = j (undefined) otherwise. 

Theorem 1.41: Every RAM computable function is partial recursive. 

Proof. Suppose f is a RAM computable function. Then there is a RAM 
program P computing f. Let P = x. Then f(y) = if>univ(x, y), for all y. 
Hence, f is partial recursive. ® 

Recall that every partial recursive function is RAM computable. Then 
there is a RAM program computing if>univ· This program is universal be
cause on input (x, y), it produces the result of running RAM program Px on 
input y. If one were to build a hardware device implementing the universal 
RAM program, one would have a machine capable of executing any RAM 
program. This machine would input an encoding of the RAM program that 
it was to execute, e.g., the universal RAM program is a blueprint for a 
stored program computer. Another pleasant ramification of our definition 
of if>univ is the following: 

Theorem 1.42: (Normal Form) There exist primitive recursive functions 
g and h such that for every partial recursive function f, there is an i such 
that: 

f(x) = g(x, i, ILY[h(x, i, y)]). 

Exercise 1.43: Provide a proof for the above theorem. 

Exercise 1.44: Find a RAM program that takes its input (i, j) and outputs 
the code for a program P (P) that behaves as follows: P takes its input 
x and simulates program Pi on input x. If that computation converges, 
then P outputs the result of the computation Pj(Pi(x)). Is the function 
computed by your RAM program primitive recursive? 

§1.5 Turing Machines 

The first person to notice the existence of "universal programs" was 
Alan Turing, a man many consider the founder of computer science. He 
worked with a model that is very different from any contemporary com
puting paradigm. The simplicity of his model of computation has made 
it a popular base for the study of computational complexity where time 
is counted as the number of steps executed. Turing based his model on 
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an analysis of how people perform calculations. Using long division calcula
tions as an example, Thring reasoned that any calculation proceeds in steps 
where in each step a single symbol is modified based on some "history" (or 
retained information) of the prior steps of the computation. The next step 
of the computation always involves a symbol adjacent to one just subjected 
to modification. 

The various symbols in a human hand calculation appear on a (two 
dimensional) piece of paper. The multiple dimensionality of the storage 
medium was recognized by Thring to be an artifact and not crucial to the 
computation. With a little more effort, we can, in principle, arrange the 
storage to be a linear list of symbols. The advantage of displaying symbols 
in multiple dimensions is clarity with respect to human calculation. When 
performing a long division by hand, the divisor is typically displayed to the 
left of the dividend. The answer is accumulated, one digit at a time, above 
the dividend. The space below the dividend is used for the subtractions 
that implement the division. Over the centuries, this has proven to be an 
arrangement that facilitates the implementation of long division by humans. 
Having a computer take advantage of such a simple spatial orientation of 
data is still considered a difficult problem. Consequently, the memory of a 
Thring machine is a list of symbols that is maintained on a tape that is 
just a one-dimensional, potentially infinite, sequence of cells, each of which 
contains a single symbol. The symbols are from some alphabet, which is 
just a finite set of recognized characters. A marker is maintained indicating 
the symbol currently under examination. The history, or information "re
membered" by the computation, is modeled by states. Each state is used 
to encode some finite amount of remembered information. We proceed with 
a formal definition of a Turing machine and then illustrate how it "com
putes." 

Definition 1.45: A Turing machine is composed of an alphabet E that 
includes some symbol designated as a "blank," a finite set of states S, a 
distinguished initial state so E S, and a program consisting of a finite set 
of quintuples of the form Sil7ml7nDSj where Si and Sj are members of S, 
Urn and Un are members of E, and DE {L, R}. 

Let M be a Thring machine. M starts in state s0 with its input on a 
tape just large enough to accommodate it. The symbol designated by the 
pointer (the scanned symbol) is the leftmost symbol of the input. If at any 
point, the M attempts to move off the left or right end of the tape, another 
cell containing a blank is affixed to the appropriate end of the tape. Suppose 
M is in state Si scanning symbol am. M searches its program for a quintuple 
starting with "siam." Suppose M finds Sil7ml7nDSj· M then replaces Urn 

with Un and enters state Sj. If D = L, then M completes the instruction 
step by moving the pointer to the scanned symbol to the adjacent cell to 
the left. If D = R, M moves to the right instead. M halts when it enters 
some state Si scanning am for which there is no quintuple starting with 
"siam." The result of the computation (output) is the leftmost consecutive 
string of nonblank characters. 
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Definition 1.46: Suppose M is a Turing machine with states S, initial 
state s0 , symbols E, and quintuples Q. A configuration of M is a string of 
symbols from E U S containing exactly one symbol from S. 

The idea of a configuration is to represent the status of a computa
tion of a Turing machine. If the input to a Turing machine is the string 
"x1x2 · · · Xn" then the initial configuration would be "soXt · · · Xn" indicat
ing that the machine is in state so and scanning the symbol Xt· In general, 
the configuration "x1 · · · XiSkXj · · · Xn" represents the situation where the 
string on the tape is "x1 · · · Xn" and the Turing machine is in state Sk scan
ning the symbol xi. Configurations play a fundamental role in discussing 
Turing machine computations. Sometimes, configurations are also called 
instanteous descriptions. 

If for each state Si and symbol am there is at most one quintuple 
starting with siam, then Miscalled deterministic. Otherwise, Miscalled 
nondeterministic. A nondeterministic Turing machine is free to choose any 
matching quintuple to apply. 

Previously, we concluded that it suffices to study the computation of 
functions with domain and range IN. Now we seem to be talking about 
computation over strings. For the purposes of discussion, fix some alphabet 
for all computations. An alphabet with 0,1, a blank and another delimiter 
will suffice, although the full ASCII alphabet may be more convenient to 
program. Suppose the alphabet that we just chose has k symbols. Then 
each finite string of symbols from the alphabet can be viewed as a base k 
integer. The symbols of the alphabet are used in place of the characters 0, 
1, 2, ... k- 1. 

Exercise 1.47: Develop the details of coding of all strings over some al
phabet to and from the natural numbers. 

Definition 1.48: A function t/J :IN ----tIN is Thring computable iff there is 
a Turing machine that when started with a character string representing x 
on its tape halts iff t/J(x) is defined. If the Turing machine halts, a string 
encoding the value of t/J(x) is the only nonblank entry on the tape. 

By way of example, we will show that the successor function is Turing 
computable. Suppose that all inputs are in binary notation. The alphabet 
we use contains 0, 1, and B (the blank). so will be the initial state. The 
other states are the ones referenced by the following quintuples. 

soOORso 
sollRso 
soBBLst 
St10Ls 1 

St01Ls2 
s1B1Rs2 

find the end of the input 

found the end 
increment, bit by bit 

found the left end of the tape 

Exercise 1.49: Modify the above Turing machine so that, in addition to 
incrementing, it also halts scanning the leftmost symbol of the output. 
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The programming of Thring machines is rather tedious. The exercise 
becomes somewhat easier by using a state transition diagram to represent 
a Thring machine. Suppose M is a Thring machine. The state transition 
diagram of M is a collection of circles, called nodes, and arrows connecting 
the circles, called arcs. There is one node for every state of M. There is an 
arc from Si to Sj labeled 'am, an, D' iff M has a quintuple SiamanDSj. The 
node corresponding to the initial state is designated by an unlabeled arc, 
without a source node, to the initial node. 

Exercise 1.50: Show that addition is Thring computable. Devise your own 
alphabet and coding of integers. 

Exercise 1.51: Devise a coding scheme to encode any Thring machine 
program into a string of symbols. 

Exercise 1.52: Show that every Thring computable function is partial 
recursive. 

Exercise 1.53: Show that every partial recursive function is Thring com
putable. 

Exercise 1.54: Define a Thring machine with a two-dimensional "tape." 
Hint: define a configuration in such a way as to make the description of 
how the machine operates easy. 

There are several possible embellishments that one can make to the 
basic Thring machine we have defined. One such popular enhancement is 
to allow the Thring machine to view more than one symbol at a time via 
multiple tape pointers. These pointers are typically called heads. 

Exercise 1.55: Define formally what a k-head Thring machine is. Define 
what a configuration is, and how such a machine computes a function. 
Explain informally (but talk about tapes, heads, etc.) how to, given a k
head Thring machine, construct a 1-head Thring machine that computes the 
same partial function. If the original machine had n states, then (roughly) 
how many states does your machine have, and roughly how much time does 
it take to simulate (compared to the time on the old machine). 

One of 'lUring's motivations was to define precisely the algorithmically 
(effectively) computable functions. He proposed what we now call the 'lUr
ing computable functions. The definition of the partial recursive functions 
grew out of a similar goal. There were other proposals for formulating the 
effectively computable functions. These include functions computed by Post 
machines, functions computable by Markov algorithms (similar to Snobol 
programs), functions definable in the lambda calculus, and the Herbrand
G6del computable functions. 

All these various formalisms were shown to capture exactly the same 
class of functions. Furthermore, given any two formalisms, it was shown how 
to effectively transform programs in one formalism to equivalent programs 
in the other formalism. Recall that we have shown that the partial recursive 
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functions are precisely the RAM computable functions. Hidden in our proof 
was an algorithm to transform partial recursive function definitions into 
RAM programs, and vice versa. These led to the formulation of what is 
known as Church's Thesis. (Sometimes this is called the Church-Turing 
Thesis.) 

The partial recursive functions are precisely the effectively com
putable functions. 

The thesis can never be proven. That would require a formal definition 
of "effectively computable" and that is precisely what the thesis says exists. 
It would be possible to refute Church's thesis. What is required is to exhibit 
a function that is effectively computable but is not partial recursive (or 
RAM computable, or Turing computable). No one has been able to do this, 
despite extensive study of the class of partial recursive functions. 

Church's thesis will be used frequently in this course. Drawing on our 
programming experience, we will be able to say that a function is clearly 
computable, and hence, by Church's thesis, it is partial recursive. 

A final note on the various models of computation mentioned above. 
The translation from one model to another is generally very efficient. Usu
ally the translated program is of a size bounded by a small polynomial of the 
size of the initial program. Furthermore, the complexity of the translated 
program is within a (usually small) polynomial factor of the complexity of 
starting program. A discussion of the complexity of programs and functions 
will come later, after we codify a most succinct model of computation and 
prove some fundamental properties of that model. 

§1.6 Some Other Models 
We briefly consider some of the other models proposed to capture the 

class of effectively computable functions. The first, known as the Herbrand
GOdel model of computability, is a formalism that closely resembles the 
mathematical style of defining a function in terms of itself. The importance 
of this is that it is source of the word "recursion" in recursive function 
theory, a topic we will cover in the next chapter. 

Suppose that rp denotes an unknown function, t/J1, ... , tPk are known 
functions and we are given k + 1 equations relating the unknown function 
to the ones that are known. Consider various possible ways of substituting 
the 1/J's and rp for variables in any of the equations under consideration. 
By equating certain pairs of the resulting expressions, a set of functional 
equations is created. 

Thus we might have 

rp(x, 0) = tPl(x), 
rp(O, y + 1) = t/J2(x), 

rp(1, y + 1) = tP3(x), 
rp(x + 2, y + 1) = tP4(rfJ(x, y + 2), rp(x, rp(x, y + 2))). 
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If it turns out that the set of equations, such as the one above, has 
a unique solution for </>, then we say that </> is a recursive function. To 
make sure that the set of functional equations has a unique solution, we 
will impose some restrictions. Firstly, the left-hand side of each of the given 
functional equations defining </> shall be of the form 

</>(tPil(xb ... ,xn),t/Ji2(Xl, ... ,xn), ... ,t/Ji!(Xb ... ,xn)). 

The second restriction (as stated below) is equivalent to the condition 
that all possible sets of arguments ( n 1, ... , n1) of </> can be so arranged that 
the computation of the value of</> for any given set of arguments ( n 1 , ... , n1) 
by means of the given equations requires knowledge of the values of </> only 
for sets of arguments that precede (n17 ••• , n1). 

From the given set of functional equations, we define inductively a set 
of derived equations: 

(1) Any expression obtained by replacing all the variables of one 
of the given equations by a member of IN is a derived equation. 

(2) If k1, ... , kn E IN and tPij(kb ... , kn) = m then 
tPij(kb ... , kn) = m is a derived equation. 

(3) If t/Jij ( k1 , ••. , kn) = m is a derived equation, the equality ob
tained by substituting m for an occurrence of t/Ji3(k1, ... , kn) 
in a derived equation is a derived equation. 

( 4) If</>( k1, ... , k1) = m is a derived equation where k1, ... , k1, m E 

IN, the expression obtained by substituting m for an occur
rence of </>(kl, ... , k1) on the right-hand side of a derived equa
tion is a derived equation. 

Our second restriction can now be stated. For each k1 , ... , k1 E IN there 
is a unique m such that </>(kb ... , k1) = m is a derived equation. 

If one takes Z(x) = 0, S(x) = x + 1 and projection functions 
Pt(xb ... , Xn) = xi as the only initially given functions, then the above 
constitutes what is known as Herbrand-Godel model of computability, 
defining the H-G computable functions. 

For example, below is a system of equations defining a function M that 
produces the result of multiplying its arguments: 

g(x,O) = x 

g(x,S(y)) = S(g(x,y)) 

M(x,O) = 0 

M(x,S(y)) = g(M(x,y),x). 

Exercise 1.56: Prove that the H-G computable functions include all the 
partial recursive functions. 
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As a final example of other models of computation, we present one that 
vaguely resembles a contemporary programming language. While modern 
programming languages have fancy constructs, the language below is ex
ceptionally simple. Consider a programming language, that we will call 
QUAIL, where all the variables stand for natural numbers. The variable 
will be chosen from the list v17 v2 , • • •• The BNF for the language is very 
simple: 

(stmt) :=clear (var) 

I increment (var) 

I decrement (var) 

I vhile (var) =/= 0 do (stmt) 

I (stmt); (stmt). 

For an input/output convention, assume that the inputs are preloaded 
in v17 • • ·, Vn and that the output is to be left in v1 when the computation 
finishes. The statements of the program are executed in sequential order, 
except as indicated by "while" constructs. 

Exercise 1.57: Show that the language QUAIL can express exactly the 
Turing computable functions. 

§1. 7 A Representation for Programs 

From the above comments, it seems that it does not matter which 
formalization of computable functions we choose for our study of the theory 
of computing. We will choose a generic one. In the next section, we will 
essentially give axioms for our generic model of computing. Here we give a 
pictorial notation for our generic programs. This representation gives the 
name of the program, its argument list, its output and the indication of the 
algorithm used. 

NAME: (argument list) 

ALGORITHM 

output 

For example, the universal RAM program developed above would be 
represented as: 
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univ: (P,x) 

Comp: (P,x,w) 

z 

y 

Another handy notation for expressing functions is the lambda nota
tion. Ax, y[x + y] denotes a function of two arguments, x and y, which 
evaluates to the sum of the arguments, e.g., the addition function. In gen
eral, the string between the A and the "[" denotes the argument list and 
the expression [ ... ) denotes the algorithm for computing the function. 
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§1.8 Historical Notes 

The RAM model was introduced in [S&S]. The particular formulation 
used here is from [M& Y]. The formulation of the partial recursive functions 
used here dates back to [Kle]. The coding techniques used to represent 
programs as natural numbers have their basis in the work of [God], although 
he used prime factorization instead of pairing functions. The exposition 
of pairing (and depairing) functions is from [Eng]. Turing machines were 
introduced in [Tur]. For the origins of Herbrand-GOdel computability, see 
the article "On undecidable propositions of formal mathematical systems" 
by Godel in [Dav]. The A notation for specifying functions is due to Church 
and Kleene [Chu]. The use of pictures to represent objects dates back to 
the caves of France. 
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2 
Basic Recursive Function Theory 

In the last section, we examined some reasonable models of compu
tation. These models were found to be equivalent in the sense that they 
captured the same class of "computable" functions. Now we proceed to de
fine our "generic" programming system syntactically. From our experience 
of coding each RAM program as a single natural number, we can use the 
natural numbers to serve as names for our programs. This will also make it 
easier to describe functions that take programs as arguments and produce 
programs as output. We will see that any way of effectively presenting the 
computable functions (via a list of all RAM programs, for example) will in
duce some structure in the way the programs appear. This structure will be 
evidenced by certain functional relationships among the various programs. 
Our generic programming system will be characterized by the specific re
lationships that hold for the system. The specific relationships are akin to 
control structures in that they specify how to modify and combine some 
programs to produce other programs. We will then discuss solvability (and 
partial solvability) of several fundamental problems. As a notational simpli
fication, the use of pairing functions will be implicit, so we will write f(x, y) 
instead of the more formal /( (x, y) ). Since we will have several occasions 
to give proofs by contradiction, we will note the arrival at a contradiction 
by the symbol ( =H=). 

§2.1 Acceptable Programming Systems 

Recall that P0 , P1. · · · is a list of all and only the RAM programs. 
For each i, let '1/Ji denote the function from IN to IN computed by Pi. Then, 
'1/Jo, 'I/J1, · · · is a list of all and only the RAM computable functions. To sim
plify our notation, we will say that program i computes the function '1/Ji. 
Essentially what we have just done is to give every RAM program Pi the 
nickname i. Suppose <po, <{h, · · · is a list of all and only the partial recursive 
(or Thring computable or H-G computable) functions. By Theorems 1.30 
and 1.41 there are (primitive) recursive functions f and g such that: 
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(Vx )1/Jx = <p f(x) 

(Vx )r.px = 1/Jg(x). 

The functions f and g map from one system to the other, as indicated by 
the following picture: 

X g(y) 
1/J-----------------------------

/ 
<{)---------------------------------

f(x) Y 

For the proof of Theorem 1.41 we developed a universal function. Notice 
that: 

1/Juniv(g(i),x) = 1/Jg(i)(x) = r.pi(x). 

So, the list <po, <p1, · · · has a universal function (use f and some careful 
compositions). Recall that there is a RAM program that interprets its two 
inputs as program codes and outputs a program that executes the compo
sition of the two input programs. Suppose this composition program is c 
(computing the function 1/Jc)· Then, 1/Jc(i,i)(x) = Ax['I/Ji('I/Jj(x))]. Pictorially, 

c(i,j): (x) 

j: (x) 

y 

i: (y) 

z 

z 
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Hence, by Church's Thesis, c is a partial recursive function. More
over, since cis defined on all possible arguments, it is a recursive function. 
Consequently, 

'1/Jc(g(i),g(j)) = '1/Jg(i) 0 '1/Jg(j) = <pi 0 cpj • 

So, f(c(g(i),g(j))) is a composition function for cp0 ,cp1,·· ·.Notice that 
we have used the traditional notation for function composition f o g to 
denote the function >.x[f(g(x))]. Church's Thesis and the above motivate 
the following: 

Definition 2.1: A programming system is a list cp0 , cp 1 , · · · of all and only 
the partial recursive functions. A programming system cp0 , <pt.··· is uni
versal if it has a universal program: <puniv(i,x) = cpi(x). A universal pro
gramming system is acceptable if it has a recursive composition function: 
cpc(i,j) = cpi 0 cpj. 

Some easy examples of acceptable programming systems come to 
mind. By the discussion above, both '1/Jo, 'lj;1 , • • · and cp0 , cp1 , • • · are two such 
examples. Any sufficiently expressive programming language, like Pascal or 
C++, can be used as the basis for an acceptable programming system. All 
that is needed is to form a list of all the programs that can be written in 
the language. Below we give another example. 

Theorem 2.2: The UNIX operating system is an acceptable programming 
system. 

Proof. The Bourne shell (or csh or tcsh) is powerful enough to simulate any 
RAM program computing over strings instead of integers. Hence, UNIX is a 
programming system. The sh command is an implementation of a universal 
program for shell scripts. The pipe operator can be used to implement a 
compositor of shell scripts. Consequently, UNIX is an acceptable program
ming system. ® 

The UNIX operating system has many useful features and programs 
built into it. We will show that, surprisingly, the two properties of Definition 
2.1 suffice to guarantee that an acceptable programming system has many 
other features which are familiar from programming experience. As we have 
seen, acceptable programming systems are easy to create. What is difficult 
is to come up with a universal programming system that is not acceptable. 
To do so requires techniques that we have not yet presented. 

Our first result concerning acceptable programming systems is that 
one can always store specific data in programs. In other words, there are 
special versions of programs that have some of their parameters fixed and 
these programs can be found uniformly and effectively from the original 
program. An often used computational technique is embodied in this result. 
The "stored" arguments can be viewed as default settings. Additionally, the 
aliasing feature of modern UNIX systems allows one to, for example, create 
a print command that has the name of the printer built in so that it is not 
necessary to specify your favorite printer every time you want a hard copy. 
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Theorem 2.3: (The s-m-n Theorem) Suppose cp0 , cp1, ···is an acceptable 
programming system. Then there is a recursive functions such that 'Vm ~ 1, 
'Vn ~ 1, 'Vx17 ... , Xm, Yb · · ·, Yn, 'Vi, 

Proof. The intuition of the proof is quite simple. We must take a program, 
find the first input statments, and replace them with assignment statements 
so that the appropriate constants are stored in the proper variables. This 
is quite a trivial process in most contemporary programming languages. 
Since we are proving the theorem for an arbitrary acceptable programming 
system, our job is slightly more complicated. We do the m = 1, n = 1 case 
only. For the general case replace x with (x1, ... , Xm) andy with (Yl, ... , Yn) 
everywhere. Since cp0, cp1, · · · is an acceptable programming system, there 
is a recursive composition function c. Define P(y) = (0, y), and suppose 
that program p computes P, e.g. cpp = P. Let Q( (x, y)) = (x + 1, y) with 
cpq = Q. Finally defineR by: 

R(O) = p 

R(x + 1) = c(q, R(x)). 

A simple induction shows that cpR(x)(Y) = (x,y). For the base case, 
cpR(o)(Y) = cpp(y) = (O,y). Suppose inductively that cpR(x)(Y) = (x,y). 
Then 

cpR(x+l)(Y) = cpc(q,R(x))(Y) 

= cpq 0 cpR(x)(Y) 

= cpq( (x, y)) 
=(x+1,y). 

Let s(i,m,x) = c(i,R(x)). A pictorial rendition of s appears below. 

cps(i,m,x) (y) = cpc(i,R(x)) (y) 

= cpi o cpR(x)(Y) 

= cpi(x, y) 

Notice that, in the above proof, if cis primitive recursive, then so is s. 
Furthermore, the universal program was not used. In what follows we will 
write s( i, x17 ... , Xm) for s( i, m, x17 ... , Xm)· The function s will be called 
a store function. 

Next we will show that any acceptable programming system can be 
effectively translated into any other acceptable programming system. Con
sequently, the choice of acceptable programming system does not effect 
what can and cannot be computed. 
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s: (i, m, x) 

R: (x) 

z 

c:(i,z) 

c(i, R(x)) 

c(i,R(x)) 

Theorem 2.4: Let cp0 , cp1 , · · · be a universal programming system. Let 
1/Jo, 1/;1, · · · be a programming system with an associated recursive function 
s such that: 

('Vi)('Vx)('Vy)'I/Js(i,x)(Y) = 1/Ji(x, y). 

Then there is a recursive function t such that ('Vi)cpi = 1/Jt(i)· 

Proof. Since 1/;0, 1/;1, · · · is a programming system there is a k such that 
1/Jk = cpuniv· Define t(i) = s(k,i). Then, by unraveling the application of 
the store function: 

1/Jt(i)(x) = 1/Js(k,i)(x) = 1/Jk(i,x) = <puniv(i,x) = cpi(x). 

® 
Exercise 2.5: Construct a universal programming system, 1/;1, 1/;2, 1/Ja, ... , 
such that the following set is NOT recursively enumerable: 

A= {xlx E Domain('I/Jx)}. 

Exercise 2.6: Construct a universal programming system, 1/;t, 1/;2, 1/Ja, ... , 
such that the set 
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A = { xl Domain( t/Je) is recursive } 

is recursively enumerable but not recursive. 

§2.2 Recursion Theorems 

The original meaning of the word recursion was "a going backward." 
The word is no longer used in the general English language but was adopted 
by mathematicians in the 1800s to denote a style of function definition 
where a function is defined in terms of itself. The famous Fibonacci numbers 
are a (technically primitive) example. The study of functions that are de
fined in terms of themselves became known as "Recursive Function Theory." 
Another view of recursive definitions is that they are self-referential. In this 
section we will prove various theorems that embody more and more pow
erful forms of computational self-reference. Computational self-reference is 
a most powerful form of the programming technique known as recursion. 

Of course, it is easy to get in trouble defining functions in terms of 
themselves. Circular definitions can easily result if one is not careful. The 
everywhere undefined function is a potential result of such mistakes. Some 
people find self-referential functions mysterious. However, computationally, 
the technique is well-founded. Consider writing a program on a contempo
rary computing system. When the process of entering code is begun, a text 
editor of some sort is invoked. Typically, the text editor will ask for the 
name of the file being created. Sometimes this is done before entering any 
text into the file. Some editors will only demand that the name of the file 
be selected before writing the file in long-term memory. In any event, the 
choice of the name of the file is up to the author. Manipulating the name of 
the program is the mechanism of self-reference. For the sake of discussion, 
call our file, containing the instructions for a program, PROG. In the pro
cess of creating the file named PROG, we can enter commands that access 
the file structure of computing system. Since we only need to know the 
name of the file to access it, instructions that access the file named PROG 
can be added to the program being written. The program can be instructed 
to access any file, interpret it as a program and simulate its execution on 
some arguments. Of course, the particular file we have in mind here is the 
one being created. Any algorithmic transformation on the contents of the 
file PROG may be specified. Hence, it is possible for a program to simu
late modified versions of itself in order to decide what to output. In the 
many applications of self-reference that follow, we will see a wide variety of 
programs that simulate altered versions of themselves. Formally, the ma
nipulation of program names to produce self-reference effects is given in the 
following. 

Theorem 2. 7: Suppose <p0 , <pt, · · · is an acceptable programming system. 
Then for any program i, there is another program e such that ('v'x) <{)e(x) = 
<pi(e,x). 
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Proof: Given i, by implicit use of the s-m-n theorem construct a program 
v such that for all x and z: 

~Pv(z, x) = ct:'i(s(z, z), x). 

A picture of v would look like: 

v: (z, x) 

s: (z, z) 

w 

i: (w,x) 

y 

y 

The s-m-n theorem is often invoked in this way. Notice that the algo
rithm for program v intuitively says: "Run program ion arguments s(z, z) 
and x." So the i is in fact a parameter to the algorithm that does not 
appear in the list of arguments given to v. That means that there was a 
parameter i at some point which was incorporated into the program v at 
some other point. To illustrate, we derive program v explicitly. By Church's 
Thesis there is a program j such that for all k, z and x: 

ct:'i(k, z, x) = ct:'univ(k, (s(z, z), x) ). 

Now let v = s(j, i). 
Continuing with the proof, let e = s(v,v), then: 
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<t'e(x) = <t's(v,v)(x) 

= <t'v(v,x) 

= <t'i(s(v,v),x) 

= <t'i(e,x). 

The recursion theorem is often invoked implicitly. That is, we will 
specify programs that use as an extra parameter the name of the program 
itself. Pictorially, the situation appears as follows: 

e: (x) 

As a first example application of the recursion theorem, we will show 
that, in an acceptable programming system, given a program, we can always 
find a syntactically different but semantically equivalent program. Gener
ally, it is easier to think about writing a program that knows its own name 
and hence, can access its own code, than it is to figure out how to apply 
the recursion theorem. Consequently, applications of the recursion theorem 
are typically implicit. We illustrate this phenomenon below by first giving 
the explicit construction and then giving the implicit version. 

Theorem 2.8: Suppose cp0 , <t'b · · · is an acceptable programming system 
and k is a program. Then there is a j such that k =/; j and <t'k = <t'i· 
Furthermore, j can be found effectively from k. 

Proof. Let k be given. By Church's Thesis, there is a program i such that: 

if e =/; k; 
otherwise. 

Now, apply the recursion theorem to obtain a program e such that for all 
x: 

<t'e(x) = <t'i(e,x). 

If e =/; k then set j = e and the theorem follows. Suppose that e = k. 
Then, clearly <f'e = <f'k· By the construction of e, <f'e = <f'e+l· Let j = e + 1 
and the theorem follows. ® 
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The proof above was given in full detail. As mentioned earlier, it is 
generally easier to think about applying recursion directly, rather than to 
figure out how to set up an application of the recursion theorem. Below we 
give the proof using the more common implicit application of the recursion 
theorem. 

Proof: Let k be given. By an implicit use of the recursion theorem, there is 
a program e such that: 

'Pe = { 'Pk 
'Pe+l 

if e =/; k; 
otherwise. 

Program e essentially executes the following algorithm: First check to see if 
e = k. If not, then simulate program k; if so, then simulate program e + 1. 

If e =/; k then set j = e and the theorem follows. Suppose that e = k. 
Then, clearly 'Pe = 'Pk· By the construction of e, 'Pe = 'Pe+l· Let j = e + 1 
and the theorem follows. ® 

Suppose we have some program r that had been constructed by the 
recursion theorem. Then program r can use the constant r as an extra, 
implicit, parameter in its effective calculations. We call r a self-referential 
program since it may refer to its own code. By the above theorem, there is 
a program j such that j =/;rand 'Pi = 'Pr· Even though programs rand j 
compute the same function, j is not self-referential. Programs j and r refer 
to the constant r, not j. 

Exercise 2.9: Prove that there is a program e such that 'Pe computes the 
constant e function. 

Exercise 2.10: Prove that there is a program e that halts on input e where 
it produces the value e2 • 

Exercise 2.11: Prove that for every recursive function f there is a program 
e such that: 

{ e if x = 0, 
'Pe(x) = f(x- 1) otherwise. 

Not only does the self-referential program e of Theorem 2. 7 exist, it 
can be uniformly and effectively found from i. By "effectively" we mean 
that there is an algorithm for the transformation of i into e. The "uni
formly" means that i is a parameter to the algorithm that produces the 
self-referential program. Now we re-prove the recursion theorem in its full 
effective and uniform incarnation. A solution to the above exercise, together 
with the proof of the following theorem, yields an algorithm for producing a 
program that outputs its own code. This algorithm will work independently 
of the choice of programming language. 

Theorem 2.12: Suppose <po, 'Pl.··· is an acceptable programming sys
tem. Then there is a recursive function r such that ('v'i) ('v'x) 'Pr(i)(x) = 
'Pi(r(i), x). 
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Proof. Define program h by: 'Ph(x,y) = (s(x,x),y). Define the recursive 
function g by: g(i) = c(i,h). Finally, definer by: r(i) = s(g(i),g(i)). Then: 

'Pr(i) (x) = 'Ps(g(i),g(i)) (x) 

= 'Pg(i)(g(i),x) 

= 'Pi('Ph(g(i),x)) 

= 'Pi(s(g(i),g(i)),x) 

= 'Pi(r(i), x). 

® 

Exercise 2.13: Pick a real programming language (C++, Pascal, etc.) and 
describe how to produce a program in that language that outputs its own 
code. 

Exercise 2.14: Pick a real programming language (C++, Pascal, etc.) and 
write a program that outputs its own code. 

The recursion theorem we have been discussing enabled us to write 
single programs that were self-referential. Our discussion now turns to more 
powerful forms of recursion. These more powerful forms will enable us to 
construct sets of self-referential programs. Cooperating self referential pro
gramming turns out to be a very powerful technique. For example, the next 
theorem essentially says that one can, uniformly and effectively, construct 
infinite sequences of self referential programs, each one of which knows its 
position in the sequence. A picture representing this situation is below. 

Theorem 2.15: (Parametric recursion theorem) Suppose <po, <p1 , · · · is an 
acceptable programming system. Then for all i there is a recursive function 
pr such that 

('v'x)('v'y)'Ppr(x)(Y) = 'Pi(x,pr(x),y). 

Proof. Let program i be given. By implicit use of the s-m-n theorem, there 
is a recursive function g such that for all j, x, y and z, 

'Pg(j)(x,y,z) = 'Pj(x,s(y,x,y),z). 

Define pr by pr(x) = s(g(i),x,g(i)). Then: 

'Ppr(x)(Y) = 'Ps(g(i),x,g(i))(Y) 

= 'Pg(i)(x,g(i),y) 

= 'Pi(x, s(g(i), x, g(i)), y) 

= 'Pi(x,pr(x), y). 
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pr(O): (y) 

... y ... 0 ... pr(O) ... 

pr(x): (y) 

···y···X···pr(x)··· 

Now for a double recursion theorem. Essentially, this theorem allows 
us to write pairs of programs, each of which is defined in terms of itself and 
the other program of the pair. Again, we precede the proof by a picture. 

eo: (x) 

... x ... eo ... e1 ... . .. x ... eo ... e1 ... 

Theorem 2.16: (Double recursion theorem) Suppose cp0 , <pt, · • • is an 
acceptable programming system. For all i 0 , i 1 and x there exist programs 
eo and e1 such that: 

<pe0 (x) = <pi0 (eo,et,x) 

<pe1 (x) = cpi 1 (eo,el,x). 

Proof. Let i 0 and i 1 be given. By implicit use of the s-m-n theorem there 
is a recursive function g such that for all i, yo, Yl and x: 
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Now define: 

Then 

eo= s(g(io),g(io),g(il)) 
e1 = s(g(il),g(io),g(it)). 

cpe0 (x) = cps(g(io),g(io),g(it)) (x) 
= cp9(i0 )(g(io),g(il),x) 

= cpi0 ( s(g( io), g( io), g( it)), s(g( i1), g( io), g( i1) ), x) 

= cpi0 (eo,el,x). 

Similarly, 

Exercise 2.17: State and prove a fully effective and uniform version of the 
double recursion theorem. 

Of course, the above theorem can be generalized to the n-ary re
cursion theorem where program eo, et, ... , en-1 give n self-referential pro
grams, each of which knows the complete syntactic description of the other 
n - 1 programs. As with all of our recursion theorems, the n-ary recursion 
theorem can be made effective and uniform. We will use the term mutual re
cursion to refer to an n-ary recursion theorem without being specific about 
the value of n. 

Exercise 2.18: Formally state and prove the n-ary recursion theorem. 

The final recursion theorem that we will use is an infinitary one. 
This next theorem will allow us to construct sequences of self-referential 
programs where each program in the sequence knows its position in the 
sequence and an effective generator for the entire sequence. As is usual, 
there is a picture. 

Definition 2.19: An operator is a mapping from functions to functions. 
B is an effective operator iff there is a recursive function f such that 
('v'i)B(cpi) = cpf(i)· The function f is called a witness to the effectiveness of 
e. 

If B is an operator and g = h then B(g) = B(h). If B is an effective 
operator, with witness J, then if cpi = cpj then cpf(i) = cpf(j)· Note that it 
is not necessary for f(i) to be the syntactically same program as f(j). 

Theorem 2.20: (Operator recursion theorem) for any effective operator 
B there is a recursive function h such that for all n and x, cph(n)(x) 
B(h)(n,x). 
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h(O): (x) 

h: (?) 

D 
z 

. ··Z··. 

h(n): (x) 

h: (?) 

D 
z 

... z ... 

Before proving this theorem, a few remarks about its intended use 
are in order. In essence, it says that we can define what program h(n) 
does on argument x in terms of x, nand h. Giving h to a program to use is 
different from giving it a program to compute h. What is meant here is that 
program h( n) has use of the function h in a manner that is independent 
of any particular program that computes h. This is where the operator 
comes in. Operators are devices to describe effective computations involving 
functions where the computation reacts to the input/output behavior of the 
input function, and not to a particular program for it. 
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Proof. Let f be the witness for the effective operator e. By implicit use of 
the s-m-n theorem, there is a recursive function g such that for all m and 
y: 

<t'g(y)(m) = s(y,y,m). 

Hence, 
e(<t'g(yj)(n,x) = <t'Jog(y)(n,x). 

Choose d such that 
<pd(y,n,x) = <f'Jog(y)(n,x). 

Consequently, 

<t's(d,d,n)(x) = <t'd(d,n,x) = e(<t'g(d))(n,x). 

Let h(n) = s(d, d, n). Note that, by the selection of g above, h = <t'g(d)· So, 

<t'h(n)(x) = <t's(d,d,n)(x) 

= <t'd(d, n, x) 

= <f'Jog(d)(n,x) 

= e(<t'g(dj)(n,x) 

= e(h)(n, x). 

The h of the above theorem can also be made monotone increasing. 
This can be accomplished via a technique called padding. As an example 
of the above infinitary recursion theorem, we will prove that every accept
able programming system has a padding function. A circularity is avoided 
by claiming that less powerful techniques can be used to verify padding 
properties. The proof below is intended as a simple example of an operator 
recursion theorem argument. 

Definition 2.21: A padding function is a recursive function p such that 
for all e, x andy, if Cf'p(e,x) = <f'e and p(e,x) = p(e,y), then x = y. 

At first glance, padding seems to be a useless side effect of the way we 
currently view computation. However, there is some evidence that padding 
techniques play a fundamental role in all models of computation. Part of 
this evidence is technical. In the next section we will present a characteriza
tion of acceptable programming systems in terms of padding and recursion 
instead of composition. 

A form of padding is employed in all contemporary multiuser com
puter systems. One view is that when you run a program on such a system, 
you are in fact executing a padded version of your code. The "padding" is 
the operating system that protects other programs that are currently be
ing executed from side effects caused by your programs. The time sharing 
aspect of the multiuser system is also handled in the padding. 



2.2 Recursion Theorems 45 

Every time comments are added to a program, the size of text in
creases, yet the execution behavior of the program does not change. Hence, 
the act of placing documentation into a program also accomplishes a 
padding of the program. Furthermore, with suitable padding functions, the 
padding parameter x, representing the comments, can be extracted from 
the program. 

Another example of padding comes from biology. A common view of 
DNA is that it is a "program" for the construction of an organism. Human 
DNA is known to contain much redundant and ostensibly superfluous infor
mation. Estimates of the amount of padding in the DNA range as high as 
90%. One theory about the utility of the DNA padding is to make sure the 
relevant parts of the code are close to the outside when the DNA is folded. 
DNA also serves as a nice example of self-referential computation of the 
type enabled by the recursion theorem. A single strand of DNA contains 
enough information to produce an entire organism that will have as part of 
every one of its cells a copy of the original strand of DNA. 

Theorem 2.22: Suppose cpo, cp1. ···is an acceptable programming system. 
Then there is a padding function for cpo, cp1, • · •. 

Proof. By the operator recursion theorem we construct a sequence of pro
grams below. The use of the theorem will, like all our applications of recur
sion theorems, be implicit. There will be no mention of the "operator" in the 
formal part of the proof. We will simply construct a sequence of programs 
where each program in the sequence has access to a subroutine computing 
the generator for the entire sequence. For convenience, we name the pro
grams in the sequence: p, h(O, 0), h(O, 1), ... h(x, y), · · ·. For convenience, 
let P denote cpp. 

P( ) {h(e,x) ifh(e,x)fj{P(e,y)ly<x}; 
e,x = 1+max{P(e,y)ly<x} otherwise. 

cph(e,x) = { 
cpe 

cpl+max{ P( e,y) I y<x} 

if h(e,x) ¢ {P(e,y)ly < x}; 
otherwise. 

To prove the theorem we must show that for all e and x, cpP(e,x) = cpe 

and P(e,x) ¢ {P(e,y)ly < x}. This is done by fixing e and performing an 
induction on x. For the base case, note that P( e, 0) = h( e, 0) and cph(e,O) = 

Suppose inductively that, for all x < z, cpP(e,x) = cpe and P(e,x) ¢ 
{P(e,y)ly < x}. There are two cases to consider. 
Case 1: h(e,z) ¢ {P(e,y)ly < z}. 
Then P(e,z) = h(e,z) and cph(e,z) = cpe. 

Case 2: Otherwise. 
Then P(e,z) = 1 + max{P(e,y)ly < z}. Therefore, P(e,z) ¢ {P(e,y)ly < 
z}. Since h(e,z) E {P(e,y)ly < z}, by the induction hypothesis, cph(e,z) = 
cpe. By construction, cph(e,z) = cpP(e,z)· ® 
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For the construction of the above theorem, we will indicate what the 
implicit operator does. The operator maps the input function to a function 
of two arguments, n and (e, x), that behaves as follows: If n = 0, then 
execute that algorithm specified above as P( e, x ), using the function input 
to the operator to figure out what the value of the various h(e, x)'s are. 
If n > 0, then execute the algorithm specified by program h( e, x) above, 
again using the function input to the operator to figure out the value of the 
various P( e, y) 's. 

We now return to the issue of how to construct a padding function 
without using such a powerful recursion theorem. Along the way we will 
show that not only is it possible to map from one acceptable program
ming system to another effectively, it is possible to do so with a one-to-one 
function. The first step is to solve the following exercise. 

Exercise 2.23: Suppose <p0, <p1, • · • is an acceptable programming system. 
Let g be a recursive function and s the store function. Prove that there is 
a program i such that for all x, <{}g(x) = <{)s(i,x) and AX[s(i,x)) is a one-to
one function. HINT: Use the recursion theorem to write a program e that 
searches through the range of Ax[s(e,x)) for the same value to appear twice. 

Now Suppose <po, <p1, · • · and 1/Jo, 1/JI. • • • are acceptable programming 
systems and g is a recursive function such that for all x, 1/Jx = <{}g(x). Let 
e be the program produced by the solution to the above exercise using g 
and the acceptable programming system <po, <p1, · • •• Let f = Ax[s(e, x)], a 
recursive one-to-one function. Then, 

<p f(x) = <{)s(e,x) = <{}g(x) = 1/Jx· 

Exercise 2.24: Use the techniques of the above observations to construct 
a padding function in any acceptable programming system. 

A theorem that is often confused for a recursion theorem follows as the 
last result of this section. It is called the fixed point theorem since it asserts 
that every effective transformation of programs leaves the input/output 
behavior of at least one program unchanged. Uses of the fixed point theorem 
and the recursion theorem in an acceptable programming system are almost 
interchangeable. This theorem has been found to be very useful in the 
study of semantics. When replacing a use of the recursion theorem by an 
application of the fixed point theorem, an extra application of the s -
m - n theorem is usually invoked. As the exercises below indicate, the 
two theorems are interderivable. However, in the next section we will see 
some subtle differences between the two. For example, notice in the proof 
below of the fixed point theorem that the universal machine was used in 
its full generality. This application of the universal machine seems to be 
necessary. Note that none of the proofs of any of the above theorems used 
the universal function to construct a self-referential program. The above 
forms of recursion are all syntactic. The following result could be called a 
"semantic" recursion theorem. 
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Theorem 2.25: (The fixed point theorem) Suppose cp0 , <{h, · · · is an ac
ceptable programming system. for any recursive function f there is an n 
such that cpn = cpf(n)· 

Proof. Suppose that f is a recursive function. By implicit use of the s-m-n 
theorem, define a recursive function g such that fo rall i and x: 

cpg(i)(x) = cpuniv(cpuniv(i, i), x). 

Since g is recursive so is fog. Suppose that program vis such that cpv = fog. 
Then, 

Choose n = g(v). 

cpg(v)(x) = cpuniv(cpuniv(v, v), x) 

= cpuniv( cpv( V ), X) 
= cpuniv(f o g(v), x) 

= cpf(g(v))(x). 

A picture of the computation of cpg(v)(x) follows: 

g(v): (x) 

univ: (v,v) 

f o g(v) 

z 

univ: (z,, x) 

cpfog(v)(x) 

y 

y 

® 

Notice that the choice of n was effective in a program for f and a 
program for g. The program for g can be effectively found from the s-m
n theorem. Consequently, there is a program fix such that if program i 
computes a recursive function then 

cpfix(i) = cp<p,(fix(i))· 

Exercise 2.26: Show that in every acceptable programming system there 
are two consecutive programs computing the same function, e.g., there is 
an e such that cpe = cpe+l· 
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Exercise 2.27: Suppose f is a recursive function. Prove that f has arbi
trarily large fixed points. In other words, prove that for all c there is an n 
such that n > c and cpf(n) = <pn· 

Exercise 2.28: Use the fixed point theorem to prove the recursion theorem. 

Exercise 2.29: Use the recursion theorem to prove the fixed point theorem. 

Exercise 2.30: A partial recursive function t/J is universal iff there is are
cursive function f of two variables such that, for all x, cpx = >.y[t/J(f(x,y))]. 
Prove that if t/J is universal and g is a recursive permutation (one to one 
and onto) then g- 1'1/Jg is also universal. 

§2.3 Alternative Characterizations 

Each characterization of an acceptable programming system gives a 
minimal set of programming techniques that are necessary to manipulate 
programs and to build new ones from existing programs. It is very hard to 
construct an unacceptable programming system. The various characteriza
tions of an acceptable programming system that we will discuss give insight 
into the relative power of several well-known programming techniques. 

Our first characterization shows that the s-m-n theorem (Theorem 
2.3) can be used instead of program composition. This is quite surprising 
since it suggests that the ability to set defaults for programs is as powerful 
a technique for the manipulation of programs as the ability to effectively 
compose programs. 

Theorem 2.31: Suppose cp0, <p1, • • · is a universal programming system 
with a store function s. Then cpo, cp1, · · · is an acceptable programming 
system. 

Proof: Suppose the hypothesis. We will use a single fixed composition to 
generate a uniform composition function. Let w be a program such that for 
all x, y and z: 

cpw(x, y, z) = <puniv(x, <puniv(Y, z)). 

Define c(x,y) = s(w,x,y). Then 

cpc(x,y)(z) = cps(w,x,y)(z) 

= cpw(x, y, z) 

= <puniv(X,cpuniv(y,z)) 
= cpx(cpy(z)). 
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Again, we give a picture of the above construction. Notice that, in 
contrast to the proof of the fixed point theorem (Theorem 2.25), the first 
argument to the universal program (the name or description of the program 
to be simulated) is always a given input and never calculated. Program 
w of the above proof does not have a general composition function as a 
subroutine. This is evident from the following picture. Consequently, the 
above proof is not circular. 

c(x, y): (z) 

univ: (y, z) 

cpy(z) 

u 

univ: (x, u) 

cpx(u) 

v 

v 

The next two theorems characterize acceptable programming systems 
in terms of the presence of various recursion theorems in a universal pro
gramming system. These results point out another facet of recursion: its 
use as a tool to construct programs based on the manipulation of the syn
tax of other programs. The interesting question then is to figure out just 
how powerful a recursion theorem is needed to guarantee acceptability. The 
theorems below show that either a parametric form or a mutual recursion 
is needed. In the first case, an infinite list of self-referential program is 
needed, along with a pointer into the sequence. The full power of the op
erator recursion theorem (Theorem 2.20), where every program not only 
has self-knowledge but knowledge of other programs in the sequence, is not 
needed. However, if we consider programs that are self-referential and also 
refer to other programs as well, then we only need two programs. The ex
ercises point out that a suitable version of the ordinary recursion theorem 
and an effective padding program can be combined to yield acceptability 
in a universal programming system. 

Theorem 2.32: Suppose cp0 , cp17 • • • is a universal programming system 
with a parametric recursion theorem. Then cp0 , cp17 • • • is an acceptable pro
gramming system. 
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Proof: Suppose the hypothesis. Define a partial recursive function t/J such 
that for all e, x, y and z: 

t/J( e, x, y, z) = cpuniv( e, (x, z) ). 

By the parametric recursion theorem there is a recursive function f such 
that for all e, x and z: 

So, 

cpf(e,x) = .Xz[t/J(e, x, f(e, x), z)]. 

cpf(e,x)(z) = 1/J(e,x,f(e,x),z) 

= cpuniv(e, (x,z)) 
= cpe(x, z). 

As usual, we give a picture: 

f(e,x): (z) 

univ: ( e, (x, z)) 

cpe(x, z) 

w 

w 

Hence, f is a store function for cpo, cp1, · · ·. Consequently, cpo, cpt, · · · 
is an acceptable programming system. ® 
Theorem 2.33: Suppose cp0, cp1, · · · is a universal programming system 
with a double recursion theorem. Then cp0, cp1, · · · is an acceptable pro
gramming system. 

Proof: Let r 0 and r 1 be the recursive functions witnessing the uniform 
double recursion in the programming system cp0, cp1, · · ·. Consequently, for 
any pair of programs i and j, program r0(i,j) computes the function 
.Xx[cpi(ro(i, j), r1 (i,j), x)]. Similarly, program r1 (i,j) computes the function 
.Xx[cpj(ro(i,j),rl(i,j),x)]. Define a function f by: 

f(x,O) = 0 

f(x, y + 1) = JLY1 > f(x, y)[(V'z < y')r1(x, z) =1- r1(x, y')]. 

Suppose i and j are programs for two different constant functions, 
say, (cpi = .Xx[a] and cpi = .Xx[b] for a =f. b). Then, independently of z, pro
gram r1(z,i) computes .Xx[a]. Similarly, program r1(z,j) computes .Xx[b]. 
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Consequently, (V'z)[r1(z,i) =f. r1(z,j)]. Hence, the search in the above defi
nition of f always succeeds and f is recursive. By the definition of f, for any 
x, >.z[r1 (x, f(x, z))] is one-to-one. To complete the proof is suffices to show 
that <po, <p1, ···has a uniform store function. Toward this end, we will apply 
mutual recursion to two programs, i0 and i1, computing partial recursive 
functions defined below. Before proceeding we will construct a program j: 

<{}j((e,y),z) = <{)univ(e, (y,z)). 

Now, 

. ( ) _ { <{}j(w, z) for w such that y = r1(u, f(u, w)); 
<p,o u, v, x, y, z - undefined otherwise. 

<{)i 1 = >.u,v,x,y,z[undefined ]. 

Let p = ro(io,il) and q = r1(io,il). Then 

<{)ro (p,f (p, y)) ( Z) 

= <pp(ro(p, J(p, y)), r1(p, f(p, y)), z) 

= <{)r0 (i0 ,i,)(ro(p, f(p, y)), rl(P, f(p, y)), z) 

= <{)i0 (ro( io, il), r1 ( io, il), ro(p, J(p, y) ), r1 (p, f(p, y) ), z) 

_ {<pj(w,z) 
undefined 

_ {<pj(w,z) 
- undefined 

if r1 (p, f(p, y)) = r1 (ro( io, il),J(ro( io, i1), w)) 
otherwise. 
if r1(p, f(p, y)) = r1(p, f(p, w)) 
otherwise. 

Hence, <pro(P.f(p,y))(z) = <{}j(y,z). Define a recursive function h such that 
h = >.y[ro(p, f(p, y))] and let s(e, y) = h( (e, y) ). Then, for all e, y and z: 

<{)s(e,y)(z) = <{)h((e,y))(z) 

= <{)ro(p,f(p,(e,y)))(z) 

= <{}j((e,y),z) 

= <{)univ(e, (y, z)) 

= <{)e(y, z). 

® 
Two more charactersizations of acceptable programming systems are 

given in the exercises below. A recursion theorem in an acceptable pro
gramming system is one-to-one if the witness function r is one-to-one. 

Exercise 2.34: Prove that a universal programming system with padding 
and one-to-one recursion theorem is acceptable. 

Exercise 2.35: Prove that a universal programming system with padding 
and a fixed point theorem is not necessarily acceptable. 
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Exercise 2.36: For any x let sx(i) = Ai[s(i,x)]. The function Sx behaves 
like the store functions, excepts that it can only code in the fixed constant 
x. Prove that a universal programming system with store functions Sx and 
sy for some x =f. y is acceptable. 

Exercise 2.37: Prove that there is a programming system with a compo
sition function c but no fixed point function fix. 

§2.4 The Isomorphism Theorem 

In this section we will show that any two acceptable programming 
systems are not only mappable onto each other but are in fact isomorphic. 
This means that there is a one-to-one and onto mapping between any two 
acceptable programming systems. This means that, for many results, the 
choice of acceptable programming system does not matter. We start with 
a lemma. 

Lemma 2.38: Suppose cp0 , cp1, · · · and t/Jo, t/11, · · · are acceptable program
ming systems. Then there is a recursive, monotone increasing function g 

such that g(O) > 0 and (Vx)cpx = t/Jg(x)· 

Proof. Let h be a translation function from the cp's to the t/J's obtained by 
Theorem 2.4 . Let p a padding function for the t/J's. The appropriate g is 
defined by: 

g(O) = p(h(O), min y[p(h(O), y) > 0]) 
g(x + 1) = p(h(x + 1), miny[p(h(x + 1), y) > g(x)]). 

® 

Theorem 2.39: (The Isomorphism Theorem) Suppose cpo, cp1, · · · and t/Jo, 
t/J1, · · · are acceptable programming systems. Then there is a recursive, 
one-to-one and onto function f such that for all x, cpx = tPJ(x)· 

Proof. By the above lemma, let g and h be positive valued, monotone 
increasing, recursive functions such that for all x, cpx = t/Jg(x) and t/Jx = 
cph(x)· Note that for any x, h(x) > x and g(x) > x. For some arbitrary x 
we can start backtracking as in the following diagram. 

X h(g(x)) 
cp __________________________________________ _ 

,/ / 
'1/J------------------------------------

g(x) 

If x is in the range of h, then h- 1(x) exists. Furthermore, since h 
is monotone, one can effectively test whether or not x is in the range of 
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h. If h-1(x) exists and is in the range of g, then g-1(h-1(x)) exists. Each 
time an inverse is applied the resultant value decreases, so sooner or later, a 
value is reached which is not in the range of the other translation function. 
This is called a dead end. 

For any recursive function J, let fn denote then-fold composition of 
f with itself, e.g., / 0 = Ax[x), / 1 = J, and r+1 = f 0 r. For any X either 
for some i, (g-1 oh-1 )i(x) exists and is not in the range of h (a dead end in 
the cp's) or for some i, h-1((g-1 o h-1)i(x)) exists and is not in the range 
of g (a dead end in the 1/J's). By the monotonicity of g and h, for any x and 
y, either the following two sequences are identical or they are disjoint. 

{ ... , (g-1 o h-1)2(x), (g-1 o h-1)1(x),x, (h o g) 1(x), (h o g)2(x), ... } 

{ ... '(g-1 0 h-1)2(y), (g-1 0 h-1)1(y),y, (h 0 g)1(y), (h 0 g)2(y), ... } 

Now we can define the desired f: 

_ { g(x) if x dead ends in the cp's; 
f(x)- h-1(x) if x dead ends in the 1/J's. 

Clearly, f is recursive and for all x, <f'x = tPJ(x)· For the theorem, we must 
show that f is one-to-one and onto. 

Suppose by way of contradiction that f is not one-to-one. Choose x 
andy least such that x ¥- y and f(x) = f(y). Since g and h are one-to
one and monotone it must be that either f(x) = g(x) and f(y) = h-1(y) 
or f(x) = h-1(x) and f(y) = g(y). Suppose the former, the other case is 
similar. Since g(x) = h-1(y), h(g(x)) = y. Hence, both x andy dead end 
in the same system. ( :::?<=) 

Suppose by way of contradiction that f is not onto. Choose x to be 
the least number not in the range of f. Actually, any x not in the range of 
f will do, but we must choose a specific one. Consider the value /(h(x)). 
f(h(x)) ¥- h-1(h(x)), as that would place x in the range of f. Consequently, 
h(x) dead ends in the cp's. Consider the following picture: 

h(x) 

<f'·---------------------------------
/ 

1/J---------------------------
X 

Since h(x) dead ends in the cp's, g-1(x) must exist. Furthermore, 
g-1(x) also dead ends in the cp's. So f(g- 1(x)) = g(g-1(x)) = x. (:::?<=)® 
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§2.5 Algorithmically Unsolvable Problems 

Computers have become ubiquitous in our society. Their awesome 
power gives the impression that computers can be programmed to do al
most anything, given sufficiently many cycles and memory structures. Many 
people believe that, eventually, computers will be programmed to simulate 
a human mind. Others even believe that ultimately computers will surpass 
the ability of humans to perform tasks, such as language learning, where 
only humans have so far been successful. In order to better understand 
what it is that computers can do, we will explore the boundary between 
what they can do and what they can't. We will proceed by exhibiting some 
problems that cannot be solved by a computer, now or ever. Techniques to 
show problems unsolvable will be developed along the way. 

The first problem that we will consider is called the halting problem 
because it is the problem of deciding whether or not a given program halts 
on a given input. Rather than write "the computation of program i on input 
x halts" we will write the notationally concise <t'i(x) !. Similarly, <t'i(x) i 
denotes a computation that does not halt. Halting computations are called 
convergent and nonhalting computations are called divergent. 

Theorem 2.40: (Unsolvability of the Halting Problem) Suppose cp0 , <t'l. · · · 
is an acceptable programming system. There is no recursive function f such 
that for all x and y: 

f(x ) = { 1 if <t'x(Y) !, 
,y 0 if <t'x(Y) f. 

Proof. Suppose by way of contradiction such an f exists. By the recursion 
theorem there is a program e such that: 

e(x) = { 1 if f(e,~) = 0, 
<p i otherwise. 

<t'e(x) !=? f(e,x) = 1 =? <t'e(x) j=? f(e,x) = 0 =? <t'e(x)! (=?<=) ® 
It is common to associate a problem with a set. In this way, a prob

lem is solvable iff there is a recursive function that decides membership 
in the associated set. The sets associated with solvable problems are called 
recursive. Given some set A, the characteristic function of A is the function: 

{ 1 ifxEA 
CA(x) = 0 if x fj. A. 

Now we can say that a set is recursive iff its characteristic function is a 
recursive function. The set associated with the halting problem is called K 
and formally is {xlcpx(x) !}. The set used in the proof above is known as 
K 0 = {x,yl<px(Y) !}. Usually, a direct recursion theorem argument can be 
used to show that some problem is undecidable. 
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In order to contrast proof techniques, we will now give a proof of 
the unsolvabilitiy of the halting problem that does not use the recursion 
theorem. As before, we suppose by way of contradiction that such an f 
exists. Then there is a program e such that: 

e(x) = { 1 if f(x,~) = 0, 
cp l otherwise. 

Now we use a self-application technique: 

cpe(e) !=? f(e,e) = 1 =? cpe(e) l=? f(e,e) = 0 =? cpe(e)! (=?<=). 

This ends the alternative proof of the unsolvability of the halting problem. 

Proofs by various recursion theorems can always be replaced by proofs that 
don't make use of self-referential techniques. Although it is not evident with 
the above example, proofs with the recursion theorem is generally more 
succinct. We will see other, more typical, examples of this phenomenon 
later on. The more succinct a proof is, the easier it is for the reader to 

locate the key features. 

We illustrate another technique for showing that certain problems are 
unsolvable, reduction from the halting problem, below. The formal notion of 
reduction is discussed in greater detail in Chapter 4. Reduction techniques 

take a problem of interest and transform its instances into instances of 
some other problem that is known to be unsolvable. Hence, a solution to the 
problem of interest would imply the existence of a solution to the unsolvable 
problem. For example, suppose we are interested in showing that some 
problem, represented by the set A is unsolvable. First we suppose by way 
of contradiction that there is a program A- solver: 

A- solver: (y) 

Is yEA? 

YES: z +- 1 
NO: z +- 0 

z 

Next, we use this program to develop a solution to the halting prob
lem. This alleged solution will be a program called K- solver. 
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K- solver: (x) 

A- solver: (y) 

Is yEA? 

YES: z +-- 1 
NO: z +-- 0 

z 

w +-- · · ·x,z· · · 

w 

If K- solver turns out to be a program that decides membership 
in K, i.e., solves the halting problem, then we know that the program 
A - solver can not exist, hence A also represents an unsolvable problem. 
Some specific examples follow. 

Theorem 2.41: For any parameters y and z, none of the following sets are 
recursive. 

A = { xl ~Px is a constant function } 

B(y) = {xly E range Cf1x} 

C(y, z) = {xlcpx(Y) = z}. 

Proof. The halting problem is partially solvable since there is a program i 
such that: 

{ y if x E K; 
IPi(x, y, z) = l otherwise. 

Let f(x, y) = s(i, x, y). If x E K then program f(x, y) computes the con
stant y function. Now, it is easy to see: 

x E K <=> f(x,O) E A 
x E K <=> f(x, y) E B(y) 

x E K <=> f(x, z) E C(y, z). 

Exercise 2.42: Use the recursion theorem to show that the set A is not 
recursive. 

Exercise 2.43: Use the recursion theorem to show that, for any y, the set 
B(y) is not recursive. 



2.5 Algorithmically Unsolvable Problems 57 

Exercise 2.44: Use the recursion theorem to show that, for any y and z, 
the set C(y, z) is not recursive. 

Exercise 2.45: Use the mutual recursion theorem to show that the program 
equivalence problem is unsolvable, i.e., the set {(x,y)l <px = <py} is not 
recursive. 

In fact, no nontrivial property of the input/output behavior of pro
grams can be decided uniformly by looking at the program. In other words, 
all interesting properties of programs are undecidable. To state the theorem 
verifying the above intuition, we must define what is commonly called an 
index set. 

Suppose C is a class of partial recursive functions. Then Pc = { xl <px E 

C} is the index set of programs computing functions in C. Notice that if 
i E Pc and <pi= <pi then j E Pc. 

The word "index" is synonymous in its use in the above definition 
with our use of the word "program." In an acceptable programming system, 
the programs, because they are named by natural numbers, also serve to 
index the partial recursive functions. We will use the traditional terminology 
rather than risk confusion between program set, a defined technical term, 
and set of programs, a collection of programs that may or may not be an 
index set. 

Exercise 2.46: Is the set { el <pe = i.pe+d an index set? Justify your answer. 

Exercise 2.47: Is the set { el <pe is primitive recursive} an index set? Justify 
your answer. 

Armed with the notion of an index set, we are ready to prove that all 
interesting properties concerning the input/output behavior of programs 
are undecidable. By an "interesting property" we mean one that holds for 
some program and not for others. Interesting properties can be used to 
distinguish some of the programs from rest of the crowd. Index sets are 
natural, since if two programs have the same input/output behavior, then 
they are either both in some index set, or they are both outside of it. 
The next theorem shows that the only decidable properties of program 
input/output behavior, represented by the recursiveness of index sets, are 
ones that hold for all programs, or for none. 

Theorem 2.48: Suppose C is a class of partial recursive functions. Pc is 
recursive iff Pc = 0 or Pc = IN. 

Proof. IN and 0 are clearly recursive sets. The converse is proved via the 
contrapositive. Suppose x1 E Pc and x 2 f/. Pc. Suppose by way of contra
diction that Pc is recursive. By the recursion theorem there is a program e 
such that: 

{ 
i.px, if e f/. Pc; 

i.pe = i.px2 if e E Pc. 

e E Pc =} i.pe = i.px2 f/. C =* e f/. Pc =} i.pe = i.px 1 E C =* e E Pc ( =}{=) ® 
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As an example, we will show that the set Z = {xl ~Px(O) = 0} is 
not recursive. First we must show that Z is an index set. If x E Z then 
~Px(O) = 0. If IPx = cpy, then cpy(O) = 0. Therefore, y E Z. A similar 
argument shows that if x fj. Z and IPx = cpy, then y fj. Z. Hence, Z is an 
index set. Z is not empty, as witnessed by any program for ..Xx[O]. A program 
for the successor function serves as a witness that Z =f. IN. Therefore, by 
Theorem 2.48, Z is not recursive. 

Again, to contrast proof techniques, we will present an alternative 
proof of Theorem 2.48. We will use a reduction to the halting problem. As 
in our original proof, IN and 0 are clearly recursive sets. Suppose by way of 
contradiction that Pc =f. 0, Pc =f. IN and Pc is recursive. Then there is an 
xo fj. Pc and an x1 fj. Pc. Suppose that u is a program for the everywhere 
undefined function, i.e. IPu = ..Xx[l]. There are two cases to consider. 

Suppose u E Pc. By an implicit use of the s-m-n theorem there is a 
recursive function f such that: 

IPJ(x) = { IPxo 
IPu 

if ~Px(x) !, 
otherwise. 

x E K {::} IPJ(x) = IPxo {::} f(x) f/. Pc 
x f/. K {::} IPJ(x) = IPu {::} f(x) E Pc. 

Hence, x E K iff f(x) fj. Pc. Consequently, K is recursive. (=?<=) 
Suppose u fj. Pc. By an implicit use of the s-m-n theorem 

if ~Px(x) !, 
otherwise. 

x E K {::} IPJ(x) = 1Px1 {::} f(x) E Pc 
x f/. K {::} IPJ(x) = IPu {::} f(x) f/. Pc 

Hence, x E K iff f(x) E Pc. Consequently, K is recursive, (=?<=). 
In both cases, a contradiction was achieved, thus ending the alterna

tive proof of Theorem 2.48. 

§2.6 Recursively Enumerable Sets 

We have seen that few interesting properties of programs are effec
tively decidable. All is not lost since there is a notion of partial decidability. 
Suppose we can devise an algorithm that outputs all and only members of 
some set A. We will call this algorithm a generator for A. If some x is a 
member of A, then, eventually, we will discover this by running the gener
ator until x appears as output. For an arbitrary x, we will never know if it 
has not yet appeared or if it will never appear. Consequently, in this case, 
A is only partially solvable. Technically, we will say that A is recursively 
enumerable. 
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Definition 2.49: A set A is recursively enumerable (r.e.) iff A= 0 or A is 
the range of a recursive function. 

If a set is decidable, then so is its complement. However, for partial 
decidability this is not the case. To make our further discussion of this 
issue more precise, we introduce the usual notation that A denotes the 
complement of the set A, i.e. {xlx E IN and x =/:-E A}. 

Theorem 2.50: A set is recursive iff both it and its complement are r.e. 

Proof: Suppose A is recursive. If A = 0 then A and A are easily seen to be 
r.e. Suppose y E A. Let C A denote the characteristic function of A. Since 
CA is recursive, so is the following function f: 

f(x) = { x if CA(~) = 1; 
y otherwise. 

Since A= {f(x)lx E IN}, A is r.e. A similar argument shows that A is also 
r.e. 

Suppose A and A are r.e. Suppose f and g are recursive functions 
generating A and A respectively. The characteristic function of A can be 
defined as: 

CA(x) = { 1 if f(J.LY_[f(y) = x or g(y) = x]) = x; 
0 otherwise. 

® 
Theorem 2.51: A is r.e. iff (A is the range of a partial recursive function) 
iff (A is the domain of a partial recursive function). 

Proof: The empty set is both the domain and range of .Xx[l]. Suppose A=/:- 0. 
We need to formalize the notion of the number of steps of a computation. 
While it may not be clear what a step is in some bizarre acceptable pro
gramming system, it is clear for the RAM programs. Hence, we can build 
a step counting function in the RAM programming system, and translate 
it over to any acceptable programming system. Our general step function 
below may really be measuring the number of steps taken by an equivalent 
RAM program, but that will be good enough for our purposes here. 

t ( ) { 0 if <px (y) not convergent after z steps; 
sepxyz = . 

' ' <px (y) + 1 otherwise. 

The theorem will follow from the next two lemmas, which are interesting in 
their own right. The first lemma uses a technique called dovetailing. The 
essential idea is that you want to run more and more programs on more 
and more inputs or more and more steps. At the ith stage of a dovetailing 
process you run programs 0 through i, on arguments 0 through i, for i steps 
each, looking for some property such as convergence to a particular value. 
A pictorial rendition of this process reminds some people of a dove's tail. 
Our description of this process is facilitated by the step function defined 
above. 
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Lemma 2.52: There is a recursive function g such that for all x the range 
of <{)x is the same as the domain of <{)g(x)· 

Proof: (by dovetailing) Define program i such that : 

r.pi(x, y) = IJ.z[step(x, 1r1(z), 1r2(z)) = y + 1]. 

Let g = Ax[s(i,x)]. Then, 

<{)g(x)(Y) = <{)s(i,x)(Y) 

= r.pi(x, y) 

= { ! if y E range <{)xi 
i otherwise. 

®(Lemma) 

Lemma 2.53: There is a recursive function h such that for all x the range 
of <{)h(x) is the same as the domain of <{)x· Furthermore, if the domain of <{)x 
is not empty then <{)h(x) is a recursive function. 

Proof: Define program i such that: 

r.pi(x,O) = 7rl(IJ.z[step(x,7rl(z),7r2(z)) =/:- 0]) 

·(x + 1)={r.pi(x,y) ifstep(x,7rl(y+1),7r2(Y+1))=0; 
r.p, 'y 11"1 (y + 1) otherwise. 

Notice that r.pi(x, 0) converges (if at all) to the first argument y such that 
<{)xis defined on y. Let h = Ax[s(i,x)]. ®(Lemma) 

®(Theorem) 

Let '1/J(x) = <{)univ(x,x). '1/J is partial recursive with domain K, hence 
K is r.e. Since K is r.e., its complement cannot be r.e., as otherwise, K 
would be recursive and the halting problem would be solvable, contradicting 
Theorem 2.40. 

Although the range characterization of r.e. sets is a more natural fit 
with the intuition of being able to list effectively elements of an r.e. set, 
the domain characterization is often more convenient. Consider some r.e. 
set A. In general, one cannot effectively determine if some arbitrary x is a 
member of A. However, one can start a computation that will (eventually) 
converge iff x E A. Consider the following computation using the range 
characterization of r.e. sets. Suppose that the range of/, a recursive func
tion, is A. Look for the least y such that f(y) = x. This may involve several 
subcomputations (/(0), /(1), · · ·). Now consider using the following com
putation that uses the domain characterization of r.e. sets. Suppose that 
the domain of <pi is A. Then we need only run a single computation: r.pi(x). 
This computation will converge iff x E A. Consequently, a special notation 
has been developed for r.e. sets. The domain of r.pi is denoted by Wi and is 
often called the ith r .e. set. 
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Exercise 2.54: Is there a natural number m such that 
a) Wm = {m2}? 
b) Wm =IN- {m}? 
c) Wm = {xlcpm(x) l}? 
d) W m = K and m E K? 
e) Wm=Kandm(j.K? 
f) Wm = {xl (3a, b, c, d)x = a2 + b2 + c2 + tf!} 
g) Wm = {xlx ¢. K and x::::; 1000} 

Justify your answers. 

Exercise 2.55: Use the function Comp to show that the function step is 
primitive recursive. 

Exercise 2.56: Prove that the range of any monotone increasing recursive 
function is a recursive set. 

Exercise 2.57: Is there an r.e. set of programs such that each program in 
the set computes a primitive recursive function and every primitive recur
sive function is represented by at least one program in the set? Justify your 
answer. 

Exercise 2.58: Is there an r.e. set of programs such that each program 
in the set computes a recursive function and every recursive function is 
represented by at least one program in the set? Justify your answer. 

Exercise 2.59: Is there an r.e. set of programs such that each program 
in the set computes a partial recursive function and every partial recursive 
function is represented by at least one program in the set? Justify your 
answer. 

Exercise 2.60: Suppose A is an r.e. set such that for any x E A, <t'x is total. 
Prove that there is a recursive function g such that for any y, if <py = g 
then y ¢.A. 

Exercise 2.61: A setS is productive iff there is a recursive function g such 
that whenever Wx C S, g(x) E (S- Wx)· (The symbol "C" denotes proper 
subset.) A set S is creative iff S is r.e. and Sis productive. Prove that K 
is creative. 

Exercise 2.62: Prove or disprove: The r.e. sets are closed under union. 

Exercise 2.63: Prove or disprove: The r.e. sets are closed under comple
mentation. 

Exercise 2.64: Prove or disprove: The r.e. sets are closed under intersec
tion. 

Exercise 2.65: The symmetric difference of two sets consists of all the 
elements of the first set that are not in the second and all the elements 
of the second that are not in the first. Prove or disprove: The symmetric 
difference of two r.e. sets is r.e. 
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Exercise 2.66: A total function f is monotone increasing if f(x+ 1) > f(x) 
for all x. Prove that a set is recursive iff it is the range of a monotone 
increasing recursive function. 

Exercise 2.67: Prove or disprove: Every infinite r.e. set has an infinite 
recursive subset. 

Exercise 2.68: Suppose A and B are two r.e. sets such that AU B = IN 
and A n B is a recursive set. Show that A and B are both recursive. 

Exercise 2.69: Suppose A and B are two r.e. sets such that AU B = IN 
and An B is a finite set. Show that A and B are both recursive. 

Exercise 2. 70: Show that if A is an r.e. set then there exists a recursive 
set of ordered pairs B such that A= {xl(3y)(x,y) E B}. 

Exercise 2. 71: Does there exist a set A C K such that A is r.e. and A is 
not r.e.? 

For analytical functions it is often useful for comprehension to draw 
a graph of the function. This graph is actually the collection of points in 
two-dimensional space that collectively define the function. This suggests 
the following definition. 

Definition 2. 72: For '1/J a partial recursive function, the graph of '1/J is 
defined as: 

graph"' = {(x, '1/J(x))I'I/J(x) is defined}. 

Exercise 2. 73: Prove or disprove: graph"' is always a recursive set. 

Exercise 2. 74: Prove or disprove: If '1/J is a recursive function then graph"' 
is a recursive set. 

Exercise 2. 75: Prove or disprove: If graph"' is a recursive set then '1/J is a 
recursive function. 

Exercise 2.76: Prove or disprove: If graph"' is r.e. and for any x there is 
y such that (x, y) E graph"', then '1/J is recursive. 

Exercise 2. 77: A total function f is called decreasing if x < y implies 
f(x) ;::::: f(y). For each of the following statements say whether they are 
true or false. Justify your answer with either a counterexample or a short 
proof. 

a) Iff is recursive and decreasing then range(!) is recursive. 
b) Iff is recursive and decreasing then range(!) is r.e. 
c) If f is decreasing then range(!) is recursive. 
d) Iff is decreasing then range(!) is r.e. 

Exercise 2. 78: Show that if A is an infinite recursive set then there exists 
sets B and C such that A = B U C, B n C = 0, and neither B nor C is r.e. 
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Exercise 2. 79: Prove or disprove: Every infinite index set has an infinite 
r.e. subset. 

Exercise 2.80: Prove or disprove: There is an infinite recursive subset of 
{xlcpx is recursive}. 

Exercise 2.81: Prove or disprove: If A and B are r.e. then An B is r.e. 

When discussing Theorem 2.48, we noted that all interesting in
put/output behaviors of programs are undecidable. Perhaps some of them 
are r.e. If some property is undecidable, it could be of great use to be able 
to list effectively all the programs with the property. To investigate this 
issue, we will prove an analog of Theorem 2.48 for the r.e. sets. 

Consider the process of effectively enumerating all programs with a 
certain property. Intuitively, when a particular program is added to the 
forming enumeration, the decision to include it was made based on some 
finite amount of information. This intuition is formalized in the proof below 
in what is sometimes called a key array. The test for inclusion in the enu
meration is for some program to match one of the "keys" in the array. For 
the procedure of key matching to be effective, the keys must be some finite 
set. Not any listing of a finite set will do. We must be able to tell when the 
description of the finite set is complete, as otherwise, we may find a match 
with some potential program, include it on our enumeration and then later 
find out that the key was incomplete and the listed program should not 
have been enumerated. 

Enumerations of finite sets where the end of the enumeration is also 
known are called canonical. We proceed to define a canonical enumeration of 
all and only the finite sets. For a given x, consider the binary representation 
of x and rewrite x as the sum of some powers of 2: x = 2Yn + ... + 2Yo for 
some n and Yo < ... < Yn· Then, Dx = {yo, ... , Yn}· Clearly, Do, D1, ... 
is an enumeration of all and only the finite sets. Furthermore, given x, not 
only can we enumerate all of Dx, but we can also know when we are done 
with the enumeration. Hence, the list above is canonical. 

The test for recursive enumerability of index sets below depends on 
the existence of a key array of canonical finite sets. If a suitable key array 
exists, then the index set can be enumerated effectively by listing all pro
grams that match one of the keys. This effective test is formalized in the 
next theorem. 

Theorem 2.82: Let C be any class of r.e. sets. Pc = {xiWx E C} is r.e. iff 
(there is an r.e. set A such that Wx E C iff (:lyE A)Dy ~ Wx)· 

Proof. Suppose A satisfies the hypothesis. Then Pc = {xl (3y E A)Dy ~ 
Wx}· If A= 0 then Pc = 0, an r.e. set. Suppose A =f. 0 and f is a recursive 
function with range A. Define a partial recursive function: 

1/J(z) = { 11"1(z) if DJ(1r~(z)) ~ W1rl(z) 
l otherw1se. 

So Pc = range 1/J. The other half of the theorem is proven with the aid of 
two lemmas that have independent interest. 
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Lemma 2.83: If Pc is r .e. and W E C then there is a y such that Dy ~ W 
and DyE C. 

Proof: Choose i such that domain <pi = Pc and WE C. Let r.p be a partial 
recursive function with domain W. By the recursion theorem there is a 
program e such that: 

<{)e(x) = { f(x) if <pi (e) does not converge in x steps; 
otherwise. 

If e f/. Pc then for every x it is discovered that <pi (e) does not converege 
within x steps, so <{)e = r.p (=><==). So e E Pc and <{)e = {(x, r.p(x))lx < z} 
where z is the least number such that <pi (e) !:::::; z steps. Hence, <{)e is a finite 
function. Choosey such that Dy = domain <{)e· ® (Lemma) 

Exercise 2.84: Find a proof of Lemma 2.83 that does not use the recursion 
theorem. 

Lemma 2.85: If Pc is r.e., Wi E C and Wk is an r.e. set such that Wi ~ Wk 
then Wk E C. 

Proof: Choose i such that domain r.pi = Pc. Suppose Wi E C and Wi ~Wk. 
If Wi = Wk the lemma follows. Suppose Wi c Wk. Suppose by way of 
contradiction Wk f/. C. By the recursion theorem there is a program e such 
that 

if <pi( e)!; 
otherwise. 

At first glance, the above may not seem like a description of an effec
tive algorithm. Consider the following verbal description of how program e 
proceeds on input x. Initially, program e starts up two subprocesses that 
proceed either in parallel or in a time sharing fashion. The two subpro
cesses compute r.pi(e), to check if e E Pc, and r.pi(x), to check if x E Wj. If 
neither subprocess terminates, then <pe(x) l, in which case x f/. We. If the 
second subcomputation converges before the first subcomputation, then x 
was found to be in Wj. If the first subcomputation converges later on, then 
there is no conflict as Wj c wk, so X E wk also. In the case where the 
second subcomputation converges, the computation of r.pe(x) halts, placing 
x E We. The final case to consider is when the first subcomputation con
verges, but the second one does not. When the first subcomputation halts, 
program e terminates the other subcomputation and proceeds to compute 
r.pk(x). In this case, program e will halt iff program k halts on input x. In 
any event, either We = Wk or We = Wi. 

We= Wk =?WeE C =? Wk E C (=?{::::) 
We= Wi =?We f/. C =? Wi f/. C (=?{::::). 

®(Lemma) 

Exercise 2.86: Find a proof of Lemma 2.85 that does not use the recursion 
theorem. 
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Continuing with the theorem, choose i such that domain 'Pi = Pc. By 
the s-m-n theorem there is a recursive function k such that for all y and x: 

(x) = { 1 if x E Dy; 
'Pk(y) j otherwise. 

Note that Wk(y) = Dy. Since k is recursive, 'Pi o k is partial recursive. Let 
A be the domain of 'Pi o k, an r.e. set. Now, 

yEA~ 'Pi(k(y)) !~ Wk(y) E C. 

Suppose Wx E C. We must show that there is a y E A such that 
Dy ~ Wx. By the first lemma, there is y such that Dy ~ Wx and DyE C. 
By the definition of k, Wk(y) = Dy· Hence, Wk(y) E C. Therefore, yEA. 

Suppose that there is a y E A such that Dy ~ Wx. We must show 
that Wx E C. Since yEA, Wk(y) E C. By the second lemma, and the fact 
that Wk(y) = Dy, it follows that Wx E C. ® (Theorem) 

Notice that {xltpx total} is not r.e. by Lemma 2.83 and that {xltpx 
not total} is not r.e. by Lemma 2.85. Using the above theorem is the easiest 
way to show that some index sets are not r.e. Sometimes, however, we may 
be faced with sets that are not r.e. but either they are not index sets, or it 
is very awkward to use the above theorem. Some examples of these sets are 
in the exercise below. In these cases, either reduction techniques, or direct 
recursion theorem arguments give fairly simple solutions. 

Using the canonical list of finite functions, do, d1. ... , from Exercise 
1.35 it is possible to give an alternative formulation of Theorem 2.82. 

Exercise 2.87: Prove: Let C be any class of partial recursive functions. 
Pc = {xl 'Px E C} is r.e. iff (there is an r.e. set A such that 'Px E C iff 
(3y E A)dy ~ 'Px)· 

Exercise 2.88: Which of the following sets are recursive? Which are r.e.? 
Justify your answers. 

a) {(x,y)I'Px = 'Py} 
b) {xl (3y, z)tpx(Y)! and tpy(z)!} 
c) {xl(3y,z)'Px(Y)! and 'Py(z) i} 
d) {xl (3y)tpx(Y)! and 'Py is total} 
e) {xlc E Wx}, for some constant c 
f) {x1Wx~0} 
g) {xiWx is infinite} 
h) { xl Wx is recursive} 
i) {xiWxnK~0} 
j) { xl Wx is finite } 
k) {xiWx = {x}} 
1) {xltpx(O) = 0} 

m) {xl Wx ~ {yly is even } } 
n) {xltpx is primitive recursive} 
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o) {xlcardinality(Wx) = 1} 
p) {xlcardinality(Wx) > 10} 
q) {xl(3y)cpx(Y) land y E K} 
r) {xiWx ~ K} 
s) {xiWxnK#0} 
t) {xlx E K and x < 1000} 
u) {xlx is prime} 
v) {xlx E K and xis prime} 
w) {xl (3y)A(x, y)} for some recursive set A 
x) {xlcpx is total and its range is included in the even numbers} 
y) {xiWx is finite and x > 1000} 
z) { xl IPx halts on exactly five elements } 

aa) {(x,y)IWx = Wy} 
bb) {xl the set of primes ~ Wx} 
cc) { xl Wx is an infinte union of finite sets } 
dd) {xiWx is not an infinte union of finite sets} 
ee) { xl Wx is recursive and x :::; 666} 
ff) { xl Wx is recursive and x 2:: 666} 

gg) { xl Wx is r .e. and x :::; 666} 
hh) {xiWx is r.e. and x 2:: 666} 

ii) {xiWx is infinite and Wx is infinite} 
jj) {xlcpx is recursive and x < 1000} 

kk) {xl ('<ly)cpx(Y) = y2 } 

ll) {xl (3y)cpx(Y) = y2 } 

Exercise 2.89: Suppose that A is an index set such that 1) A # 0, 2) 
A# IN, and 3) A contains an index for the everywhere undefined function. 
Prove that A is not r .e. 
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§2. 7 Historical Notes 

The notion of an acceptable programming system stems from [Rogl], 
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theorem in [Cal]. For intuitive discussion and further examples of these 
recursion theorems see [Ca2]. The fixed point theorem is from [Rog2]. The 
parametric recursion theorem is also credited to Kleene. The unsolvability of 
the halting problem first appeared in [Tur]. Most of the results on recursive 
and r.e. sets come from [Pos], along with the (relatively) informal style of 
our presentation. The material on index sets is from [Rce]. For a much more 
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3 
Abstract Complexity Theory 

In previous chapters we developed an implementation-independent 
model of computation. The fundamental features of this model were ex
amined in the last chapter. As always, we assume that cp0 , cp17 • · · is an 
acceptable programming system. Now we will develop a complexity theory 
that is independent of the machine model and of the resource being mea
sured. Consequently, this theory will be insensitive to particular language 
features and input/output conventions, etc. Given a program i and some 
measure of complexity (like time or space), the complexity of cpi is deter
mined by a function that determines, for any input x, how much of the 
resource counted by the complexity measure is used in the computation of 
cpi(x). In general, the complexity of a function is another function. This is 
because programs consume different amounts of some resources depending 
on what inputs they are given. In the case where we are measuring time, 
any divergent computation will consume infinitely many time steps without 
converging. However, it is possible for a computation to diverge and only 
use a small, finite amount of space. If a computation is undefined, then 
we would like its complexity to be undetermined as well. Consequently, we 
adopt the convention that if it turns out that the computation of cpi(x) 
diverges, then we will say that program i on input x uses infinitely much 
of the resource counted by the complexity measure. To make the case of an 
undefined computation fit neatly into our results we will adopt the conven
tion that in comparisons any natural number will be considered to be less 
than an undefined quantity. 

We will prove results about the general nature of the complexity of 
functions. Often it is desirable to talk about the complexity of a function, 
not a program. For example, it is reasonable to ask about the time complex
ity of sorting. Unfortunately, one cannot define the complexity of a function 
to be the complexity of the program that computes the given function with 
the smallest amount of resource used. The reason is, as we will show, that 
there are functions with no best program. However, it is possible to discuss 
the collection of all functions that can be computed within some resource 
bound. First, we will go over some of the fundamental ideas in a less ab
stract setting. 
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§3.1 RAM Pseudospace Measure 
Suppose P0 , P1 , ••. is a list of all and only RAM programs. In this 

section we will assume that not only that cp0 , cp1 , • · • is an acceptable pro
gramming system, but, furthermore, that RAM program Pi computes the 
function cpi, for all i. The pseudospace function Si for Pi is defined by: 

Si (X) = { ~ax integer stored in any register if Pi(x) !; 
otherwise. 

Clearly, for any i, Si is partial recursive. Some infinite loops don't use 
an infinite amount of space. Complexity should be a measure of the use of 
some computational resource and not the intricacy of a program's structure. 
Notice that Si doesn't measure all the space used by Pi. In this sense the 
pseudospace measure is only a crude approximation to the true amount of 
space used. Hence the name pseudospace. However, the difference is at most 
a multiplicative constant (the number of registers used by Pi)· One feature 
of this theory is that we will not be distracted by such details. The general 
results we prove will apply to any "reasonable" complexity measure. 

Exercise 3.1: Show that there is no recursive function g such that for each 
i and x, if cpi(x) converges then Si(x) :=:; g(x, cpi(x)). 

First, we will show that given any program i, an input x, and a bound 
y, we can tell if the pseudospace complexity of program Pi on input x is 
bounded by y. 

Proposition 3.2: Si(x) :=:; y is a primitive recursive predicate of i, x and 
y. 

Proot Let i be given and suppose that Pi has m instructions and refer
ences k registers. Then (y+ 1)k different register configurations are possible 
without storing a number larger than y. Hence, if Pi runs for more than 
m · (y + 1)k steps without using a number larger than y, then Pi is in an 
infinite loop. By our coding of RAM programs (see page 69), for all k :=:; i, 
for all m :=:; i: 

Si(x) :S y {:::} ('Vz :=:; i)('Vw :=:; i · (y + 1)i) 

[ 

w steps of P; l 
II(z,i,1r2 (Comp(i, (x,O),w))) :=:; y 

and (3w :=:; i · (y + 1)i) [7ri(Comp(i, (x, 0), w)) = Ln(i)] 

Note that for all i and x, cpi(x) :=:; Si(x). We say that program Pi is 
optimal if cpi = Si. Next we will show that optimal programs exist. In fact, 
there is a way to compute the pseudospace measure for any program in an 
optimal fashion. 
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Proposition 3.3: For any program i there is a program j such that cp3 = 
s3 = si. 
Proof: Given program Pi form P3 by replacing each INC instruction by 
a subroutine (macro) that performs the INC instruction and compares the 
result with a monitor register. The monitor register is left holding the larger 
of the two values. If Pi halts, P3 moves the monitor register to Rl. Clearly, 
S3 = Si and cp3 = S3. ® 

Since there are recursive functions with large values in their ranges 
and for any program i, !pi :::; si, it follows that there are intrinsically diffi
cult functions which require a large amount of space. It is easy to write pro
grams that use a vast amount of space. Do all programs for some functions 
consume large amounts of space? The question is answered affirmatively 
in the next result. Notice that the function asserted to exist by the next 
proposition has a range restricted to {0, 1}. The reason for this is to make 
sure that the function constructed consumes a large amount of space in its 
calculations, not just to print out the answer. 

Proposition 3.4: For all recursive functions t there is a {0, 1} valued re
cursive function f such that if cpi = f then Si(x) > t(x) for infinitely many 
X. 

Proof: Let t be given. Define f by: 

f(x) = { 1 if s ... l(x)(x):::; t(x) and cp ... l(x)(x) =/; 1; 
0 otherwise. 

First we show that f is a recursive function. Clearly, f is defined on all 
arguments. Consequently, we must show that the test "S.,.1 (x)(x):::; t(x) and 
cp.,.l(x)(x) =/; 1" is effectively computable. Since tis recursive, by Proposition 
3.2, one can test if S.,.l(x) (x) :::; t(x). If this test returns an affirmative answer 
then the computation of program 1r1 ( x) on input x converges. In which case, 
it is possible to test if cp.,.1 (x) ( x) =/; 1. Hence, f is recursive. 

By the definition of the pseudospace measure, for any x, the domain 
of cp.,.1 (x) is the same as the domain of S.,.1 (x)· Suppose cpi = f. As a con
sequence of our pairing function, there are infinitely many x such that 
1r1(x) = i. For those x's, Si(x) > t(x), as otherwise f(x) =/; cpi. ® 

The range of the function f above is {0, 1 }. The point of this restric
tion is to make sure that computing f intrinsically requires a lot of space. 
Restricting the range guarantees that computing f does not consume space 
because it takes a lot of space to form the output. Rather, the space is 
consumed in figuring out what the result of the computation is. 

§3.2 Abstract Complexity Measures 

Now we begin our study of complexity in full generality. Some funda
mental properties of complexity measures are presented in this section. To 
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do so, we first state precisely what we will call a measure of complexity. The 
presentation is axiomatic and is based on the assumption that the complex
ity of a program is given by a function, that determines for each input, how 
much computational resources are consumed by the program on the given 
input. The first axiom asserts that the function giving the complexity of 
a program should be defined on all arguments for which the program con
verges, and no others. Intuitively, if a program does not halt on some input, 
then we would like the complexity of that computation to be infinite, or, 
technically, undefined. The second axiom asserts that you can always at
tach a meter to any computation and determine if the computation finishes 
within a certain bound. 

Definition 3.5: Suppose cp0 , cp1 , · · · is an acceptable programming system. 
Then 1/>0, 1/>1, · · · is a complexity measure iff 

1. for all i, domain cpi = domain 1/>i, and 
2. 1/>i(x) ~ y is a recursive predicate of i, x, andy. 

The RAM pseudospace measure is a complexity measure, let 1/>i = Si. 
Via isomorphism, we can transfer any complexity measure to any accept
able programming system, so every acceptable programming system has a 
complexity measure. Most notions of time and space can form the basis for 
a complexity measure. 

First we will verify that the two complexity axioms are independent. 
Suppose that for any i, 1/>i is defined to be equal to cpi. Then the first axiom 
is satisfied but not the second. To see this, suppose by way of contradiction 
that R is a recursive predicate such that R(i,x,y) = 1 iff 1/>i(x) ~ y. Then 
by the recursion theorem there is a program e such that for all x: 

( ) -{1 ifR(e,x,0)=1; cpe X -
0 otherwise. 

cpe(x) = 1 => R(e,x,O) = 1 => lf>e(x) = 0 => cpe(x) = 0 (=>~) 
cpe(x) = 0 => R(e,x,O) = 0 => lf>e(x) > 0 => cpe(x) > 0 (=>~) 

Now let 1/>i = Ax[O], for all i. Then axiom two is satisfied, but not 
axiom one, as witnessed by any partial, not total, recursive function. 

Exercise 3.6: Show that there is a recursive function f such that, for any 
program i, cpf(i) = 1/>i. 

One of the ramifications of VLSI is that it is now possible to imple
ment a process on a chip and build a machine that executes that process 
very inexpensively. The analog in the theory is that there are complexity 
measures where some programs don't cost anything. Suppose lf>o, 1/>1, • • • is 
a complexity measure for cp0 , cp1 , · · • an acceptable programming system. 
Suppose f is a recursive function and cpi =f. Now define: 

.Pi(x) = { 1/>i(x) if i =J j: 
0 otherwise. 

Then .Po, .P1, · · · is also a complexity measure for <po, <p1, · · ·. 
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Exercise 3. 7: Which of the following are abstract complexity measures? 
Justify your answers. 

a) The number of compositions used to define a partial recursive func-
tion. 

b) The number of increment statements executed by a RAM program. 
c) The number of times a Turing machine moves to the left. 
d) The number of tape cells visited by a Turing machine. 

Exercise 3.8: Suppose ~Po, IP1 , · · · is a complexity measure for cp0 , cp1 , · · · an 
acceptable programming system. For each of the following sets, determine 
if it is recursive, r.e. but not recursive, or not even r.e. Justify your answers. 

a) {(x,y)l(3t)1Px(Y):::; t} 
b) {(x,t)l(3y)1Px(Y):::; t} 
c) {(y,t)l(3x)1Px(Y):::; t} 
d) {(x,y,t)I~Px(Y):::; t} 
e) { (x, y)l ( •3t)1Px(Y) :::; t} 
f) { (x, t)l ( •3y)1Px(Y) :::; t} 
g) {(y,t)l(•3x)1Px(Y):::; t} 
h) {(x,y,t)IIPx(Y) > t} 

Complexity measures can be very pathological. However, any reason
able measure of complexity that anyone has thought of forms the basis for 
an abstract measure of complexity. Hence, results that are true for an ar
bitrary complexity measure will certainly be true for all the measures that 
we really care about. 

Definition 3.9: 1/;0 , t/h, · · · is an r.e. sequence of partial recursive functions 
if there is a recursive function f such that for any i, 1/Ji = 'PJ(i)· 

As another example of "measure manipulation" techniques, we present 
the following. 

Proposition 3.10: Let fo,ft, . .. and g0 ,g1 , ••• be r.e. sequences of recur
sive functions. For any acceptable programming system cp0 , 'Pb • · · there is 
a complexity measure IP0 , IP1 , · · · such that for any j there is an i such that 
'Pi= /i and q;i = 9i· 

Proof: Suppose the hypothesis. Let j be a recursive function such that 
('<li)cp j(i) = k Suppose !lio, !li1, · · · is a complexity measure for cpo, 'Pl, · · ·. 
Let p be a padding function. Define F as a monotone increasing recursive 
function such that for all i, 'PF(i) = k 

Now define: 

F(O) = ](0) 

F(x + 1) = p(](x + 1), f.Lyfp(J(x + 1), y) > F(x)]). 

q;i = { 9j 
!Iii 

if j is such that i = F(j), for some j; 
otherwise. 
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Exercise 3.11: Show that the list IP0 , IP1, · · · defined above is a complexity 
measure. 

All complexity measures, even the pathological ones, are related by 
no more than a computable factor. The statement of the next theorem also 
uses, for the first of many times in this treatment, the standard complexity 
theoretic phrase "for almost all x" to mean "all but finitely many x." The 

00 

more concise "'Vx" will be used as an abbreviation for this phrase. 

Theorem 3.12: (Recursive relatedness of complexity measures) Suppose 
~Po, IP1, .. · is a complexity measure for cpo, cp1, .. · an acceptable program
ming system and !Po, !li'1 , • • • is a complexity measure for 1/Jo, t/J1, · · · another 
acceptable programming system. Let t be a recursive function such that for 
all i, cpi = tPt(i)· Then there is a recursive function r such that for all i, for 
almost all x: 

and 

Moreover, r can be made monotone nondecreasing in its second argument. 

Proof. A technique called maxing is used. Define a recursive function h, 
using the second axiom for complexity measures, such that for all i, x and 
y: 

h(i x ) = { max{IPi(x), !li't(i)(x)} if IPi(x) = y or !li't(i)(x) = y; 
' ' y 0 otherwise. 

Define the desired r by: 

Now, 'Vi, 'Vx ~ i, 

r(x,y) = ~axmaxh(i,x,z). 
•:::;x z:::;y 

r(x, !li't(i)(x)) ~ h(i, x, !li't(i)(x)) ~ IPi(x) 

r(x,IPi(x)) ~ h(i,x,IPi(x)) ~ !li't(i)(x). 

As an application of the above theorem we will show that the value 
computed by any program is bounded above by the complexity of comput
ing that value. 

Proposition 3.13: Suppose ~Po, IP1, · · · is a complexity measure on cp0 , cp1, 
· · · an acceptable programming system. Then there is a recursive function 
b such that for all i and almost all x, cpi(x) ~ b(x,IPi(x)). 
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Proof. Let 1/Jo, 1/;1 , · · · be the acceptable programming system formed from 
Po, P1, ... , the list of all RAM programs. Then the pseudospace functions 
80 ,817 .•. form a complexity measure for 1/;0 , 1/;17 • · ·. By the isomorphism 
theorem (Theorem 2.39) there is a recursive, one-to-one, and onto function 
t such that for all i, 1/Ji = Ci't(i)· By the recursive relatedness theorem, there 
is a recursive function r such that for all i and almost all x, 

Since tis onto IN, let b = r. 

Exercise 3.14: Show that the recursive relatedness theorem cannot be 
improved to make the bounding function r a function of only the complexity 
in the related system. 

Exercise 3.15: Show that the recursive relatedness theorem cannot be 
improved to make the inequalities hold for all values of x. 

Exercise 3.16: Prove or disprove: The function r from the recursive relat
edness theorem can be made primitive recursive. 

Exercise 3.17: Show that there is no recursive function b such that for all 
i, for all but finitely many x, Pi(x)::;: b(x, Ci'i(x)). 

§3.3 Fundamental Results 

The first result that we will examine should come as no surprise to 
anyone who has graded programs for an introductory programming course. 
There are arbitrarily bad ways of computing any function, with respect to 
any complexity measure. 

Proposition 3.18: Suppose 4>0 , 4>17 • · • is a complexity measure for cp0 , 

cp1, · · · an acceptable programming system. For any program i and any 
recursive function h, there is a program e such that Ci'e = Ci'i and for all x 
in the domain of ~Pi, Pe(x) > h(x). 

Proof. Suppose the hypothesis. By the recursion theorem there is a program 
e such that for all x, 

if Pe(x) > h(x); 
otherwise. 

Program e, on input x, begins by computing h(x). The second axiom of 
complexity measures guarantees the comparison between Pe(x) and h(x) 
can be done effectively. For any x, if Pe(x) ::;: h(x) then Ci'e(x) is undefined, 
(=><==). Hence, Ci'e =~Pi and Pe bounds h. ® 
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Exercise 3.19: Suppose f and hare recursive functions. Show that there 
is an r.e. list of programs g(O), g(1), · · · such that: 

a. Vi, (/)g(i) = J, 
b. Vx, 4>9 co)(x) > h(x), and 
c. Vi'Vx, !'Pg(i+I)(x) > h(4>9(i)(x)). 

Next, we will show that there are arbitrarily difficult to compute 
functions. In other words, no matter how much of some computational 
resource you have available for use, there will be some functions that you 
will not be able to compute. Such functions will be called arbitrarily difflcult 
or arbitrarily complex. The function that we will construct will have range 
{0, 1}. This means that the function is difficult to compute, not because 
the answer is difficult to output, but because it is intrinsically difficult to 
figure out what the answer is. 

The proof below uses three fundamental proof techniques: finite ex
tension, diagonalization and cancellation. The idea of a finite extension 
argument is to construct a function a (finite) piece at a time. Suppose we 
want to construct some function f. Starting with the nowhere defined finite 
function, a procedure (called a stage) is executed that determines the value 
of f on some initial segment of arguments. Suppose /(0), /(1), · · ·, f(n) 
are determined in this manner. Invoking the procedure again will extend 
the initial segment of arguments on which f has been defined. The second 
procedure call may define, say, f(n + 1), · · ·, f(m), for some m > n. In this 
way, the value of f(x), for any x, can be determined by executing enough 
stages, in order, for x to be included in the domain of f. In the argument 
below, each stage defines a function f on a single point, i.e., f(x) is defined 
at stage x. 

The reason that a particular function f is being constructed in the 
first place is that we want this f to have certain properties. In the argument 
below, we want f to have the property that any program computing it is 
particularly complex. One way to make sure that the constructed f has the 
desired properties is to make f different from all the functions that don't 
have the property. For the argument below, we want to make f different 
from any function that is computed by a fast program. Suppose we discover, 
in the course of the construction, that cpi does not have the property that 
we want our f to have. Then we will define f ( x) =/:- cpi ( x), for some x. In 
doing so, we will have diagonalized against program ion argument x. The 
term "diagonalization" is an historical artifact. The first diagona1i.zation 
argument constructed a function f that was different from each of 1/Jo, 1/JI, 
· · · by making f(x) =/:- 1/Jx(x). Consider an infinite table with one column 
for each function and one row for each argument: 
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'1/Jo '1/Jl 'I/J2 '1/Ja 'I/J4 

0 '1/Jo(O) '1/Jl (0) 'I/J2(0) '1/Ja(O) 'I/J4(0) 

1 'I/Jo(1) '1/Jl (1) 'I/J2(1) 'I/Ja(1) 'I/J4(1) 

2 'I/Jo(2) '1/Jl (2) 'I/J2(2) 'I/Ja(2) 'I/J4(2) 

3 'I/Jo(3) '1/Jl (3) 'I/J2(3) 'I/Ja(3) 'I/J4(3) 

The "diagonalization" then is to traverse the diagonal of the above table, 
selecting in turn a value '1/Jx(x), and making f(x) different from that value. 

In other diagonalization arguments, like the one below, the diagonal
ization against a program i may not occur at stage i. So we must have 
some way of keeping track of which programs we have already diagonalized 
against, and which ones we have yet to consider. This is where cancella
tion comes in. Once program i is diagonalized against, we will cancel it. 
Canceled programs are never considered later for future diagonalizations. 

Theorem 3.20: Suppose 4>0 , 4't, · · · is a complexity measure for cp0 , 'Pt.··· 
an acceptable programming system. For all recursive functions h there is 
a {0, 1} valued recursive function f such that for all programs i, if 'Pi = f 
then 4>i(x) ~ h(x), for almost all x. 

Proof. The desired f is constructed via diagonalization and cancellation 
in effective stages of finite extension below. Let h be as in the hypothesis. 
Execute the following stages for x = 0, 1, · · ·. 

Stage x. Let i be the least uncancelled program such 
that i :::; x and 4>i(x) < h(x). If there is no such i, 
set f(x) = 0. Otherwise, set f(x) = 1 ..:... 'Pi(x) and 
cancel program i. Go to stage x + 1. 
End stagex. 

The comparison between 4>i(x) and h(x) can be done effectively, due 
to the second axiom of complexity measures. Each stage performs this test 
for finitely many values of i. Consequently, each stage finishes and f is 
recursive. Furthermore, by the construction, f(x) :::; 1 for each x. Hence, f 
is a recursive {0, 1} valued function. 

Suppose by way of contradiction that 'Pi = f and 4>i(x) < h(x) for 
infinitely many x's. Choose the least stage x such that x ~ i, 4>i(x) < h(x) 
and all the programs j < i that are ever canceled are canceled before stage 
x. Choosing x such that 4>i(x) < h(x) is no problem as we have assumed 
that there are infinitely many such x's. Almost all of them will be larger 
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than i. Some of the programs will be canceled in the construction off, and 
some will not. It would take a solution to the halting problem to sort the 
j < i into two sets: the eventually canceled and the forever uncancelled. 
However, since there are only finitely many j < i that ever get canceled, 
these cancellations will take place before some stage. The choice of a stage x 
such that all the programs j < i that are ever canceled are canceled before 
stage x is noneffective. However, we are assured that such a stage does exist. 
For that stage x, program i will be the target of our diagonalization, and i 
will be canceled. Hence, f(x) will be made not equal to ct:'i(x) at stage x, a 
contradiction. ® 

Exercise 3.21: Prove that there are infinitely many different functions f 
satisfying the above theorem. 

Exercise 3.22: For recursive functions f and g, a function f is g sparse 
if, for any x, if f(x) =/= 0 then f(y) = 0 for x < y ::=; x + g(x). Prove that, 
for any recursive function g, there are arbitrarily complex, g sparse, {0, 1} 
valued recursive functions. 

Definition 3.23: For recursive functions f and g, f is a finite variant of g 
if f(x) = g(x) for all but finitely many x. 

Exercise 3.24: Prove that there are recursive functions so complex that 
even their finite variants are arbitrarily complex. 

Exercise 3.25: Prove that there are {0, 1} valued recursive functions so 
complex that even their finite variants are arbitrarily complex. 

§3.4 Complexity Gaps 

Let t be a recursive function. Consider the class of functions com
putable using some resource bounded by t, i.e., {/1 f is recursive and there 
exists an i such that ct:'i = f and for almost all x, !'Pi(x) ::=; t(x)}. Now 
suppose that g is some very large recursive function. We will show that the 
class of functions computable with resource bound g o t is not necessarily 
larger than the class of functions computable with resource bound t. If the 
two classes are the same, then there is a "gap" in the complexity between 
t and g o t, as no new functions become computable if the resource avail
able is expanded from t togo t. Arbitrarily large gaps, represented by the 
function g, do not start at arbitrary points in the complexity spectrum. 
For the familiar measures of complexity there is some evidence indicating 
that the gaps only start occuring above resource bounds that are considered 
high. The theorem we will prove below starts with an arbitrary gap size, 
represented by the recursive function g, and produces a recursive function 
t, that is at the beginning of a size g gap. 

A concrete example may illustrate this point better. Suppose that 
we are interested in measuring the memory usage of programs. Then the 
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bounding function t would be a constant function, where the constant was 
the memory size of the machine that we were using. Now suppose that we 
have ordered another block of memory, expanding the machine's storage 
capacity togo t. Here, g = Ax[x + y], where y is the amount of memory 
just added to the machine. The theorem below tells us that the newly 
enhanced machine may not be capable of computing any functions that 
weren't computable with the old configuration. Concisely, the moral of the 
following result is that adding resources to a machine is no guarantee that 
you have enhanced its computational power. 

Theorem 3.26: (The Gap Theorem) Suppose 1/>0 , lf>t, · · · is a complexity 
measure for cp0 , cp1 , · · · an acceptable programming system. Suppose g is 
a recursive function such that for all x and y, g(x, y) > y. Then, from g 
one can effectively find a recursive function t such that for all i and x if 
t(x) < 1/>i(x) < g(x, t(x)) then x::::; i. 

Proof. The intuition behind the proof is to make t so large that g becomes 
almost insignificant. Suppose the hypothesis. Clearly, the following function 
t suffices: 

t =AX [~J.y[(V'i)y < 1/>i(x) < g(x, y) ::::} x ::::; i]]. 
To complete the proof, we must show that t is recursive. Toward this end, 
rewrite t as: 

t =Ax [MY[(V'i < x)l/>i(x) ::::; y or g(x, y) ::=:; 1/>i(x)]]. 

By the second axiom of complexity measures all the conditions in the above 
definition oft are effectively testable. Now, it remains to show that for each 
x, a suitable y exists. Inductively define Yo = 0 and Yi+l = g(x, Yi ). By the 
monotonicity of g, for all x, Yo < Y1 < Y2 < .... Furthermore, for all j, 

Yi < g(x,yj) = Yi+l < g(x,yi+t). 

Note that the cardinality of X = {1/>i(x)li < x} ::::; x. There are x + 1 
values in the sequence: yo, Yb ... , Yx+l· Hence, at least one of the values is 
different from each of the at most x members of X. In other words, there 
exists a j ::::; x + 1 such that for all i < x: 

1/>i(x) ::=:; Yi or g(x,yj) ::=:; 1/>i(x). 

® 
Note that in the above proof, it turns out that for all x, t(x) ::=:; Yz+l· 

As an illustration of the gap theorem, we will show that there are programs 
that can run as fast on some slow machine as they can on a fast one. Suppose 
you have two computers, one very fast and one very slow. Base an acceptable 
programming system on each of them. For each acceptable programming 
system define an associated complexity measure to be the total running 
time of the program under consideration. Let r be the function from the 
recursive relatedness theorem that relates the two complexity measures. 
Let t be a total recursive function at the bottom of an r-gap for the slow 
machine. If a program runs in time bounded by t on the fast machine, then 
it runs in time r o t on the slow one. But any program that runs in time 
r o t on the slow machine actually runs in time t for all sufficiently large 
inputs on the slow machine. 
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Exercise 3.27: Show that the function t in the gap theorem can be made 
arbitrarily large. More specifically, let g be any recursive function with 
y < g(x, y), for all x and y. Let b be any recursive function. Show that 
there exists a recursive function t such that b(x) ~ t(x) for all x and if 
t(x) < 4>i(x) < g(x, t(x)) then x ~ i. 

§3.5 Complexity Compression 

In this section we will construct an r.e. sequence of programs for par
tial recursive functions such that each program in the sequence is optimal 
(with respect to a recursive factor) among all programs computing the same 
function. Each of the programs in the sequence has its complexity "com
pressed" between its known lower bound and some recursive factor of that 
bound. 

Theorem 3.28: (The Compression Theorem) Suppose 4>0 , c:P1 , ···is a com
plexity measure for cpo, 'Pl, · · · an acceptable programming system. Then 
there are recursive functions f and g such that the following all hold: 

00 

2. 'Vi 'Vj,cpj = 'PJ(i) ==?'Vx,4>j(x) ~ 4>i(x) 
00 

3. 'Vi 'Vx,4>f(i)(x) ~ g(x,4>i(x)). 

Proof: The idea is to make 'PJ(i) different from the result of each program 
with complexity smaller than 4>i infinitely often. The set of programs whose 
complexity is too low is given by: 

C(i,x) = {j < xl4>j(x) < 4>i(x)}. 

Now define: 

( ) { 11-Yl'li E C(i, x), y-::/; cpj(x)] if 'Pi(x) !; 
'PJ(i) x = 1 otherwise. 

The second complexity measure axiom guarantees that if 'Pi ( x) ! then 
C(i,x) is recursive. The first axiom ensures that if j E C(i,x) then cpj(x) !. 
Hence, if 'Pi(x) ! then 'PJ(i)(x) !. Since the cardinality of C(i,x) is no 
more than x, 'PJ(i)(x) ~ x. f is recursive by the s-m-n theorem. Therefore, 
1. has been established. To verify 2. consider j such that cpj = 'PJ(i) and 
4>j(x) < 4>i(x) for infinitely many x's. Then for some x > j, j E C(i,x). 
'PJ(i)(x) is made to differ from cpj(x) for that x. To prove 3. we start by 
defining a recursive function h such that for all i, x and y: 

h(i,x,y) = { 4>0 f(i)(x) if 4>i(x) = y; 
otherwise. 

The desired g is given by: 
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g(x,y) = maxh(i,x,y) . 
• :::;x 

If cpi(x) ! and x ;:::: i then 

® 
Suppose f and g are as promised by the above result. Then for all i 

and almost all x: 

Furthermore, 4>i is a lower bound on the complexity of any program comput
ing cpf(i)· So program /(i) is optimal for cpf(i)• within a factor of g. Also, the 
complexity of program /(i) is "compressed" between 4>i and >.x[g(x, 4>i(x))]. 

Exercise 3.29: Prove a version of the above theorem where the range of 
cpf(i) ~ {0, 1}. 

§3.6 Speed-up 

In this section we will show that there are functions that have no 
best program. This will be accomplished by constructing a recursive func
tion such that, given any program for that function, we will be able to find 
a faster one. The intuitive idea is to construct a sequence of programs via 
diagonalization. All the programs in the sequence do the same diagonaliza
tion, except that the ith program in the sequence doesn't consider programs 
0, 1, ... i- 1 for cancellation. So, the i +1st program is faster than the ith 
one since it simulates one less program in its decision as to which program 
to cancel. The programs not considered for cancellation will affect only 
finitely many values. Hence, each program in the sequence will differ from 
the first program (which considers all programs for cancellation) on only 
finitely many values. A simple patching argument rectifies the situation. 
Since the patching will alter the program somewhat, we will use recursion 
to diagonalize against the patched versions of the programs. 

Theorem 3.30: (The Speed-up Theorem) Suppose 4'o, 4>1, · · · is a com
plexity measure for cp0 , cp17 • · • an acceptable programming system. Let h 
be a recursive function that is monotone nondecreasing in its second argu
ment. Then there is a recursive function f such that for any program i, if 
cpi = f then there is a program j such that cpi = f and for almost all x, 
h(x,4>i(x)) ~ 4>i(x). 
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Proof. Suppose the hypothesis. Using the operator recursion theorem (The
orem 2.20) we will construct an r.e. sequence of programs named t(O, 0), 
t(O, 1), t(1, 0), · · · , t(i,j), · · ·. ct:'t(o,o) will be our f. The construction below 
attempts to make ct:'t(o,o) different from any function ct:'n such that program 
t(n + 1, 0) is not h faster than program n. Program t(n + 1, 0) will com
pute basically the same function as program t(O, 0). However, t(n + 1, 0) 
will be faster than program t(O, 0) since it will consider fewer programs for 
cancellation. The lack of attention program t(n + 1, 0) pays to some diago
nalizations will cause it to compute a function that is different from the one 
computed by program t(O, 0). As we will see, this difference will be small 
and can be rectified by a suitable patch. Program t(n, y) will compute a 
patched version of ct:'t(n,O)· In Exercise 1.35, a canonical listing do, d1, · · ·, 
of all and only the finite functions was developed. This listing is used below 
to implement the patching over of one program with a finite set of argu
ment/output pairs. Recall that do is the empty function, e.g., its domain is 
empty. Program t(n, 0) is unpatched. Program t(n, q) will be the program 
t(n, 0) patched with dq. For each nand q, ct:'t(n,q) is constructed in effective 
stages of finite extension. 

Stage x in the construction of IPt(n,q)· 
Firstly, compute ct:'t(j,p)(x) for n + 1 ::;: j ::;: x and p::;: x. 

These values will be used below. In fact, if all of these com
putations are convergent, then this stage will converge. If even 
one of these computations diverges, then this stage will diverge, 
not continuing past this point. If xis in the domain of dq, then 
ct:'t(n,q)(x) = dq(x). If not, then 

ct:'t(n,q)(x) = 1+max{cpi(x)ln::;: i < x 

and i not yet canceled 

and 4>i(x) < max{h(x,4>t(i+l,p)(x))lp < x}}. 

Notice that, since {jl n + 1 ::;: j ::;: x} = {i + 11 n ::;: i < x}, 
the values needed for the max above to be defined are from 
precisely the same computations that started this stage. Cancel 
all i's such that ct:'i(x) was included in the max above. Go to 
stage x + 1. 
End Stage x. 

The hard part of this proof is to show that all the IPt(n,q) 's are total. 
Recall that do is the empty finite function. Hence, if ct:'t(i,O) is total, then 
for any y, ct:'t(i,y) is total. 

We will show, by induction on x that for all n, IPt(n,o)(x) is defined. 
Note that if n ;:::: x then there are no j's such that n + 1 ::;: j ::;: x. Hence, 
ct:'t(n,o)(x) is defined when n;:::: x. To keep track offor which values of nand 
x we know that ct:'t(n,o)(x) is defined, we use pictures. In the picture below, 
and all other pictures in this proof, we use a "•" in row x and column n to 
indicate that ct:'t(n,o)(x) is defined. 
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• 

• • 

• • • 
X • • • • 

• • • • • 

• • • • • • 
n 

Suppose inductively that for all n and for any x < x', IPt(n,o)(x) 
is defined. By the induction hypothesis, all stages prior to stage x' have 
completed and the construction reaches stage x'. We use "o" in our pictures 
to indicate that in row x and column n, ct:'t(n,o) ( x) is defined because of the 
induction hypothesis. Our picture now looks like: 

I • 

I • • 

I 
0 0 0 • • • 

X I 0 0 • • • • 

I 
0 • • • • • 

I • • • • • • 
n 

It remains to show that ct:'t(o,o)(x)!, ct:'t(l,o)(x)!, · · ·, ct:'t(x-l,o)(x) !. This is 
done by a subinduction. Formally, we will show that if 

IPt(x,o)(x) !.ct:'t(x-l,O)(x) !.···,cpt(x-i,o)(x)! 

Then ct:'t(x-i-l,O) (x) !. The subinduction is on i. The base case is when i = 0. 
Note that, since x ~ x, ct:'t(x,o)(x) !. Now, ct:'t(x-l,o)(x)! if ct:'t(j,o)(x)!, for 
x ~ j ~ x. Therefore ct:'t(x-l,o)(x) !-

Suppose subinductively that 

IPt(x,o)(x)!, ct:'t(x-l,O)(x) !.- · ·, ct:'t(x-i,o)(x)! · 
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Using"<>" in row x and column n to indicate that IPt(n,o)(x) is defined 
because of our subinduction hypothesis, our picture now looks like: 

• 
<> <> • • 

0 0 0 • • • 

X o 0 e e e e 

0 • • • • • 

• • • • • • 
n 

Now, IPt(x-i-l),o(x)! when Cf1t(j,o)(x)! for x-i:::; j:::; x. The conver
gence of these computations is stipulated by the subinduction hypothesis. 
Therefore Cf1t(x-i-l,o)(x) !· 

This completes the subinduction and the induction. Hence, all the 
IPt(n,o) 's are total. By the remarks above about the effect of patching on the 
t(n, D)'s, IPt(n,q) is total for each nand q. Now to complete the proof. Let f = 
IPt(O,O)· Suppose ~Pi = f. Consider the difference between f and IPt(i+l,O)· 
Program t(i + 1,0) ignores all the j:::; i when considering which programs 
to cancel. Only finitely many of the j's less than i ever get canceled during 
the construction of f. After they are canceled, these programs have no 
effect on the calculation of f. Let S = {j I j :::; i and j is canceled in the 
construction of IPt(O,o)}· Choose stage s so large that all the programs in S 
are canceled before stages. Then Cf1t(i+l,o)(x) = f(x) for all x ~ s. Choose 
p such that the domain of lip = {z < s} and dp(z) = IPt(o,o)(z) for all 
z < s. Then Cf1t(i+l,p) = f. Suppose Pi(x) < h(x,Pt(i+l,y)(x)) for some 
x > max{i,y}. Then h(x,Pt(i+l,y)(x)) :::; max{h(x,Pt(i+l,y)(x))ly < x}. 
Since {h(x,Pt(i+l,y)(x))ly < x} ~ {h(x,Pt(j,y)(x))ly < x} for j < x and j 
not canceled prior to stage s, IPt(o,o) would be defined differently from IPi 
at stages (=?<=). ® 
Exercise 3.31: The speed-up theorem shows that there is a function f 
for which there is no fastest program. Suppose IPio = f. By the speed-up 
theorem, there is a program i1 such that Cf1i 1 = f and h(x, Pi1 (x)) :::; Pi0 (x), 
for all but finitely many x. Similarly, there is a still faster program i2 for f, 
etc. Show that the speed-up theorem is noneffective by showing that there 
does not exist a recursive function g such that g(i;) = iH1, for all j. 
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§3. 7 Measures of Program Size 

So far, we have been concerned with calculating the amount of some 
resource consumed by various computations. Now we will consider measures 
of program size. These measures are static in that the size of a program 
does not vary with its inputs. However, as we will see, there are some 
relationships between the size and the complexity of programs. Throughout 
this section, <p0 , <p1, • • • will denote an acceptable programming system and 
lf>o, 1/>1, · · · an associated complexity measure. 

Definition 3.32: A size measure is any recursive function sz such that for 
any n, { <{)i I sz( i) = n} is finite. 

The following are all measures of program size: the number of char
acters in a RAM program, the number of quintuples in a Turing machine 
program, and the index of the program in its associated acceptable program
ming system. Note that the number of statements in a Pascal program is 
not a measure of program size. By substituting a different natural number 
for n in the following program schema will produce infinitely many Pascal 
programs all with four instructions and all computing a different constant 
function. 

program constant() 
begin 

writeln(n) 
end. 

Size measures as we have defined them have some pathologies. For 
example, suppose p is a padding function. Define a recursive function p' 
such that for all i and x: 

p'(i,x) = p(i,JLy[p(i,y) > max{i,x}]). 

Now define s, a size measure, as follows: 

sz(i) = {~'(j,O) if 3j,y .such that max{j,y}:::; i and p'(j,y) = i; 
z otherw1se. 

Then, for any i, p'(i,O), p'(i,l), ···all have the same size. By our 
definition, this is not a problem because they all compute the same function. 
We can fix this pathology by demanding that any size measure be such that 
there are only finitely many programs (as opposed to functions) of a given 
size. In symbols, we say that for all n, { il sz( i) = n} is finite. The important 
property that makes the proofs below go through is that for any n, there 
are only finitely many functions computed by programs with size n. Next, 
we present a very general padding theorem. 

Theorem 3.33: (Length Padding) For any measure of program size, there 
is a recursive function p such that Vi, <{)i = <{)p(i) and sz(i) < sz(p(i)). 
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Proof. Let some measure of program size be given. Let s be the store func
tion of the s-m-n theorem. By the parametric recursion theorem there is a 
recursive function f such that 

( . )-{cpi(Y) ifsz(/(x))>sz(i); 
cpf(x) ~. y - x otherwise. 

It cannot be the case that sz(f(x)) ::::; sz(i) for all but finitely many 
x, as then there would be infinitely many constant functions of size less 
than sz(i). A similar argument shows that sz(s(f(x), i)) is greater than 
sz(i) for some x. Choose x' such that for any x;:::: x', sz(f(x)) > sz(i) and 
sz(s(f(x),i)) > sz(i) The desired pis given by: 

p(i) = s (! (J.tz [min { sz(f(z) ), sz( s(f(z), i))} > sz(i)]), i). 

Then, clearly, sz(p(i)) > sz(i) and for all z: 

cpp(i) (y) = cps(f(~£z(min{sz(f(z)),sz(s(f(z),i))} >sz(i)]),i) (y) 

= cpf(x)(i, y) for some x ;:::: x' 

= cpi(Y) 

® 
Exercise 3.34: Prove that for any measure of program size and any recur
sive function h, there is a recursive function p such that for all i, cpi = cpp(i) 
and h(sz(i)) < sz(p(i)). 

In contrast to padding techniques, which are useful theoretically, in 
practice, a minimal size program is often sought. A program i is minimal iff 
cpi "# cpi for all j such that sz(j) < sz(i). The set of minimal size programs 
is not r.e. Moreover, the following result tells us that the set of minimal 
size programs is not even close to being effectively enumerable. 

Theorem 3.35: Every r.e. subset of the set of minimal size programs con
tains programs for only finitely many functions. 

Proof. Choose an arbitrary size measure. We will prove that any r.e. subset 
of the set of minimal size programs contains programs of only finitely many 
different sizes. The theorem will follow. Suppose by way of contradiction 
that f is a recursive function with an infinite range such that, for all i, 
/(i) is minimal and the set {sz(/(i))li E IN} is infinite. By the recursion 
theorem there is a program e that is described as follows. 

e: (x) 

Choose i least such that sz(/(i)) > sz(e). 
y := cpf(i)(x). 

y 
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The above construction will work, provided such an i always exists. 
Since f is assumed to enumerate programs of infinitely many different sizes, 
a suitable i will always be found. The contradiction is that program e is 
smaller that program /(i). Both programs compute the same function, but 
/(i) is supposed to be minimal. ® 

We will continue our study of size measures by considering preproces
sors. Preprocessors change the syntax, but not the semantics, of programs. 
Optimizing compilers are examples of preprocessors. Unfortunately, every 
preprocessor is very far from being an optimizer. 

Definition 3.36: A recursive function f is a preprocessor if, 'Vi, 'Pi= 'PJ(i)· 

Theorem 3.37: Suppose 1/>0 , 1/>1, • • • is a complexity measure for r.po, r.p1 , · · · 

an acceptable programming system. Let sz be a measure of program size. 
Suppose f is a preprocessor. Let g and h be recursive functions. For any 
program i, one can effectively find a program j such that 

1. 'Pi = r.p f(j) = 'Pi 

2. sz(f(j)) ~ g(sz(i)) and 

3. for all x in the domain of r.pi,l/>f(j)(x) ~ h(x,l/>i(x)). 

Proof. Suppose the hypothesis and let i be given. By the parametric re
cursion theorem there is a recursive function m such that for all x and 
y: ! 'Pi(Y) if sz(f(m(x))) ~ g(sz(i)) and 

q;f(m(x))(Y) ~ h(y,l/>i(Y)) 
'Pm(x)(Y) = x if sz(f(m(x))) < g(sz(i)) 

i if sz(f(m(x))) ~ g(sz(i)) and 
q;f(m(x))(Y) < h(y,l/>i(y)). 

Since, for any x, 'PJ(m(x)) = 'Pm(x)• there can only be finitely many 
x's such that sz(f(m(x))) < g(sz(i)), as otherwise there would be infinitely 
many constant functions with size bounded by g(sz(i)). This would lead to 
a contradiction. Hence, the second case of the definition of 'Pm(x) can apply 
for only finitely many x's. Choose an x such that sz(f(m(x))) ~ g(sz(i)). 
So, the first or third case of the definition of 'Pm(x) must apply. If, for some 
y, 'Pm(x)(Y) =j, then it must be that the third case is being applied and, 
hence, 1/>f(m(x))(Y) < h(y,l/>i(Y)). Consequently, 'PJ(m(x))(Y) ! However, if 
'PJ(m(x))(Y) ! then 'Pm(x)(Y) !, (=><=). Therefore, for ally, 1/>f(m(x))(Y) ~ 
h(y,l/>i(Y)) and 'Pm(x)(Y) = 'Pi(y). In summary: 

'PJ(m(x)) = 'Pm(x) ='Pi 

sz(f(m(x))) ~ g(sz(i)) and 

'Vy,l/>f(m(x))(Y) ~ h(y,l/>i(y)). 

The desired j is then m( x). 
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Suppose f is the identity function and g and hare very fast growing 
recursive functions. Then f is a preprocessor and the above theorem tells us 
that there are arbitrarily poor programs for any partial recursive function. 
By arbitrarily poor, we mean larger than necessary by a factor of g and 
more complex (using more resources) than necessary by a factor of h. 

We will strengthen this result to show that if we are given any r .e. list 
of programs that compute recursive functions, then that list will necessarily 
contain some programs that are excessively slow and overly large. To do 
so, we will need to argue that applying a recursion theorem does not add 
much to the complexity of the algorithm being modified. The following 
theorem will tell us that when a self-referential version of some program is 
formed, the complexity only increases by a recursive factor. In reasonable, 
and imaginable, acceptable programming systems, this recursive factor is 
very small, sometimes as small as a multiplicative constant, or even smaller. 
Tracing through the proof of the recursion theorem reveals that the extra 
complexity comes from computing the store function. Such an analysis is 
not needed for the following: 

Theorem 3.38: (Complexity Theoretic Recursion Theorem) Suppose cPo, 
cP17 • • • is a complexity measure for <p0 , <p17 · · · an acceptable programming 
system. There are recursive functions r and h such that h is monotone 
nondecreasing in its second argument and for any i: 

l.V'x,<pr(i)(x) = <{)i(r(i),x) and 
00 

2. V'x E domain <{}r(i),cPr(i)(x)::::; h(x,cPi(r(i),x)). 

Proof. The r is supplied by the fully effective proof of the recursion theorem. 
Define: 

{ cP ( )(x) if cP,·(r(i), x) = y·, k(i,x,y)= ori 
otherwise. 

Notice, that if cPi(r(i),x) = y then <pi(r(i),x) is defined, and conse
quently, <{)r(i)(x) is defined. Hence, k is recursive. Let 

h(x,y) = ~axmaxk(i,x,z) 
•:5x z:5y 

The function h is monotone, since on larger arguments the same values as 
before, and more, are included in the max. Suppose x is in the domain of 
<{)r(i) and x ~ i. Then, 

cPr(i)(x) = k(i,x,cPi(r(i),x))::::; h(x,cPi(r(i),x)). 

Exercise 3.39: Show that the above theorem can be strengthened to also 
get: 
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Exercise 3.40: Consider the fully effective form of the the fixed point the
orem (2.25). Modify its statement to come up with the complexity theoretic 
fixed point theorem. Prove this new theorem. 

The next theorem shows that any effective list of programs that con
tains some arbitrarily long ones must contain some excessively long ones 
that could be replaced by a shorter, almost as fast, semantically equivalent 
program. 

Theorem 3.41: For all recursive functions f and g such that {sz(f(x))lx E 
IN} is infinite, one can effectively find i and j such that for h from the 
complexity theoretic fixed point theorem: 

1. !.pi = r.p f(j) 

2. g(sz(i)) ~ sz(f(j)) and 
00 

3. 'v'x,Pi(x) ~ h(x,PJ(j)(x)). 

Proof. Suppose the hypothesis. Define a recursive function k such that: 

k(y) = /(J.tz[g(sz(y)) ~ sz(f(z))]). 

k is recursive since f was assumed to enumerate arbitrarily large programs. 
Note that if k(y) = f(z) then f(z) is the first program in the list which is 
larger than (or the same size as) g(sz(y)). Now, take a fixed point of k, so 
that <pi= <{)k(i)· Choose j = J.tz[g(sz(i)) ~ sz(f(z))). By the definition of k, 
k(i) = f(j). So, 

<pi= <{)k(i) = <{)J(j) and g(sz(i)) ~ sz(f(j)). 

By the complexity theoretic fixed point theorem, for almost all x, 

§3.8 Restricted Programming Systems 

One way to eliminate some of the pathologies that we have found is 
to restrict the systems we consider. Below we will restrict both our pro
gramming system and our size measures. 

Definition 3.42: A recursive set RPS is a restricted programming system 
if { r.pi I i E RPS} is an infinite set of recursive functions. 

Note that no RPS can include all the recursive functions. An example 
RPS is the set of programs computing the primitive recursive functions. 

Definition 3.43: A size measure is canonical if there is a recursive function 
b such that if sz(i) ~ j then i ~ b(j). 
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If a size measure is canonical then b(j) bounds the finite set of pro
grams with size :::; j. In canonical size measures, there are only finitely many 
programs of a given size. 

{programs of size j} ={iii:::; b(j) and sz(i) = j} 

Most reasonable ways of measuring program size yield canonical measures. 

Proposition 3.44: Suppose we are given an RPS with a canonical size 
measure. Then the minimal size programs in the RPS are r.e. 

Proof: We must show that there is a recursive function f such that { <p f(i) I i E 
IN}= {<pili E RPS} and iffor some k E RPS, i.pk = <pf(i)• then sz(k) ~ 
sz(f(i)). Suppose the hypothesis. Now define a partial recursive function 
1/J that on input x diverges if x is not in the RPS and otherwise searches 
for the least z such that for all y in the RPS with sz(y) < sz( x) there 
is a w :::; z such that <px ( w) =/:- <py ( w). If x is in the domain of 1/J then x 
is in the RPS and, furthermore, <px is different from all programs in the 
RPS with size smaller than the size of x. The canonical nature of the size 
measure guarantees that all the suitable y's can be found, making 1/J partial 
recursive. Find a recursive function f with range the same as the domain 
of 1/J. ® 

So, we get some improvement (less pathology) by looking at an RPS. 
However, every RPS has some excessively long programs. 

Theorem 3.45: Suppose we are given an RPS with a canonical size mea
sure. Let h be from the complexity theoretic fixed point theorem. For all 
recursive functions g we can effectively find i and j such that: 

1. i fj. RPS, j E RPS, <pi = <pi 

2. sz(j) ~ g( sz( i)) 
3. 'Vk, k E RPS and i.pk =<pi ::::} sz(k) ~ sz(j) and 

00 

4. 'Vx, 4>i(x) :::; h(x, 4>j(x)). 

Proof: Use f from the proof of 3.44 and the g given in the statement of the 
theorem in 3.41 to find the desired i and j. ® 
Exercise 3.46: Show that for any acceptable programming system <p0 , <p 1 , 

· · · there is a total recursive function p such that for all j, if <pi is a total 
{0, 1} valued function such that for some i, <pj(i) = 1 and (<pj(x) = 1 
implies i.px =<pi), then i.pp(j) = i.pi and <pj(p(j)) = 0. 

Exercise 3.47: Suppose 1/Jo, 1/;1 , · · · is also an acceptable programming 
system and that t is the recursive function witnessing the isomorphism 
between them. Suppose S'P and S"' are canonical size measures for the 
programming systems. Prove that the size of programs in the two systems 
are recursively related, e.g. prove that there is a recursive function g such 
that for all i 

a) S'P(i):::; g(S'l/J(t(i))), and 
b) S"'(i):::; g(S'P(t- 1(i))). 
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4 
Complete Problems 

In our study of unsolvable problems, we associated a set with each 
problem. In essence, we discussed only problems of the form "does x have 
a certain property." By coding programs onto IN, many natural problems 
in computer science can be represented as sets. From our study of abstract 
complexity we know that there are sets (problems) for which deciding mem
bership is arbitrarily difficult. A problem is "complete" for some class if it 
is the "hardest" problem in the class. If you have some class of sets and 
a complete problem for the set, then that complete problem embodies all 
that is difficult about any problem in the class. For example, we will show 
that K is complete for r .e. sets. 

§4.1 Reducibilities 

Earlier, in Theorem 2.41, we showed that {xI cpx is a constant 
function} was not recursive by a reduction from the halting problem (K). 
Now, we will formalize the notion of reduction. As a preliminary step, we 
give an informal definition. For two sets A and B, we say that A is algorith
mically reducible from B if there is an algorithm R that, given a subroutine 
to decide membership in B, can decide membership in A. 

R 

X E A? 

s 
y E B? 

yes 7 \1 no 

yes no 
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Even though the above picture depicts an algorithm that makes only 
one call to the subroutine for deciding membership in B, finitely many 
such calls are admissible. The reduction is a "polynomial time reduction" 
if R runs in polynomial time (complexity bounded by some polynomial 
of the length of the input) exclusive of the time spent in S. Note that if 
only polynomially many calls to S are made and S runs in a polynomial 
amount of time then so does R. Hence, if we have a lower bound for deciding 
membership in A, then we may also have one for deciding membership in 
B (within a polynomial factor). 

First we will take a simplistic view and say that recursive sets are 
easy and all the other sets are not easy. This is simplistic because we know 
that there are arbitrarily difficult to decide recursive sets (Theorem 3.20). 
Later, we will redraw the line between easy sets and hard sets by tightening 
the notion of reducibility. We proceed by considering reductions where only 
a single question may be asked about membership in the auxiliary set. 

Definition 4.1: A is many-one reducible from B (written: A :::;m B) if 
there is a recursive function f such that x E A iff f(x) E B. 

In Theorem 2.41 we really showed that for any y and z: 

K :::;m { xl ~Px is a constant function} 

K :::;m{xl3z,cpx(z) = y} 

K :::;m{xlcpx(Y) = z}. 

It is easy to see that :::;m is transitive and reflexive. Also, if A :::;m B 
and A is undecidable then B is undecidable. Some examples follow. 

Proposition 4.2: Let E = {(x,y)lcpx = cpy}· Then K :::;mE. 

Proof: The idea is to use E to solve K. We start by defining a program k: 

{ 1 ifxEK 
IPk(x, y) = l otherwise. 

Notice, that if x E K, then (and only then) IPk = Ax, y[1]. Let program l 
be such that cpz = Ax[1]. So programs land s(k,x) will compute the same 
function iff x E K. Now, applying the s-m-n theorem, let f(x) = (s(k, x), l). 

x E K =? IPs(k,x) = Ax[1] = cpz =? f(x) E E 

X ¢. K =? IPs(k,x) = Ax[l] =f. cpz =? f(x) ¢.E. 

The following proposition shows that :::;m relation is not symmetric. 

Proposition 4.3: E f:.m K 
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Proof: Suppose by way of contradiction that f is a recursive function such 
that for all x, y, (x, y) E E iff f(x, y) E K. Let <{)i0 = Ax[O] and <{)i 1 = Ax[f]. 
Define a recursive function g, by implicit use of the s-m-n theorem, such 
that for all i, 

{ 0 if i E K; 
<{}g(i)(z) = j otherwise. 

Since <{}g(x) = <{)io or <{}g(x) = <{)ip one of f(io,g(x)) or /(i1,g(x)) must 
appear (eventually) in the enumeration of K. If f(io,g(x)) appears inK 
then x E K. If f ( i1. g( x)) appears in K then x fj. K. Hence, K is recursive, 
(=H=). ® 

Definition 4.4: Let C be a collection of sets. A set A is m-hard for C if 
VB E C, B ~m A. A ism-complete for C if A E C and A ism-hard for C. 

Proposition 4.5: K ism-complete for the r.e. sets. 

Proof: K is r.e. so it remains to show that K is m-hard for the r.e. sets. 
Suppose A is an r.e. set. Choose i such that domain <{)i = A. By implicit 
use of the s-m-n theorem there is a recursive function f such that : 

_ { 1 if <{)i(x) !; 
<{}J(x)(Y)- i otherwise. 

x E A=> <{}J(x) is total => <{}J(x)(f(x)) !=> f(x) E K 

x fj. A=> domain <{}J(x) = 0 => f(x) fj. K. 

Hence, x E A iff f(x) E K. 

Exercise 4.6: Show that K ~m { xl Wx is finite }. (Recall that Wx is the 
domain of <{)x.) 

Exercise 4.7: Show that {xiWx is infinite} ~m {xl<px is total}. 

Exercise 4.8: Show that {xiWx is finite} ~m {xl<px is total}. 

Exercise 4.9: Show that {xl<px is total} ~m {xiWx is infinite}. 

Exercise 4.10: Show that E ~m {xiWx is infinite}. 

Exercise 4.11: Show that { xl Wx is infinite } ~m E. 

Exercise 4.12: Show that E ~m {xiWx is infinite}. 

Exercise 4.13: Show that {xiWx is infinite} ~mE. 

Exercise 4.14: Show that {xiWx ::j; 0} ism-complete for the r.e. sets. 

There are other kinds of reducibilities that give rise to notions of 
completeness. Consider, for example, modifying the definition of ~m so as 
to require that the function f be one-to-one. The result of this modified 
definition would be what is known as ~1 reducibility. The notion of !
completeness is defined analogously. 
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Exercise 4.15: Formally state the definition of :::; 1 reducibility and !
completeness. 

Exercise 4.16: Show that A :::; 1 {xiW~ n A=/= 0}. 
Exercise 4.17: Show that K is 1-complete. 

Exercise 4.18: Show that Ko :::;1 K. 

Exercise 4.19: Which of the above reductions can be strengthened from 
an ::;m reduction to an :::; 1 reduction? 

§4.2 Polynomial Computability 
There has been considerable interest recently in the class of functions 

that can be computed in a polynomial amount of time (or sometimes space). 
There are a number of reasons. Firstly, each of the translations from one 
programming system to another that we studied in the beginning of the 
course were not only effective, but can be accomplished within a polynomial 
amount of time where the polynomial is a function of the length of the input. 
For the sake of concreteness, consider the translation from RAM programs 
to Turing machines. That translation, given a RAM program, will produce, 
in a polynomial amount of time (and space), a Turing machine computing 
the same function as the original RAM program. Furthermore, if the RAM 
program had its time complexity bounded by a polynomial, then so will the 
Turing machine that results from the translation. Note, however, that the 
polynomial bounding the time complexity of the Turing machine will most 
likely be larger than the bounding function for the RAM program. Similar 
remarks can also be made for space complexity. 

The point of the discussion above is that if some function is com
putable in polynomial time in one model of computation, then it is com
putable in a polynomial amount of time in any model that we have studied 
and, most likely, in any model anybody will ever care about. Hence, the 
class P of functions computable in a polynomial amount of time can be 
defined without reference to a particular model of computation. In fact, we 
just did so. Similarly, P-space is the class of functions computable with 
space bounded by a polynomial. In all cases, the polynomial is a function 
of the size of the input. We will denote the size of an input x by I xl. Since 
integers are commonly represented in binary on computers, it is common 
to consider I xl to be log x. 

Another major reason why P has been so extensively studied is that 
the class of polynomials is closed under composition. This adds a certain 
amount of mathematical tractability to the study of P. Finally, it is believed 
that P is large enough to include all we will ever be able to reasonably com
pute anyway. Certainly polynomials can express large enough run times to 
satisfy even the most patient. Who is going to wait around for even a super 
computer to execute I xl 1•000•000•000•000•000•000•000 (I xl to the 1 sextillion) 
instructions when it is given input x? On the other hand, there are ex
ponential time algorithms in use today for computations with relatively 
small inputs. For example, consider grep and its derivatives that are in the 
collection of programs that come with UNIX. 
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Definition 4.20: A is polynomial time reducible from B (written: A :::;~ B) 
if there is a recursive function f such that x E A iff f(x) E Band f can be 
computed in time bounded by a polynomial in I xl. 

Note that, by the properties of polynomials, :::;~ is reflexive and tran
sitive. Also, if A :::;~ B and "x E B?" can be decided in polynomial time, 
then "x E A?" can be decided in polynomial time. We say that a set A is 
p-hard if B :::;~ A, for any B E P. Furthermore, A is p-complete if A is 
p-hard and A E P. Often, Pis called the polytime computable functions. 
Sets and functions are purposely confused by saying that a set A is in P if 
its characteristic function is. 

Proposition 4.21: For all sets A, if A E P, A =f. 0 and A =f. IN then A is 
p-complete for P. 

Proof. Suppose the hypothesis. Let a0 E A and a 1 fj. A. Suppose BE P. Let 
g be the witness, i.e., g E P and g is the characteristic function for B. The 
poly-time function reducing B to A, on input x, first runs g (in polytime). 
Then, if x E B the procedure outputs a0 , otherwise a1 is output. ® 

Consequently, to study structure within P, one needs a finer reducibil
ity notion, such as that of linear time or logarithmic space reductions. 

Exercise 4.22: Let C be any time bounded class of sets containing P that 
is closed under the operation of composition with a polynomial. Show that 
if BE C, A:::;~ B, and A is p-hard for C, then both A and Bare p-complete 
for C. 

Exercise 4.23: Is there a recursive function f such that P = {ct:'J(i)li E 
IN}? Justify your answer. 

§4.3 The Deterministic Time Hierarchy 

In this section we will show that there is a hierarchy of larger and 
larger sets of computable functions based on an upper bound on compute 
time. This will not contradict the gap theorem (Theorem 3.26) since the 
bounding functions will be chosen carefully so as to guarantee that no two 
functions that mark consecutive levels of the hierarchy will fall in the same 
gap. The impact of this result is most profound. It means that we can char
acterize functions based on how much time they take to compute in the 
best case. The practice of classifying functions in this way is widespread. 
Much of the research in theoretical computer science has been devoted to 
classifying various computational tasks according to their time complex
ity, e.g., their position in the time hierarchy. The most popular version of 
the hierarchy theorem involves Turing machines with some extra bells and 
whistles. 
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Definition 4.24: A multitape Turing machine is an algorithmic device that 
behaves just like a Turing machine except that it has more than one tape, 
each with its own read/write head. 

In the operation of a Turing machine, there will be several data areas. 
For example, the universal Turing machine has one area for data and one 
for the program to be simulated. If both the data areas are on the same 
tape, then the Turing machine must move its read/write head back and 
forth between the areas, usually doing nothing useful in between. Multiple 
tapes allow for computations to proceed without having to execute any of 
these useless moves. 

Definition 4.25: Suppose T is a recursive function. DTIME(T) is the 
class of all sets whose membership question can be decided by a multi-tape 
Turing machine that executes a sum total of no more than T(n) quintuples 
on inputs of length n. 

Theorem 4.26: (Constant Speed-up) Any Turing machine can be sped up 
by any constant factor. 

Proof. (Sketch) Suppose M is a Turing machine that we want to speed up 
by a factor of n. M', the faster Turing machine, works just like M except 
that every one of M"s tape symbols is an encoding of some n-tuple of M's 
tape symbols. If E isM's tape alphabet, then M''s tape alphabet will have 
size I El n. So, M', essentially in one step, simulates n of M's steps. 

Since each one of M''s symbols encodes a block of M's symbols, 
creation of M"s transition function is bit complicated. Fortunately, the 
complexity of M''s computation is not affected by how long it takes to 
come up with M"s program. To figure out what M' does with one of its 
symbols, we will have to simulate M on the group of symbols represented 
by it. 

Suppose M entered some state q while moving one symbol to the 
right. The case of a left move is analogous. Suppose further that this move 
crossed a boundary from one block of symbols (coded as one symbol in M') 
to the next adjacent block. Then M' must also change state. The state that 
M' changes to must encode not only q, but the fact that at this point in 
the simulation, M is looking at the leftmost symbol of the block. 

Part of the figuring out what M"s transitions are is to consider what 
happens when M enters a block from the left. One of four things will 
happen. Firstly, M could halt. In this case M' also halts, after rewriting 
the single symbol that encodes the current block. Secondly, M could leave 
the block moving right. To do so, M would have had to execute at least 
n steps (the length of the block). In this case, M', in one step, rewrites 
the entire block as a single symbol, based on what M would have done 
before leaving the block. The third possible outcome is for M to leave the 
block moving left. Again, M' can simulate the action of M on the block in 
a single step. Finally, M could go into an infinite loop, never leaving the 
block. Since there are only n symbols, chosen from a finite alphabet, in any 
block and there are only finitely many states of M, if M goes into an infinte 
loop without leaving some block, a configuration will be repeated. M' can 
detect the repeated configuration in its simulation of M. ® 
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As a consequence of Theorem 4.26 it appears that constant factors 
do not hold much influence when trying to characterize a collection of func
tions by a bound on the time it takes to compute them. To neatly handle 
situations where constant factors obstruct the view of deeper, foundational 
issues we will use the notion of the order of a function. 

Exercise 4.27: Fill in missing details in the proof of Theorem 4.26. 

Exercise 4.28: What is the complexity of transforming M into M' in the 
proof of Theorem 4.26? 

Exercise 4.29: Show how to simulate a two-tape Thring machine that runs 
in time T by a one tape Thring machine in time T 2 • 

Definition 4.30: For total functions f and g we say that f is of order g if 
there are constants c and x' such that for any x > x', f ( x) ~ c · g( x). If f 
is of order g we write f = O(g). 

Intuitively, ifT1 bounds T2 by a large enough margin then DTIME(T2) 
is strictly included in DTIME(T1). By definition, if T2 (n) < T1(n), for all 
n, then DTIME(T2) is included in DTIME(T1). In order to obtain a set in 
DTIME(TI) that is not in DTIME(T2) we will need to simulate a Thring 
machine for T2 (n) steps and diagonalize. Consequently, T2 must be "well be
haved" if we are to complete the simulation and the diagonalization within 
time T1. A notion of "well behaved" that works is given in the following. 

Definition 4.31: A recursive function Tis time constructible if there is a 
Thring machine that, on inputs of length n, runs for exactly T(n) steps. 

Exercise 4.32: Prove that there is a recursive function f such that f is 
not time constructible. 

Exercise 4.33: Prove that for any recursive function r there is a time 
constructible function r' such that r'(x) ~ r(x), for all x. 

Exercise 4.34: Is the set of time constructible functions r.e.? Justify your 
answer. 

A similar notion of constructibility holds for space bounds as well: 

Definition 4.35: A recursive function S is space constructible if there is a 
Thring machine that, on inputs of length n, visits exactly S(n) tape cells. 

Exercise 4.36: Prove that there is a recursive function f such that f is 
not space constructible. 

Proposition 4.37: For any time constructible function T, there is a list of 
Thring machines, M 0 , M 1, · · · containing all and only the Thring machines 
that decide membership in sets that are members of DTIME(T). 
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Proof. Suppose T is a time constructible function. Let M be a Turing ma
chine that executes exactly T(n) steps on inputs of length n. Let N0 , N1, ... 
be a list of all and only the multitape Turing machines. Machine Mi, on 
input x, simultaneously simulates Ni(x) and M(x). If M halts before Ni 
then xis not of member of the set being determined. IfNi halts before M, 
then Ni determines whether or not x is in the set. Mi may take twice (or 
at most thrice) as long as allowed, but we can apply Theorem 4.26. ® 

In order to simulate the machines described above, we will need a 
subroutine for a universal Turing machine that is efficient. 

Theorem 4.38: Suppose Tis a time constructible function and Mo, M1, · · · 
is the list of Turing machines from Theorem 4.37. Then there is a two-tape 
Turing machine U such that for all i and x, U(i,x) = Mi(x) and U runs in 
time T(lxl)log(T(Ixl)) times a constant dependent on i. 

Proof: Machine U is given inputs i and x. The interpretation of i is that it is 
the encoding of some k tape Turing machine M. For notational simplicity, 
we will present the proof of the k = 1 case only. The decoding of i, e.g., 
a description of the quintuples of M, is placed on the scratch tape. Each 
tape of M will be simulated by multiple tracks on the first tape of U. For 
example, two tapes can be simulated using two tracks on a single tape by 
expanding the alphabet of tape symbols as follows. If the first tape to be 
simulated has an "a" in position one, and the second tape has a "b" in 
position one, then the single tape will have the symbol "f' in position one. 
Here, the "a" is on the first track, and "b" is on the second. The second 
tape of U will be used for scratch space to copy data to and from the first 
tape. U will simulate each step of M by a series of steps we will refer to as 
an A-move (for augmented move). After each A-move, the cells of M that 
would be under the tape heads of M will all be under the tape head of U. 
Thus instead of marking where the tape heads of M would be, we move 
the data in such a way that U's head is always over the current cell of each 
tape when an A-move is completed. 

We now describe an A-move. The simulation of one tape by two tracks 
will be described, leaving the generalization to 2k tracks to the reader. The 
tracks have their cells divided into blocks as follows. Block Bo is the home 
block. It consists of one cell from each of the two tracks aligned vertically. 
The upper track contains a special marker so that U can always find the 
home block. This marker symbol is never replaced or copied elsewhere dur
ing the simulation. The lower track contains the data that would be under 
the head of the tape being simulated. To the right of the home block are 
blocks numbered B1, B2, · · ·, Bi, · · ·. Each block Bi is of size 2i-l tape 
cells, containing, perhaps, twice that number of symbols distributed on the 
two tracks. To the left of the home block, the blocks are numbered B_l, 
B_2, · · ·, B_i, · · ·. Again, these blocks are of size 2i-l. At the beginning 
of the simulation, all the data are on the lower track in the same order as 
on M's tape, and the lower track of the home block contains the data that 
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would be under the head of Turing machine M. At any time during the 
simulation, the contents of M's tape will be distributed, in some fashion, 
over the blocks of U's primary tape. To read the data off of U's tape, in the 
order that they would be appearing on M's tape, start with the leftmost 
block that contains any nonblank symbols. There are three cases for the 
identity of the leftmost empty block: 

B_j: Read the nonblank symbols from the lower track, left to 
right, then the symbols on the upper track, left to right. 
If j > 1, repeat this procedure for block B-(j- 1). If j = 1, 
continue with the next case. 

Bo: Read the symbol in the lower track and proceed with the 
next case, for j = 1. 

Bj: Read the nonblank symbols from the upper track, left to 
right, then the symbols on the lower track, left to right. If 
block Bj+l contains some nonblank symbols, then repeat 
this procedure for block BJ+t. otherwise stop. 

To make the mathematics work out smoothly, we will want to make 
sure that if any track of any block has a nonblank symbol in it, then it is 
completely filled. The initial configuration of all of M's data on the lower 
track of U's tape may not conform to this convention. To get around this 
minor difficulty, we will have U distinguish two types of "blank" symbols, 
M-blanks, and regular blanks. Before any data are placed on U's tape it 
contains only the home block marker and the rest of the tape is filled with 
regular blanks. If the input data do not quite fill the lower track of some 
block, then it is filled with M-blanks since, if more symbols were to be taken 
from M, they would be blank. Before and after each A-move the following 
invariant will be true: 

For all i > 0, either Bi is full and B_i is empty or Bi is empty 
and B_i is full or both Bi and B_i have their lower tracks full 
and their upper tracks empty. 

To simulate a move of M's head, U must move the data on the ap
propriate two tracks. A move of M's head to the left means U must move 
its data to the right. We now describe such an A-move (a move in the other 
direction is symmetric). 

First we move the head of U to the right from B0 until we find the 
first block that is not full, copying all the data to the second tape of U 
as we go. Suppose Bj is the first block encountered that is not full. If Bj 
is empty, its lower track will be used, otherwise the upper track will be 
employed. Copy all the data from the second tape to the lower tracks of 
Bj, · · ·, B1. (If the lower track of Bj already had data, we used the upper 
track for that particular block.) Note that the data exactly fit, since the 
total amount of data from the upper and lower tracks of B0 to Bj_ 1 is 
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2i - 1. The larger half gets deposited in the cells of Bj, while the smaller 
portion is distributed across the lower tracks of blocks B1 through Bj_1. 

As a consequence of the above A-move, block Bo can now be used for 
other purposes. Move U's head to block B-i• using the second tape as a 
counter. The previous A-move transferred 2i- 1 symbols from the second 
tape to the first, and the symbols are still on the tape, so we may assume 
that an end marker was included. Since Bi was not full when we began our 
A-move, it must be the case that B-j is not empty. Furthermore, all of the 
blocks between B_i and B0 must be empty, since Bi was the first block to 
the right of the home block that was not full. 

If both tracks of B_i are full, move the upper track to the second tape. 
If only the lower track is full, move that. Then distribute the 2i-1 symbols 
now on the second tape across the lower tracks of the blocks between B_i 
and B0 , including B0 • Note that the data that before were logically to the 
left of the data in B0 are now themselves in B0 • Using the third case of the 
rule to determine the leftmost empty block to read the data in the tracks, 
the data are still in order and readable as the tape of M. Note that the 
data exactly fit on the lower tracks of blocks B_i to B0 • The redistribution 
of the data guarantees that invariant has not been violated. 

The proof is completed by comparing the complexity of U's A-move 
to a single step of M. Call an A-move that finds Bi to be the first block 
that is not full an Armove. 

The first observation is that an Armove takes time linear in the size 
of block Bi. It requires a single pass in both directions of the home symbol. 
In the worst case, we could require a couple of passes for separate tapes of 
M with heads moving in different directions, but the Aj-move could still 
be completed in time proportional to the size of Bi. Hence, the time taken 
for an Armove is 0(2i-1 ). 

An Armove is performed at most once per 2i-1 moves of M. Since 
half of the data in B1 through Bj-1 get put in Bj, another 2i-1 A-moves 
would be required before the worst case an1ount of data could build up in 
B1 through Bj-1· 

An Armove cannot be performed until M has made at least 2i-1 

moves. Again, it would take that long for the data to build up in B1 to 

Bj-1· 
Using the above facts, we can place a bound on the moves of U. Note 

that M was assumed to operate in time T(x), forT a time constructible 
function. Next we calculate the largest j such that an Ai move is made. 

2j-1 :::; T(lxl) 

log2i-1 :::; logT(Ixl) 

j- 1:::; logT(Ixl) 

j :::; log(T(I xl) + 1 
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By the above, an Armove takes 0(2i) steps. If M makes T(lxl) 
moves on input x, then U makes at most, say T' (I xI ) moves where, for 
some constant m, 

the A, move ,...,....._ rate of occurence ,...,....._ log(T(Ixl))+l 

T'(lxl)= L m· 2i ·(T(Ixl)/ 2i-l 

i=l 

= 2 · m · T(lxl) ·log[T(Ixl)] + 1 

< 2 · m · T(lxl) · (logT(Ixl) + logT(Ixl)) 

< 4 · m · T(lxl) ·logT(Ixl) 

And since we can speed up any Thring machine by a constant factor, 
we can speed up U by a factor of 4m to get a universal Thring machine 
that runs in at most T(l xl) log(T(I xl)) steps. ® 

Exercise 4.39: Prove a version of the Theorem 4.38 for a single-tape Thring 
machine U and time bound T(lxl)2. 

Theorem 4.40: (Time Hierarchy Theorem) If T1 and T2 are time con
structible functions such that 

lim T2(n)logT2(n) = 0 
n-+oo T1(n) 

then DTIME(T2)cDTIME(TI). 

Proof: The logarithmic factor comes into play because of the model we are 
using. Similar proofs for other models do not need the logarithmic factor. 
Suppose the hypothesis. First we will show that DTIME(T2) ~ DTIME(TI). 
By the limit condition there exists an n0 E IN such that for any n >no: 

T2(n) logT2(n) < 1 
T1(n) 

T2(n)logT2(n) < T1(n) 

T2(n) < T1(n). 

Notice that we have also just shown that T2(n) logT2(n) = O(T1(n)). 
Let M0 , M1, ... be the list of DTIME(T2) Thring machines constructed in 
Proposition 4.37. If S EDTIME(T2) then there is a machine Mi that decides 
membership in S and runs in time bounded by T2 ( n) on inputs of length 
n. In forming a witness that S EDTIME(TI), care must be taken since it 
is not necessarily true that T1 ( n) ~ T2 ( n) for all n. An Ai algorithm that 
arbitrates membership in S using at most T1 time behaves as follows: 
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On input x, if I xl :::; no then look the answer up 
in a finite table, placing the value in y. 

Otherwise, run Mi(x) and copy its answer toy. 

y 

By replacing Mi with Ai in the list above, we have that DTIME(T2) 
~DTIME(T1 ). To complete the proof, it suffices to construct a set S E 
DTIME(TI) - DTIME(T2). Let U be the efficient universal Turing ma
chine of Theorem 4.38. Note that, since T1 is time constructible, there is a 
process that will stop in precisely T1 (I xl) steps. Hence, we can effectively 
run U ( x, x) for precisely T1 ( I x I ) steps. Let S be the set determined as 
follows: 

DECIDE.S: (x) 

Run U(x,x) for T1(lxl) steps. 

If U(x,x) halts and U(x,x) = 0 
then y = 1 
elsey=O 

y 

By Theorem 4.38, and the time constructibility of T1, it follows that 
S EDTIME(TI). Suppose by way of contradiction that Sis a member of 
DTIME(T2). Choose a witness i such that Mi is the characteristic function 
of S, Mi runs in time bounded by T2 and T2(x) :::; T1(x), for all x > i. 
The membership of S EDTIME(T2) and padding guarantee that such ani 
exists. If i E S, then Mi(i) = 1, in which case if/. S. If if/. S then Mi(i) = 0, 
in which case i E S. (::::}<=) ® 

Exercise 4.41: Explain why Theorem 4.40 does not contradict Theorem 
3.26. 

Exercise 4.42: Consider the following pair of functions: 

if n is even 
if n is odd 

if n is odd 
if n is even 
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Prove that DTIME(Tl) and DTIME(T2) are incomparable, e.g., DTIME(Tl) 
- DTIME(T2)# 0 and DTIME(T2) - DTIME(Tl)# 0. Can you think of 
other, more natural examples of pairs of complexity classes that have this 
property? 

Exercise 4.43: Show that P cDTIME(n1ogn). 

Exercise 4.44: Let A= {Onln is prime}. LetT be any time constructible 
function. Construct a recursive set B which is a subset of A and is NOT in 
DTIME(T). Justify your answer. 

Exercise 4.45: Given any infinite recursive set A and a total recursive 
function T, show that there exists a recursive set B such that B c A and 
B fl. DT I M E(T( n)) (There are no conditions on A except that it be infinite 
and recursive.) 

Exercise 4.46: Let T1 and T2 be the functions: 

if n is odd 
if n is even 

if n is odd 
if n is even 

Show that there exist a set S with the property that S EDTIME(Tl) but 
S fl. DTIME(T2). 

§4.4 N ondeterminism 
One of the consequences of Theorem 4.40 is that our patience will 

always limit what we can compute. As machines get faster and faster, we 
will be able to compute more and more functions, modulo the gaps from 
Theorem 3.26, in a day's worth of computer time. The nature of science and 
technology indicates that there will always be some program that someone 
wants to run that takes too much time with the current computers. Hence, 
the search for faster and faster computers will continue. There are some 
physical limits as to how fast data can be moved and manipulated. This 
limit puts constraints on how fast computers as we know them can go. 
Consequently, the search for faster computers has led to investigations of 
massively parallel computers and techniques to squeeze a little more power 
out of traditional designs. 

One technique to circumvent the difficulty of computing functions 
not known to be in P that has received considerable attention is nonde
terminism. Nondeterminism can be introduced easily into most models of 
computation. For Thring machines, all that one has to do is to allow as 
legal programs that have multiple quintuples with the same state, symbol 
prefix. For RAM programs the JMP instruction is augmented to have more 
than one next possible instruction. For the purposes of using a particular 
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machine model as an example, we will use Turing machines. When a Tur
ing machine, in its execution of a nondeterministic program, runs across an 
instantaneous description such that more than one quintuple applies, one is 
chosen, nondeterministically, and the computation proceeds. The computa
tion structure then becomes tree-like, with the branch points corresponding 
to the choices made and the leaves corresponding to possible outputs. 

A first observation is that, for Turing machines, allowing nondeter
minism does not enlarge the class of functions computed. Consider the 
following outline of a deterministic simulation of a nondeterministic Turing 
machine. The program and data are presented to the simulator just as the 
universal Turing machine receives its inputs. The computation proceeds just 
as in the universal Turing machine until an instantaneous description with 
more than one applicable quintuple arises. Then, the simulator copies the 
instantaneous description and applies the different relevant quintuples to 
the copies. Now the simulator has two instantaneous descriptions to contend 
with. In general, the number of instantaneous descriptions will continue to 
grow. If any instantaneous description yields a terminating configuration, 
then the simulation stops after erasing everything except the final result of 
the instantaneous description that halted. 

There are a variety of ways to make sense of the nondeterministic 
computation of functions. To avoid the possibility of multiple answers, we 
can consider all nondeterministic Turing machines as computing charac
teristic functions. In this situation, any positive result is interpreted as 
meaning that the input is in the set. Hence, all possible results must be 0 
in order to conclude that a number is not a member. Alternatively, we may 
suppose that a nondeterministic computation tree is such that there is a 
unique result, but some paths may be infinite, returning no value. 

Even though nondeterminism does not enlarge the class of com
putable functions, it may enable us to compute more functions within a 
certain time bound. To investigate this issue, we need some definitions. N P 
is the class of sets that are decidable nondeterministically by some program 
in polynomial time. In other words, if S E N P then there is some nondeter
ministic program that, on input x, if all the right choices are made at the 
nondeterministic points, returns a value larger than 0 in time bounded by 
a polynomial in lxl. As was the case with P, N Pis invariant across com
putation models. In addition to studying time bounded resource classes, 
we will also study complexity classes where membership is determined by 
space usage. N P-Space has an analogous definition. Nondeterminism does 
not expand the class of functions computable. Does it allow some functions 
to be computed faster in less space? To do so, we must compare P, N P, 
P-Space and N P-Space. Unfortunately, we do not know how to make all 
the comparisons in a mathematically rigorous manner. 

In our notation, what is commonly called an "N P-complete problem" 
is just a problem that is complete for the class N P under the ~~ reduction. 
By viewing a deterministic program as a nondeterministic one without any 
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choices we have that P ~ N P. Whether or not the containment is proper 
has been a major open problem in theoretical computer science for over 
two decades now. Part of the interest in the question comes from the stag
gering collection of problems that have been shown to be N P-complete. 
This collection includes most of the computational problems in operations 
research and artificial intelligence. Since the results on nondeterministic 
space classes are clearer, we start our formal study of nondeterminism with 
some results concerning space. 

Exercise 4.47: Let A and B be sets in P. Show that AUB and AnB are 
in P. 

Exercise 4.48: Let A and B be sets in NP. Show that AU Band An B 
are in NP. 

Just as we previously defined the deterministic time bounded classes 
DTIME(T) forT a recursive function, we can, and do, define similar space 
bounded complexity classes. 

Definition 4.49: Suppose S is a recursive function. DSPACE( S) is the class 
of all sets whose membership question can be decided by a Turing machine 
that visits at most S(n) tape cells on inputs of length n. If the Turing 
machine used is nondeterministic, then we have the class NSPACE(S). 

Exercise 4.50: State precisely the definition of a class that we would call 
NTIME(T). 

Exercise 4.51: Give two different definitions of what one might mean by 
computing a function fin NTIME(T). 

Exercise 4.52: Show that a set A is in N P iff there exists a polynomial p 
and a polynomial predicate R such that 

A= {xl (3y)[lyl ~ p(lxl) and R(x, y)]}. 

Exercise 4.53: Let N N P be the set of all sets A such that there exist 
polynomials p and q, and a polymomial predicate R such that 

A= {xl(3y)[lyl ~ p(lxl) and 'v'z[lzl ~ q(lxl)- R(x,y,z)]]}. 

Show that P = NP iff P = NNP. 

Exercise 4.54: Let T be a recursive function. Show that NTIME(T) C 
DSPACE(]'2). 

Our first result shows that deterministic simulations of nondetermin
istic computations can be accomplished with a relatively small amount of 
extra space. As a corollary of this result, we will be able to show that every
thing that is computable nondeterministically within a polynomial amount 
of space can also be computed deterministically within a polynomial amount 
of space. 
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Theorem 4.55: If An[logn] = O(S) then NSPACE(SKDSPACE(S2). 

Proof: Suppose that f is computed by a nondeterministic Turing machine 
Min space bounded above by S(n) for inputs of size n. Suppose also that 
An[logn] = O(S). This ensures that the given space bound is sufficient to 
store the input. Suppose without loss of generality that S is space con
structible. We will informally describe a deterministic Turing machine M' 
computing fin space on the order of S 2 (n). Let c be the sum of the num
ber of tape symbols of M and the number of states of M. Then there are 
at most c8 (n)+l unique instantaneous descriptions containing at most S(n) 
used tape cells. If any of M's terminating computations has more than 
c8 (n)+l steps, then some instantaneous description is repeated and M has 
a computation with the same result in at most c8 (n)+l steps. The determin
istic simulator M' of M will be an implementation of the following recursive 
algorithm TEST, which on inputs Dt, D2 , and i returns true iff there is a 
computation of at most i steps that takes M from instantaneous description 
D 1 to instantaneous description D2 • The deterministic simulation will look 
for a computation from the initial instantaneous description to a halting 
one in at most c8 (n)+l steps. 

If i = 1 
then RESULT is true iff D 1 = D2 or M 

reaches instantaneous description D2 in 
one step from instantaneous description 
D1 

else RESULT is true iff there exists an 
instantaneous description D3 of size 
::::; S(n) + 1 such that 

TEST(Dt. D3, li/21) and 
TEST(D3, D2, li/2J) 

RESULT 

M' will use a standard stack implementation of TEST. Note that on 
each recursive call to TEST the value of i is essentially halved. So the number 
of stack frames that must be remembered at any time in the simulation is 
at most 1 + flogc8 (n)+ll, which is of the order S(n). The size of each stack 
frame is S(n) + 1 + k1 where k1 is a constant denoting the space used to 
hold the value i. There is another constant k2 that represents the space 
taken in addition to the stack frames to run the simulation. Hence the total 
amount of space used is: 

k2 + ( 1 + flogcS(n)+ll) (S(n) + 1 + kt). 
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This latter term is of the order S 2 (n), so M' deterministically computes f 
in roughly the square of the space used by M. ® 

We can now state an important result about nondeterministic space 
bounded complexity classes. 

Theorem 4.56: P-Space = N P-Space. 

Proof. Clearly, P-Space ~ N P-Space. The converse follows immediately 
from Theorem 4.55. ® 
Exercise 4.57: Show that NSPACE(S) ~ DTIME(28 ), for any space con
structible functionS such that >.n[logn] = O(S). 

Recall that the r.e. sets are not closed under complementation. We 
showed that if K were, r.e. then K would be recursive, leading to a con
tradiction. Given the nature of nondeterministic computation, we cannot 
expect that the complement of a set in N P is also in N P. The above discus
sion also holds when any of the time or space bounded complexity classes 
is substituted for N P. 

Definition 4.58: Let C denote some time or space bounded class. Then 
co-G denotes the set of complements of the set in C. 

Theorem 4.59: Suppose S is any space constructible recursive function 
such that S(lnl);:::: logl nl, for all n. Then, NSPACE(S)=co-NSPACE(S). 

Proof. Suppose S is any recursive function such that S( I nl) ;:::: log I nl. 
Let M be a nondeterministic Turing machine given input n. Let C be 
the initial configuration. One way to include the state information in the 
configuration is to place a new symbol, representing the current state, just 
before the symbol to be read next on the tape of the Turing machine. Thus, a 
configuration conveys tape contents, machine state and read head position. 
Consequently, we assume that C appears as the symbol representing the 
initial state followed by the symbols of n. As long as S is at least logarithmic, 
the size of C :::; S(l nl ). If S is less than logarithmic, then log I nl bits are 
needed to encode the position of the read head in the configuration. Hence 
the lower bound on S in the statement of the theorem. 

First we count the exact number of configurations that are reachable 
from C using at most order of S (I nl ) space. The calculation of this value 
will also be done in space bounded by S(lnl ). Let Ti denote the number 
of configurations reachable in at most i computation steps from C using at 
most S(lnl) space. Clearly, r 0 = 1. We show how to calculate ri+l from 
ri· The total number of possible qualifying configurations is bounded above 
by k8 (1nl), for some constant k, so the sequence r 0 , r 17 ···reaches a limit. 
The total number of configurations that we seek then is Ti where i is chosen 
least such that ri = Ti+l· 

Suppose inductively that ri is given. Initialize a counter cnt to 0. A 
string of symbols is a potential configuration of M if it contains only one 
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instance of a symbol representing a state and all the other symbols of the 
string are from the tape alphabet of M. Every potential configuration of 
size bounded by S (I nl ) is called a target. These targets are considered one 
at a time in lexicographical order. We want to test if the current target is a 
configuration that is reachable in i + 1 computation steps. The number of 
targets representing one of our desired configurations that we have found 
so far is kept in cnt. For each target, consider each potential configuration 
of size bounded by S(l nl) one at a time in lexicographical order. For each 
target, another counter, cntconfig is initialized to 0. The new counter will 
keep track of how many configurations reachable in i computation steps we 
have considered so far for the current target. For each potential configura
tion, check to see of it is one of the ri configuration that is reachable in i 
steps. If so, perform two actions: 

( 1) Increment cntconfig, and 
(2) Check if this potential configuration is the same as the current target, 

or if the target is reachable from the current configuration in one com
putation step. If so, then the current target is another configuration 
that is reachable in i + 1 steps. 

If the current target has just been found to be reachable in i + 1 steps, 
then increment cnt, and proceed to the next target. If cntconfig = ri, 
then all the configurations reachable in i steps have been considered for 
this target, so proceed to the next target without incrementing cnt. The 
default is to consider the next potential configuration for the current target. 
Notice that each configuration reachable in i steps is generated again for 
each target. It would be more efficient with respect to time to calculate 
these configurations once and remember them. Unfortunately, this cannot 
be done in O(S(I nl )) space. When all targets have been checked in this 
manner, cnt contains the value Ti+l· 

Let R = Ti where i is chosen least such that Ti = ri+l· Then R is the 
total number of configurations reachable by M from C using at most space 
S(lnl). We complete the proof by showing how to test, in space S(lnl), 
if M rejects its input. Again we call each potential configuration of size 
S (I nl ) a target and consider them one at a time in lexicographical order. 
For each target, nondeterministically guess a computation path of M from 
C to the current target. If unsuccessful in guessing the computation path, 
go on to the next target. Otherwise, increment cnt and test if the target is 
an accepting configuration of M. If it is, then the input cannot be in the 
complement of the inputs accepted by M. If the counter reaches the value 
R and we have not found any accepting computations of M then we know 
that M does not accept the input. ® 

Exercise 4.60: Prove that it is not possible to store the R reachable con
figurations in O(S(Inl)) space. 
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Notice that in the above proof, the same space is used over and over 
again. Since time cannot be reused in the same manner, the proof above 
does not carry over to case of time bounded complexity classes. The same is 
true for trying to adapt the proof of Theorem 4.55 to the case of complexity 
classes determined by a function bounding execution time. For nondeter
ministic time bounded classes, we only have results concerning complete
ness. 

Exercise 4.61: Show that there exists a recursive set A such that A f. 
DSPACE(S(n)). 

Exercise 4.62: Show that NSPACE(logn)~ P. 

§4.5 An NP-Complete Problem 

Once an NP-Complete problem is found, reduction techniques can be 
used to show that other problems are also NP-Complete. Currently, there 
are thousands of problems known to be NP-Complete. We will show that 
a problem called CNFSAT is NP-Complete by translating every computa
tion of a RAM program into an instance of this problem. After defining the 
problem CNFSAT we will introduce a simple, yet computationally com
plete, nondeterministic RAM model of computation used in the proof that 
follows. 

Definition 4.63: A Boolean expression is composed of variables that range 
over true, false connected by the logical operators A (and) V (or) and ..., 
(not). The last connective is a unary one, the others are binary. 

For example, Pl V (P2 A ...,P1) is a Boolean expression. Such expressions 
are not unique in form. p1 V p2 is a Boolean expression that is equivalent to 
the first example. Often, a Boolean expression will contain a subexpression 
within pairs of parenthesis. Such subexpressions are called clauses. A clause 
is conjunctive if it contains only the operators A and ...,_ Similarly, a clause 
is disjunctive if it contains only the operators V and ...,_ 

Definition 4.64: A Boolean expression is satisfiable iff there is an assign
ment of values to the variables of the expression that makes the expression 
evaluate to true. 

The above example is satisfiable as witnessed by the assignment: 
(Pl =false, P2 =true). 

Definition 4.65: A Boolean expression is in conjunctive normal form if it 
is a conjunction of disjunctive clauses. 

In other words, an expression in conjunctive form looks like C1/\ C2 A 
... 1\ Cn where C1 , C2 , •.. , Cn are disjunctive clauses. 

Definition 4.66: CNFSAT is the problem of deciding whether or not a 
given Boolean expression in conjunctive normal form is satisfiable. 



110 4. Complete Problems 

A Boolean expression is in disjunctive normal form if it is the dis
junction of a number of conjunctive clauses. It is easy to determine if an 
arbitrary formula in disjunctive normal form is satisfiable. In fact, the task 
can be done in time proportional to the length of the formula. The best 
known algorithm for converting from conjunctive normal form to disjunc
tive normal form takes time exponential in the length of the formula. 

Proposition 4.67: CNFSATE NP. 

Proof. We describe the computation tree of a nondeterministic polynomial 
time decision procedure. The computation tree has one level for each vari
able. At each level, a nondeterministic choice is made determining the truth 
assignment of the variable associated with the level. At the bottom level, a 
complete assignment has been determined, in essentially the same number 
of steps as the number of variables. One can decide if the chosen assignment 
satisfies the formula in time proportional to the length of the formula. If 
the expression is satisfiable then the associated branch of the computation 
converges with a positive answer, otherwise it diverges. If the expression 
is satisfiable, and the satisfying branch is chosen at every choice, then the 
above procedure will terminate in a polynomial amount of time. ® 

To show that CNFSAT is NP-Complete, we will transform every non
deterministic RAM computation into a Boolean expression in conjunctive 
normal form that is satisfiable iff the computation halts within a polyno
mial time bound. To do so, we must develop a notion of a nondeterministic 
RAM program. This will be essentially the model of RAM's over natural 
numbers that we coded up earlier with two exceptions. First, we will assume 
a unique labeling so there will be no jump above's versus jump below's, only 
jumps. Furthermore, in addition to a jump on condition type of instruction 
there will be an unconditional jump to one of (perhaps several) possible 
destinations. 

Definition 4.68: A nondeterministic RAM program is a RAM program in 
the usual sense that is composed of the following 5 types of instructions: 

INC Rj 
DEC Rj 

IF Rj = 0 JMP L 
JMP (Ll, L2, ... , Ln) 
CONTINUE 
Computations on a nondeterministic RAM are defined in a manner 

analogous to the way computations on a regular (deterministic) RAM were 
defined in Definition 1.3. 

Theorem 4.69: CNFSAT is NP-Complete. 
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Proof. Suppose S is a set in NP. Then there is a nondeterministic RAM 
program P, with n instructions, that decides membership in S in time 
bounded by some polynomialp. lfsome computation of P, on input x, takes 
more than p( I xl) steps, then that computation will not indicate membership 
of x in S. If all possible computations of P on input x take more than 
p(lxl) steps, then this indicates that x ¢. S. To show that S 5,fnCNFSAT 
it suffices to write down a Boolean expression, Bx, in conjunctive normal 
form, such that Bx is satisfiable if and only if P on input x has a valid 
halting computation of length at most p( I xI ) steps. Provided Bx can be 
produced in a polynomial in x number of steps, we will have S 5,fn CNFSAT. 
This part of the proof involves a lot of notation, but is not conceptually 
dificult. 

On input x, if P halts in p( I xI ) steps, then the largest possible 
value stored in any register during the computation is p( I xI ) + x = m. 
Furthermore, P will only use finitely many registers, say r + 1 of them. 
Each of the instructions of P is one of five types: INC, DEC, conditional JMP, 
CONTINUE, and nondeterministic JMP. These considerations lead us to define, 
for a fixed x, the following Boolean constants and variables. These are 
presented along with their intuitive meanings in the expression we construct 
modeling the computation of P on input x. First, the constants that will 
guarantee that the program described by the expression we construct is 
precisely P. 

INSTl ( i) for 1 5, i 5, n is true iff the ith instruction of P is an INC 
instruction. 

INST2(i) for 1 5, i 5, n is true iff the ith instruction of Pis a DEC 

INST3(i) for 1 5, i 5, n is true iff the ith instruction of Pis a conditional 
JMP instruction. 

INST4( i) for 1 5, i 5, n is true iff the ith instruction of P is a CONTINUE 
instruction. 

INST5(i) for 1 5, i 5, n is true iff the ith instruction of Pis a nondetermin
istic JMP instruction. 

USE( i, j) for 1 5, i 5, n, 0 5, j 5, r is true iff the ith instruction of P 
uses register Rj. Notice that only the INC, DEC and conditional JMP 
instructions use any registers. 
Next are the variables that will be used to guarantee that the Boolean 

expression we construct describes a valid computation of P. 

REG(j,t,v) for 0 5, j 5, r, 0 5, t 5, p(lxl), 0 5, v 5, m is true iff the value 
of Rj after t steps of the computation is v. 

INSTRUCTION(t, i) for 0 5, t 5, p(l xl ), 1 5, i 5, n is true iff the instruction 
of P executed at timet is the ith instruction of P. 

Note that there are on the order of m2 variables defined above. Before 
proceeding to write down the formula Bx, we will introduce some convenient 
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abbreviations. "1\o:::;i:::;kxi" abbreviates "xo l\x1 1\ ... 1\xk." Similarly for the 
V operator. JUSTONE(xb ... , Xk) is an abbreviation for: 

Note that JUSTONE(xb ... , xk) is a statement in conjunctive normal form 
that is true just in case exactly one of x1 ... , Xk is true. The logical state
ment C 1\ D =? E is equivalent to ·C V ·D V E which is in conjunctive 
normal form. The expression Bx is presented below in pieces, with each 
section preceded by an informal interpretation of its intended meaning. 
The idea is to have each of the pieces of the formula model some aspects 
of the computation. A weakness of the proof is that there is no formal 
way to prove that all aspects of the computation have been accounted for. 
Trying to account for all neccessary components of the computation can 
be very tricky. For example, we do not need to have Bx make sure that 
every instruction is of only one type and uses at most one register since 
USE(i,j), INSTl(i), · · ·, INST5(i) are all constants based on P which we 
are assuming is a well-formed RAM program. 

At any step of the computation there can be at most one instruction being 
executed: 

Ao:::;t:::;p(l xl) 

JUSTONE(INSTRUCTION(t, 1), ... ,INSTRUCTION(t,n)) (i) 

Every register holds only one value at any given time: 

Ao:::;t:::;p(lxl) 1\o:::;i:::;r JUSTONE(REG(j, t, 0), ... , REG(j, t, m)) (ii) 

If register Ri isn't referenced in the instruction executed at timet, then Ri 
won't change value: 

1\l:::;i:::;n Ao:::;t<p(l xl) Ao:::;j:::;rAo:::;v:::;m 

INSTRUCTION(t, i) 1\ ·USE(i,j) 1\ REG(j, t, v) 
=? REG(j, t + 1, v) 

Conditional jump statements don't alter the contents of registers: 

1\l:::;i:::;n Ao:::;t<p(l xl) Ao:::;j:::;rAo:::;v:::;m 

INSTRUCTION(t, i) 1\ INST3(i) 1\ REG(j, t, v) 

=? REG(j, t + 1, v) 

(iii) 

(iv) 
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The computation starts with the first instruction with the input x in RO, 
and the rest of the registers containing 0: 

INSTRUCTION(O, 1) 1\ REG(O,O,x) /\1~j~r REG(j,O,O) (v) 

The computation terminates: 

V0~t~v(lxi)INSTRUCTION(t,n) (vi) 

Every instance of an INC instruction is performed correctly: 

Ao~t<v(l xl) 1\o~v<m 1\l~i~nl\o~j~r 

INSTRUCTION(t, i) 1\ USE(i,j) 1\ REG(j, t, v) 1\ INSTl (i) 

::::} REG(j, t + 1, v + 1) (vii) 

Every instance of an DEC instruction is performed correctly: 

Ao~t<p(l xl) 1\o~v~m 1\l~i~nl\o~j~r 

INSTRUCTION(t, i) 1\ USE(i,j) 1\ REG(j, t, v) 1\ INST2(i) 

::::} REG(j, t + 1, v..:. 1) (viii) 

If an INC, DEC or CONTINUE instruction is executed at time t then the next 
sequential instruction of P is executed at the t + 1st step of the computation 
(unless the final continue statement has been reached): 

/\09<P(I xl )1\l~i<n 
INSTRUCTION(t,i) 1\ INSTl(i)::::} INSTRUCTION(t + 1,i + 1) (ix) 

Ao~t<p(l xl )1\l~i<n 

INSTRUCTION(t, i) 1\ INST2(i)::::} INSTRUCTION(t + 1, i + 1) (x) 

Ao~t<p(l xl) 1\l~i<n 

INSTRUCTION(t, i) 1\ INST4(i)::::} INSTRUCTION(t + 1, i + 1) (xi) 

When the final continue statement is reached, the computation does not 
proceed: 

l\0~t<v(lxi)INSTRUCTION(t,n)::::} INSTRUCTION(t + 1,n) (xii) 

The Test and Branch instruction "IF Rj = 0 JMP Lk" behaves correctly 
when the test fails: 
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/\0:5t<p(l xl) /\1:5i<n l\o:$j:$r 

INSTRUCTION(t, i) 1\ INST3(i) 1\ USE(i,j) 1\ -,REG(j, t, 0) 

=? INSTRUCTION(t + 1,i + 1) ( xiii) 

The Test and Branch instruction "IF Rj = 0 JMP Lk" behaves correctly 
when the test succeeds: Let ik denote the instruction of P with label Lk. 
Notice that we are sure that the label exists since the program we started 
with was a well-formed RAM program. 

/\O:$t<p(l xl) /\1:5i<n l\o:$j:$r 

INSTRUCTION(t, i) 1\ INST3(i) 1\ USE(i,j) 1\ REG(j, t, 0) 

=? INSTRUCTION(t + 1, ik) (xiv) 

The nondeterministic branch instruction performs as specified: Suppose the 
ith instruction of Pis "JMP Ll, ... , Lk." Suppose label Lj is attached to 
the i}h instruction of P, for 1 :::; j :::; k. 

/\0:$t<p(l xl) /\1:$i<n 

INSTRUCTION(t, i) 1\ INST5( i) 

=? JUSTONE(INSTRUCTION(t + 1, ii), ... , 

INSTRUCTION(t+ 1,ik)) (xv) 

Let B., be (i) 1\ .. . I\ (xv). Since each of the subexpressions are in 
conjunctive normal form, B., is in conjunctive normal form. The number of 
occurrences of variables is proportional to p(l xl) or p(l xl )2 • So the length 
of Bx is proportional to p(l xl )3 at worst. Hence, given P and x, B., can 
be written out in polynomial time. Furthermore, by construction, Bx is 
satisfiable just in case there is a computation of P on input x that halts in 

at most p(l xl) steps. 

To see this, imagine the state of a computation of a RAM program 
as a grid plus an instruction counter. There is one column for each register 

and one row for each possible time. The value of the register, at the time 
given by the corresponding row is placed at coordinates in the grid for that 
particular register at that particular time. For example, such a grid might 

look something like: 
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0 0 0 

x-2 1 1 0 0 0 

x-1 1 1 0 0 0 

x-1 1 0 0 0 0 

1 x-1 0 0 0 0 0 

0 X 0 0 0 0 0 

R1 R2 Rn 

Actually, we must use a three-dimensional grid. Since we are con
structing a Boolean expression that mimics, in some way, the RAM com
putation, we can only use O's and 1 's. So our grid takes on a third dimension, 
with coordinate value ranging from 0 to maximum value that any register 
may take on during the simulation. Hence, row i, column t, depth v takes 
on a value 1 iff at timet of the computation register Ri contains the value v. 
If the value of register Ri is not v at time t, then there is a 0 at coordinates 
(t, i, v) in our grid. 

Notice that as each instruction of the program executes, the grid rep
resenting the values of the registers will change in at most two points. This 
is reflected in Bx above. What changes actually happen are also reflected. 
The execution of the RAM program will cause the grid to change in a par
ticular way. If there is a sequence of grid changes that satisfies Bx, then 
there is a corresponding valid execution on the RAM program which gave 
rise to Bx. 

If values are assigned to the USE, REG and INSTRUCTION variable 
according to their intended meaning, as dictated by some accepting compu
tation of P, then Bx will be satisfiable. The construction of Bx guarantees 
that any satisfying assignment corresponds to an accepting computation of 
P. Hence, xES iff Bx ECNFSAT. ® 

Exercise 4. 70: Show that a set A E NP iff there is a set B E P and a 
polynomial p such that A can be defined as: 

A= {xl (3y)lyl :::; p(lxl and (x, y) E B}. 

Exercise 4. 71: For each of the following sets, determine whether it is in 
P, in NP but not known to be in P, recursive but not known to be in NP, 
r.e. but not recursive, or not even r.e. 
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a) { ¢>1 ¢>is a Boolean formula that is NOT satisfiable } 
b) {(¢>,i)l¢> E SAT or cpi(i)!} u {(¢>,i)l¢> ~ SAT} 
c) {xiMx(x) halts in lxl steps} 
d) {1nl there exists a and b such that a2 + b2 = n} 
e.) {(¢>, k)l there exists exactly k satifying assignments for¢>} 

Exercise 4. 72: For each of the following functions say whether it is known 
to be computable in polynomial time, known to be not computable in poly
nomial time, or currently not known whether it is in polynomial time or 
not. Justify your answer. 

a) For k expressed in binary, 

f(k) = { 1 if ther~ is a DTIME(nk) algorithm for SAT 
0 otherwise. 

b) Let Mi denote the ith Turing machine from the acceptable program
ming system based on Turing machines. Suppose x expressed in bi
nary and i is expressed so that the code for Mi is easily obtained 
from i. 

f((i,x,Ok)) = { Mi(x) if Mi(a) halts ink steps 
0 otherwise. 

c) For both input and output expressed in binary, 

if k is divisible by 17 
otherwise. 

§4.6 More NP-Complete Problems 

In this section, we will verify that four other problems are NP
Complete. The purpose of doing this is two-fold. Firstly, some examples of 
polynomial reductions will be given. Secondly, the more problems that you 
know are NP-Complete, the greater the variety of ways you have to show 
some other problem is also NP-Complete. In fact, there are thousands of 
NP-Complete problems. Each problem is preceded by the technical defini
tions necessary to define the problem. 

Definition 4. 73: A graph is an ordered pair (V, E) such that V is a finite 
set of objects called vertices and E ~ V x V. Elements of E are called 
edges. The graph is complete if E = V x V, e.g., every pair of vertices is 
connected by an edge. 

Definition 4. 74: A graph G = (V, E) is undirected iff whenever uv E E, 
so is vu, for an u,v E V. A directed graph (digraph) is any graph that is 
not undirected. 
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Definition 4. 75: A subgraph of a graph G = (V, E) is a graph G' = 
(V',E') such that V' ~VandE'~ (En (V' x V')). 

Definition 4. 76: A k-clique of a graph G is a complete subgraph of G with 
exactly k vertices. 

The CLIQUE problem is to determine if an arbitrary graph has a 
k-clique, for some value of k. 

Theorem 4. 77: The CLIQUE problem is NP-Complete. 

Proof. First we must show that CLIQUEE NP. A nondeterministic algo
rithm starts by guessing a size k subset of the vertices from the input graph, 
G. This can be done in time proportional to the number of vertices of G. 
Next, the algorithm, in time O(k2), verifies that for every pair of vertices 
in the chosen subset, there is an edge connecting them in G. 

To complete the proof, we must show CNFSAT~~ CLIQUE. This 
step involves showing how to transform uniformly in polynomial time an 
instance of CNFSAT into an instance of CLIQUE. Then we must show that 
the starting instance of CNFSAT was satisfiable iff the transformed instance 
has a k clique, where k is chosen as part of the transformation. When all 
this is done, Theorem 4.69 will immediately imply the result we seek. Now 
we proceed to describe the necessary transformation. The initial step is to 
develop notation to describe an arbitrary expression in conjunctive normal 
form. Let us suppose that a formula a looks like: 

where each 
ai = ai,1 v ai,2 v ... v ai,j;' 

where each ai,j is a Boolean variable, or the negation of one. The ai,j 's are 
called atomic formulae. 

The graph we construct will have one vertex for every literal of a. 
Two vertices will be connected by an edge if there is a possibility of some 
assignment satisfying both of them. The number of edges will be at most 
the square of the number of vertices. 

V ={[i,j]ll ~ i ~ k and 1 ~ j ~ ji} 

E ={[i,j] [l, m]li =f. land-, ai,j =f. a1,m and ai,j =f.-, at,m} 

Here is an example. Let 

For this example, 

a1,1 =fJ1 

a1,2 =-, !32 

a2,1 =!32 

a2,2 =-, (33 

Continuing with the example, G looks like: 

a3,1 =!33 

a3,2 =-, !31 
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Let n = L::=l ji =the number of literals. Then there are n vertices in 
G and at most n2 edges. So, the time to construct G is O(n2), which is poly
nomial in the number of literals. Hence, the transformation is polynomial. 
It remains to show that a is satisfiable iff G has a k clique. 

Suppose that a is satisfiable. Then there is an assignment of TRUE 
or FALSE to each variable that makes a evaluate to TRUE. This means 
that in each ai (1 :::; i :::; k) there is an ai,ji (for some 1 :::; ji :::; ji) that 
receives value TRUE. We claim that {[i, ji]l1 :::; i :::; k} is a k clique. To 
show this, we must verify that e = [i, ji] [l, j 1] E E for all 1 :::; i =f. l :::; k. If 
i =f. l and e (/_ E, then either ai,ji = --, a 1,j' or ..., ai,j• = al,j'· Both cases 
lead to a contradiction since we know that both ai,j' and al,j' get value 
TRUE. 

Suppose that G has a k clique. If [i, j] and [l, m] are in the clique, 
then, by the choice of E, it must be the case that i =f. l. Consider the fol
lowing truth assignment to the literals of a. For each (3, a Boolean variable 
referenced in a, assign the value TRUE to (3 if, for some [i, j] in the clique, 
(3 = ai,j. If for some [ i, j] in the clique, --, (3 = ai,j, then assign the value 
FALSE to (3. Independently of how the other variables referenced in a are 
assigned, at least one atomic formula in each ai will evaluate to TRUE, 
hence, a evaluates to TRUE. 

The only problem may be that we have attempted to assign both 
TRUE and FALSE to some (3. Suppose, by way of contradiction, that we 
have assigned true to (3 because (3 = ai,j and we have assigned FALSE to (3 

because --,(3 = al,m· Since [i, j] and [l, m] are in the clique, so [i, j] [l, m] E E. 
Consequently, invoking the definition of E, 

f3 = ai,j =f. ..., al,m = --,--, f3 = (3. 

The desired contradiction is evident. 

Exercise 4. 78: Show that for the reduction of the above result, the number 
of cliques in the graph constructed is the same as the number of satisfying 
assignments of the original Boolean expression. 
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Definition 4. 79: A vertex cover of a graph is a subset of the set of vertices 
(called a cover) with the property that every edge is incident with one of 
the vertices in the cover. 

Definition 4.80: The VERTEX COVER problem is to determine if an 
arbitrary graph has a vertex cover of size at most k, for an arbitrary value 
of k. 

Theorem 4.81: VERTEX COVER is NP-Complete. 

Proof. To see that VERTEX COVER is in NP, note that a nondeterministic 
algorithm need only guess a set of k vertices, and then check each edge to 
make sure one of its end points is in the guessed set. To show completeness, 
we must polynomially transform some NP-complete problem into VER
TEX COVER. Now we have a choice now of two NP-Complete problems 
to choose from. Much of the prior reduction involved transforming Boolean 
expressions into graphs. Such a complicated transformation can be avoided 
by showing CLIQUE5,fn VERTEX COVER. Suppose G = (V, E) is a graph. 

- -
Let n be the number of vertices. Construct G = (V, E) where 

E = {vwlv,w E V,v =/; w, and v w f/. E}. 

The transformation from G to G takes time proportional to the sum 
of the number of vertices and the number of edges, clearly polynomial. The 
proof is completed by showing that G has a k clique iff G has a size n - k 
vertex cover. 

Suppose S is a clique in G. Then no edge in G connects any two 

vertices inS. Hence, every edge in E is incident with some vertex in V- S. 

Since S is of size k and V is of size n, G has a vertex cover of size n - k. 
- -

Suppose that V- Sis a vertex cover of G. Then every edge in E is 

incident with some vertex in V- S. So no edge in E connects two vertices 
inS. So Sis a clique in G. ® 

Definition 4.82: A cycle in a ( di)graph G = (V, E) is a sequence of vertices 
vo, VI, · · ·, Vn such that Vi E V, 0 5, i 5, n, ViVi+l• 0 5, i < n, and vo = Vn· 

A Hamiltonian cycle is cycle with two additional properties: Vi =/; v; for 
0 5, i < j < n and {Vi I i 5, n} = V. 

Definition 4.83: The DIRECTED HAMILTONIAN CIRCUIT problem is 
to determine if there is a Hamiltonian circuit in an arbitrary digraph. 

Theorem 4.83: The DIRECTED HAMILTONIAN CIRCUIT problem is 
NP-Complete. 
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Proof. Again, it is easy to show that DIRECTED HAMILTONIAN CIR
CUITE NP. The necessary nondeterministic algorithm guesses a permuta
tion of the vertices and verifies that edges exists between the vertices that 
are adjacent in the permutation. 

To show completeness, we will prove that VERTEX COVER :::;~ DI
RECTED HAMILTONIAN CIRCUIT. Let G = (V, E) and k some number 
less than the number of vertices in V. We proceed to construct a graph 
G' = (V', E') such that G' has a Hamiltonian cycle iff G has a vertex cover 
of size k. 

Choose at, a2, · · ·, ak new elements that are easily distinguished from 
all elements of VandE. These new elements are in V' along with four new 
vertices for each u vEE. These four vertices will be named: 

(u,uv,O) (v,uv,O) 

( u, u v' 1) ( v' u v' 1) 

E' contains three classes of edges. For each u v E E, there are four 
edges in the first class of E''s edges: 

(u,uv,O) 
t--
---+ (v,uv,O) 

(u,uv,1) 
t--
---+ (v,uv,1) 

Let v be an arbitrary vertex in V. Suppose that Wt, w2, · · ·, Wm is a 
complete list of all the vertices adjacent to v. Then the following edges for 
0 < i <mare in E': 

(v,vwi,O) 
_! 

(v, v wi, 1) 
_!_ 

(v,vwi+1,0) 

The third and final class of edges in E' contains two edges for each 
1:::; i:::; k: 

(v, v Wm, 1) 
! 

If G has n vertices and m edges, then G' has 4m + k vertices and 
6m + 2k edges. Clearly, the transformation is polynomial in m. 

An example is in order. Consider the following graph G with a 1 
vertex cover: 
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The conversion of this graph G into G' yields: 

t-
--+ 

(B,AB,O) 
_!_ 

(B,AB,l) 
_!_ 

(B,BC,O) 
_!_ 

(B,BC, 1) 
_!_ 

(B,B D,O) 
_!_ 

(B,BD,l) 

Now we return to the proof. As a first observation, notice that for 
each edge v w E E, there are the following edges in E': 

! ! 
(v,vw,O) 

t--
(w,vw,O) --+ 

! ! 
(v,vw,l) 

t--
(w,vw,l) --+ 

! ! 
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Consequently, any Hamiltonian circuit that enters (v, v w, 0) must 
exit the quartet of vertices from (v, v w, 1), as otherwise one of the four 
nodes cannot be visited in a Hamiltonian cycle. 

Now we complete the proof by showing that the transformation has 
the desired properties. Suppose that G' has a hamiltonian cycle. We can 
view this cycle as consisting of k parts, each from ai to ai for some i and j 
such that no other vertex in { a1, · · · , ak} occurs in that segment. By the pre
vious observation about the traversal of each quartet of vertices, each seg
ment starting at ai enters some (vv w1, 0) and exits from (v, v Wm, 1). This 
segment could also contain a traversal through ( Wi, v Wi, 0), · · ·, ( Wi, v Wi, 1), 
but all these wi's are adjacent to v. Hence, each of the k segments ai, · · ·, ai 
has a single vertex associated with it. These k vertices are a vertex cover of 
G, since for every (w,e,b) E V', e must be incident with one of the selected 
vertices. 

Suppose { v17 • • • , vk} is a vertex cover of G. Consider the following 
cycle in G', using primarily the second class of edges: 

al,(vl,~,O),···,(vl,~,1),(vl,vl w2,1,0),···, 

(v1, V1 Wm1 ,t, 0), · · ·, (v1, V1 Wm1 ,t, 1) 

a2,(v2,~,0),···,(v2,~.1),(v2,v2w2,2,0),···, 

(v2,v2 Wm2 ,2,0), · · ·, (v2,v2 Wm2 ,2, 1) 

ak,(vk,~,O),···,(vk,~,1),(vk,vkw2,k,O),···, 

(vk,Vk Wm,.,k,O), · · ·, (vk,Vk Wm,.,k, 1),al 

If all of the vertices from V' are in the above path, then we are done. 
Suppose, on the other hand, that some (w, e, b) E V' is not in the cycle 
above. Since the vi's form a vertex cover for G, there is a v E { Vt, · · · , vk} 
such that e = v w. The part of the cycle that goes 

(v,vw,O),(v,vw,1) 

can be replaced with: 

(v, v w, 0), (w, v w, 0), (w, v w, 1), (v, v w, 1). 

The resulting path is still a cycle and it includes (w,e,b). Since (w,e,b) 
was chosen arbitrarily, this process can be repeated for all omitted vertices 
from V', thus forming a Hamiltonian cycle in G'. ® 
Exercise 4.84: Show DIRECTED HAMILTONIAN CIRCUIT ::::;~ UNDI
RECTED HAMILTONIAN CIRCUIT. 
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Exercise 4.84: The subgraph isomorphism problem is: Given two graphs 
G1 = (V1, El) and G2 = (V2, E2), does G1 contain a subgraph that is 
isomorphic to G2? In other words, is there a V' ~ Vi and E' ~ E 1 such 
that V' and V2 have the same number of vertices, E' and E2 have the 
same number of edges, and there is a one-to-one function f mapping V2 
to V' such that (u, v) E E2 iff (f(u), f(v)) E E'. Prove that the subgraph 
isomorphism problem is NP-Complete. 

Exercise 4.85: An independent set of a graph G = (V, E) is a subset 
V' c V such that for any u, v E V' if u =1- v then uv f/. E. The Independent 
Set problem is to determine for a given graph G = (V, E) and an integer 
k whether or not G has an independent set of size at least k. Prove that 
Independent Set is NP-Complete. 

Exercise 4.86: Let F- SAT = {<PI there are at least four different satis
fying truth assignments for <f>}. Show that F- SAT is NP-Complete. 
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§4. 7 Historical Notes 

The notions of reducibility and completeness stem from [Tur]. The 
idea of <m and <1 reductions are from [Pos]. The linear speed-up theorem 
and the time hierarchy theorem are from [H&S1]. Theorem 4.38 was based 
on a result from [H&S2]. Theorem 4.55 is from [Sav]. The closure of non
deterministic space classes under complementation is from [Imm] but also 
appeared independently in [Sze]. The NP-Completeness of CNFSAT is from 
[Coo]. The series of polynomial reductions from CNFSAT to CLIQUE to 
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Exercise: 1.5. 
To divide R1 by R2, returning 0 if R2 is 0. 

aa-a2 
R2 JMP N3b 

Nl Rl JMP N3b 
DEC Rl 
DEC R2 
R2 JMP N2b 
JMP Nla 

N2 INC R4 
R2-R3 
JMP Nla 

N3 R1-R4 
CONTINUE 

Exercise: 1.11. 

save the divisor 
check if divisor is 0 
check if done 
this loop subtracts R2 from Rl 

check if finished with this iteration 
continue subtracting R2 from Rl 
increment the answer 
restore divisor 
subtract R2 from Rl again 
move result to output register 

rm(x, y) =remainder of x divided by y. We use the following recursive 
definition: 

rm(O,y) = 0 

rm(x + 1, y) = (rm(x, y) + 1) x { 01 if rm(x, y) + 1 = y; 
otherwise. 

By primitive recursion: 

rm(O, y) = Z(y) 

rm(x + 1, y) = h(x, y, rm(x, y)) 

= M(S(rm(x, y)), e(S(rm(x, y)), y)). 

Exercise: 1.15. 
II(xb ... ,Xn,z) = 1Iy$.z:f(xb ... ,xn,Y) = f(xb···,Xn,O) X ... X 

f(xl, ... , Xn, z). 
We use the following recursive definition {where x = X1, ••• , xn): 
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II(x, O) = f(x, O) 

II(x, z + 1) = (Ilys,z/(x, y)) * f(x, z + 1) 

By primitive recursion: 

II (x, o) = g(x) 

= f(Ui(x), ... , u::(x), Z(Ui(x))) 
II(x, z + 1) = h(x, z, II(x, z)) 

= M(II(x, z), f(Uf(x), ... , u::(x), S(z))). 

Exercise: 1.16. 
The idea is to define g via primitive recursion, keeping the value of 

the function to be one larger than the variable of recursion, as long as a 
zero does not appear in the range of f. In the recursive step, care must be 
taken not to take the previous function value if no zeros have been found 
in the range of f. 

( 0) { 0 if f(xt, ... , Xn, 0) = 0, 9 Xt, ... ,Xn, = 1 otherwise 

g(xt, ... , Xn, y) if f(xt, ... , XnY + 1) =/; 0 
{ 

y + 1 if /(xl, ... , Xn, y + 1) = 0, 

g(xt, ... ,Xn,y+1)= andg(xt, ... ,xn,Y) 
=/; y + 1, 

y + 2 otherwise. 

The last clause of g can be written more formally as: 

g(xt, ... , Xn, y + 1) = (y + 1) X sg(f(x1, ... , Xn, y + 1)) 

+ g(x1, ... , Xn, y) 
X sg(f(x1, ... , Xn, y + 1)) X £(g(xt, ... , Xn, y), y + 1) 

+ (y + 2) X sg(f(x1, ... , Xn, y + 1)) X E(g(xl, ... , Xn, y), y + 1). 

Exercise: 1.17. 
We will use the following strategy to define the function g by primitive 

recursion. First we will sum up sg(f(xt, ... , Xn, 0) ), · · ·, sg(f(xt, ... , Xn, y)). 
If the sum is y + 1, then all the values f(xl, ... , Xn, 0), · · ·, f(xt, ... , Xn, y) 
evaluate to a nonzero value. In this case we want to add 1 to the previous 
value of g. If the sum is less than y + 1, then there is a z < y such that 
f(xl, ... , Xn, z) = 0, and we take the previous function value as is. More 
formally, 

g(xt, ... , Xn, 0) = 0 

g(x1, ... , Xn, Y + 1) = g(x1, ... , Xn, y) 

+ E((Eis,ysg(f(xl, ... , Xn, i))), y + 1). 
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Exercise: 1.31. 
Since the identity function is primitive recursive and bounded sum

mations of primitive recursive functions are primitive recursive, there is a 
primitive recursive function 

SU M(x, y) = Ei5,x+yi. 

Then 

(x,y) = SUM(x,y) + U?(x,y). 

Next we show that cd is primitive recursive. First define: 

h1 (x, y) = (S(x), Z(y)). 

Now, reverse the arguments: 

Using two applications of composition, define: 

h3(x, y) = S(S(Uf(x, y))). 

Now to subtract, 

A final auxiliary function is needed: 

h(x, y) = u?(x, y) + h4(x, y). 

Now, 

cd(O) = 0 
cd(n + 1) = h(n, cd(n)). 

For 1r2, a single auxiliary function is needed: hs(x) = (cd(x), Z(x)). Now, 

1r2(n) = n...:... hs(n). 

The final function, 1r1, is obtained by a single composition as given in the 
text. 

Exercise: 1.33. 
Recall that< x,y >= 1 + 2 + · · · + (x + y) + y. If x = y = 0 then 

< x, y >= 0. If x > 0 or y > 0 then (x+y) ;::: 1 and by the definition above, 
< x, y >2': (x + y) + y which is ;::: both x andy. 
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Exercise: 1.35. 
Suppose 1/J is a partial recursive function with domain {x0 , · · ·, xn}· 

Suppose without loss of generality that Xn is the largest element of the 
domain of 1/J. Define Zi for i ::::; Xn as follows: 

{ 1/J(x ·) + 1 if i = x · ~ = J J• 
0 otherwise. 

Let x be the coded Xn + 2 tuple: (xn, zo, · · ·, zxJ· We claim that dx = 1/J. 
Suppose that y = Xj, i.e. y is in the domain of 1/J. Then y < 11"i(x) + 1 
and F(x,y) = II(xj + 1,xn + 1,1r2(x)) = 1/J(xj) + 1. Since 1/J(xj) + 1 > 0, 
dx(xj)) = '1/;(xj)· Suppose they is not in the domain of 1/J. If y > 1r1 (x) = 
Xn, then dx(Y) is undefined as desired. Suppose then that y ::::; Xn· Then 
F(x, y) = II(y + 1, Xn + 1, 1r2(x)) = Zy = 0. So, again, dx(Y) is undefined as 
desired. 

Exercise: 1.40. 
In order to define Add and Sub, we will use the maximum in a 

bounded range function: 

which is primitive recursive by 1.16. 
For Sub, given y =< r1, ... , rx > we want to find the maximum 

z =< r1, ... , rx > such that all the register values remain the same, except 
for the jth register, which is decremented. We use the following predicate 
function J, which has the value zero only in this situation: 

f = 0 if jth register is decremented in z relative toy and the number 
of registers in z that are different from the corresponding register in y equals 
1. 

f = €(1r(j,x,z),1r(j,x,y) -1) x € ( (t€(1r(k,x,z),1r(k,x,y))), 1). 
More formally, 

Sub(j,x,y) = maxz::::; y 

[ M(<(">r(j,x,z),PR(7r(j,x,y))),<( (I;==l "f(7r(k,x,z),7r(k,x,y)) ),1) )] . 

For ADD, we can define a similar function, replacing the PR above 
with S, but we need to find an upper bound, since the z we are looking for 
will be larger than y. Note that by problem 1.25 above, y ~ ri, i = 1, ... , x 
and so y + 1 ~ ri + 1, i = i, ... , x. Let our bound be 

y' = y + 1, ... 'y + 1. 

x times 



Exercise: 1.49. 

soOORso 
sollRso 
soBBLs1 
s110Ls1 
s101Ls2 
s200Ls2 
s2l1Ls2 
s2BBRs4 
s1B1Ls3 
s3BBRs4 

Exercise: 1.50. 
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find the end of the input 

found the end 
increment, bit by bit 
end of increment 
find left end 

found the left end of the tape 

The coding that makes the problem easiest is the unary encoding. 
The number n is represented by n + 11's. The alphabet is {B, 1}. 

so1BRsl 
s11BRs2 
s2l1Rs2 
s2B1Ls3 

Exercise: 1.57. 
To show that the BNF language expresses exactly the Turing com

putable functions requires proof in two directions. The first is to show that 
every partial recursive function can be computed by a program in the BNF 
language. The second is to show that every program in the BNF language 
is a partial recursive function. We do not show this second direction but it 
is a simple task to convert a BNF program into a RAM program (this is 
the job of a compiler). Alternatively, we could just assume Church's thesis. 

Theorem: Every partial recursive function can be computed by a 
program in the BNF language. 

Proof: Our convention will be that X1, ... , X n are variables contain
ing the input values X1, ..• , Xn and that the output value is contained in 
Xl. 

First we define a BNF subprogram Xi +-- Xj that copies the value 
of Xj into Xi. Note that it is necessary for the remainder of the proof that 
the value in Xj remain intact. 

Xi+-- Xj: {Xk is a variable not used by the rest of the program} 
case 1: i =!= j 

clear Xi 
clear Xk 
while X j =/= 0 do 

decrement Xj 
increment Xi 
increment Xk 
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while X k =/; 0 do 
decrement X k 
increment Xj 

case 2: i = j 
clear Xk 

The base functions can be represented as follows: 
Z(x) : clear X1 
S(x): increment X1 
UJ'(xi. ... , Xn) : X1 +-- Xj 

The remainder of the proof follows the format for representation of 
the partial recursive functions by RAM programs. We show only minimal
ization. Suppose that J, a function of n arguments, is defined by minimal
ization from h. Let Ph be a BNF program computing h. Let m be such 
that no variable X k for k ~ m is referenced in Ph. The following program 
computes f: 
X(m + 1) +-- X1 save arguments 

X(m +n) +-- Xn 
clear X(m + n + 1) 
X(n + 1) +-- X(m + n + 1) 
ph 
while X1 =/; 0 do 

X1 +-- X(m+ 1) 

Xn+-X(m+n) 
clear X(n + 1) 

clear X(m- 1) 
increment X(m + n + 1) 
X(n + 1) +-- X(m + n + 1) 

initialize search variable 

compute h(x1, ... Xn, 0) 
check if done 

restore arguments 

clear scratch variables 

set search variable 

Ph compute h(xt, ... xn,X(m+n+ 1)) 
X1+-X(m+n+1) 

Exercise: 2.9. 
Apply the recursion theorem (Theorem 2.7) to the projection function 

Ul. Then, for any x, ~Pe(x) = Uf(e,x) =e. 

Exercise: 2.13. 
Use the following algorithm: 

1. Write a program, called P, that takes two strings as as input, and 
outputs the first one. 

2. Write a program, called S, that takes two strings, interprets the first 
argument as a program that we will call T. The second argument will 
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be called Y. Suppose that the first input statement of T inputs data 
into some variable, say Z, and maybe some other variables as well. 
The point is that Z is the first variable read. S then outputs a string 
representing a program T' that is just like T except that Z is initially 
set to Y, instead of being read in. 

3. Write a program, called V, that takes two strings, A and B, as input. 
V runs program S on inputs A and A (again). The result of this 
computation is a string, say 0. V then simulates program P on inputs 
0 and B. 

4. Program V, like all programs is represented as a character string. Run 
programS on argument strings V and V (again). The output of this 
computation will be a string that, when interpreted as a program, 
will produce its own code. 

Exercise: 2.14. 
From the electronic bulletin boards: 

In LISP: 
((lambda (x) (list x (list (quote quote) x))) 
(quote (lambda (x) (list x (list (quote quote) x))))) 

In Pascal: 

In C: 

program repro(output); 
const d=39; 
b=';begin writeln(c,chr(d),b,chr(d),chr(59)); 
writeln(chr(67),chr(61),chr(d),c,chr(d),b) end.'; 
c='program repro(output); const d=39; b='; 
begin 
writeln(c,chr(d),b,chr(d),chr(59)); 
writeln(chr(67),chr(61),chr(d),c,chr(d),b) 
end. 

main(a){a="main(a){a=Y.cY.sY.c;printf(a,34,a,34);}"; 
printf(a,34,a,34);} 

Exercise: 2.18. 
Theorem: (n-ary recursion theorem) Suppose <p0 , <p1 , · · · is an ac

ceptable programming system. (V'i1) · · · (V'in)(V'x) there exists programs 
e1, ... , en such that: 

<{)en (x) =<{)in (el, ... 'en, x). 

Proof: Let i1, ... , in be given. By implicit use of the s-m-n theorem, 
there is a recursive function g such that V'i, x1 , ... , Xn, z : 
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Now define: 
e1 = s(g(il),g(il), ... ,g(in)) 

en= s(g(in),g(il), ... ,g(in)) 

Then 

cpe1 (x) 

= cps(g(il),g(il), ... ,g(i,..))(x) 

= cpg(i1)(g(il), · · · ,g(in),x) 

= cpi1 (s(g( il), g(i1), ... , g(in) ), ... , s(g(in), g(i1), ... , g(in)), x) 

= cpil (eb ... 'en, x) 

And similarly for i2, ... , in· 

Exercise: 2.23. 
By the recursion theorem there is a program e such that 

if (3k < j)s(e,k) = s(e,j); 
if ('Vk < j)s(e,k) i= s(e,j) and 

cpe{j, y) = { ~ 
cpg(j) (y) 

(3k)j < k :5 y and s(e, k) = s(e,j); 
otherwise. 

Suppose by way of contradiction that Ax[s(e,x)] is not a one-to-one 
function. Choose j > k least such that s(e,j) = s(e, k). Then 'Vy, 

cps(e,j)(Y) = cpe{j,y) = 0. 

But, 'Vy > j, 

cps(e,k)(Y) = cpe(k, y) = 1. 

Hence cp8 (e,k) i= cps(e,j) ( =?~) 
Therefore, Ax[s(e, x)] is a one-to-one function and 'Vx, y: 

cps(e,x)(Y) = cpe(x,y) = cpg(x)(y). 

Exercise: 2.26. 
Apply the fixed point theorem (Theorem 2.25) to the successor func

tion S. Then there is ani such that cpi+l = cps(i) = cpi. 
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Exercise: 2.27. 
Let f and c be given. Find a k such that cpi =f. cpk, for all i ~c. Such 

a k must exist as there are only finitely many functions computed be the 
first c + 1 programs in any acceptable programming system. Now define: 

{ k if X~ c, 
g(x) = f(x) otherwise. 

Since f is recursive, so is g. Take a fixed point n of g. So cpn = <pg(n)· 
Suppose by way of contradiction that n ~ c. Then g(n) = k where k was 
chosen such that cpk =f. cpn, a contradiction. Hence, n > c and g(n) = f(n), 
so cpn = <pg(n) = cpf(n)· Consequently, n is also a fixed point for f. 

Exercise: 2.28. 
Suppose i is a program computing a function of two arguments. Define 

f = .Xx[s(i,x)]. Since the store function is total, the function f just defined 
is recursive. Applying the fixed point theorem to f yields an e such that 
for any x: 

cpe(x) = cpf(e)(x) = cps(i,e)(x) = cpi(e,x). 

Exercise: 2.29. 
Let f be a recursive function. Define program i by: 

cpi(e, x) = <puniv(f(e), x). 

Applying the recursion theorem to program i yields an e such that for all 
x: 

cpe(x) = cpi(e,x) = <puniv(f(e),x) = cpf(e)(x). 

Exercise: 2.30. 
By the s-m-n theorem and the universal machine theorem there is are

cursive function k such that cpk(x) = gocpx. Define j(x, y) = g-1(f(k(x), y)). 
Then, for any x and y: 

.Xy[g-11/Jg(j(x, y))] = .Xy[g-11/Jgg-1 f(k(x), y)], 

= .Xy[g-11/lf(k(x),y)], 
-1 = g cpk(x)• 

= g-1gcpx, 

= cpz. 

Exercise: 2.34. 
See G. Riccardi, The independence of control structures in abstract 

programming systems, Journal of Computer and Systems Sciences, Vol. 22, 
1981, pp. 107-143. 
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Exercise: 2.35. 
SeeM. Machtey, K. Winklmann and P. Young, Simple Godel num

berings, isomorphisms and programming properties, SIAM Journal of Com
puting, Vol. 7, 1978, pp. 39-59. 

Exercise: 2.36. 
See J. Royer, A Connotational Theory of Program Structure, Lecture 

Notes in Computer Science Vol. 273, Springer Verlag, New York, 1987. 

Exercise: 2.37. 
See C. Smith, Applications of classical recursion theory to computer 

science, in "Recursion theory: its generalisations and applications," edited 
by S. Wainer and E. F. Drake, London Mathematical Society Lecture Notes 
Series Vol. 45, Cambridge University Press, Cambridge, 1980, pp. 236-247. 

Exercise: 2.42. 
Let A= {xlcpx is a constant function}. If A is recursive, then there 

is a recursive characteristic function f for A: 

f ( x) = { 1 if cpz is. a constant function 
0 otherwise. 

By the recursion theorem, there is a program e such that 

-{1 iff(e)=O 
cpe(x) - i otherwise. 

Now we show the contradiction: 
cpe E A=? cpe is a constant function =? f(e) = 1 =? Vxcpe(x) j=? cpe f/. A 
cpe f/. A=? cpe is not a constant function =? f(e) = 0 =? Vxcpe(x) = 1 =? 
cpe EA. 

Exercise: 2.45. 
Let D = {(x, y)l cpx = cpy}· If D is recursive, then there is a recursive 

characteristic function f for D: 

J ( ) _ { 1 if cpz = cpy 
x' y - 0 otherwise. 

By the mutual recursion theorem, there are two programs e0 and e1 such 
that: 

( ) { 0 if f(eo,el) = 0 
cpeo x = 1 otherwise 

( ) { 0 if /(eo, e1) = 0 
cpe1 x = 2 otherwise. 

Now we show the contradiction: 
(eo, el) E D =? cpe0 = cpe1 =? f( eo, el) = 1 =? cpe0 = AX[1] and cpe1 = 
Ax[2] =?(eo, el) f/. D 
(eo,el) f/. D =? cpe0 =f. cpe1 =? f(eo,el) = 0 =? cpe0 (x) = cpe1 = Ax[O] =? 
(eo,el) ED. 
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Exercise: 2.46. 
No. Suppose by way of contradiction that S = {elcpe = IPe+I} is an 

index set. By the recursion theorem there is an e such that Cf1e = IPe+l· 
(Alternatively, apply the fixed point theorem applied to the successor func
tion.) Consequently, there is an e E S. We show by induction that for all 
i E IN, IPe+i = Cf1e· Since e E S, Cf1e = IPe+l· Since Sis an index set, Cf1e+l E S. 

Suppose inductively that Cf1e = Cf1e+l = · · · = IPe+i· Then Cf1e+i E S. By the 
definition of S, IPe+i = IPe+i+I. completing the induction. Consequently, 
{~Pi I i E IN} = { IPi I i ~ e}. This implies that that are only finitely many 
partial recursive functions, a contradiction. 

Exercise: 2.54. 
b) Yes, by the recursion theorem there is a program e such that for 

anyx: 

{ l if x =/; e, 
~Pe(x) = i otherwise. 

Clearly, We =IN- { e }. 
d) Yes. Since K is r.e., by the recursion theorem there is a program 

e such that for all x: 

{ l if x = e or x E K, 
~Pe(x) = i otherwise. 

Clearly, We= KU{e}. Notice that Cf1e(e) 1. Hence, e E K and KU{e} = K. 

Exercise: 2.60. 
Suppose A =/; 0 is r.e. and f is a recursive function with range A. 

Define g such that : 
g(x) = IPJ(x)(x) + 1. 

Since every program in the range of f computes a recursive function, g is 
recursive. Suppose by way of contradiction cpy = g and y E A. Then there 
is a z such that f(z) = y. 
cpy(z) = g(z) = IPJ(z)(z) + 1 = cpy(z) + 1 (=><=) 

Exercise: 2.67. 
Suppose A is an infinite recursively enumerable set. Let f be a recur

sive function with range A. Define: 

g(O) = /(0) 

g(x + 1) = f(!-LY[f(y) > g(x)]) 

Since A is infinite, g is recursive. Furthermore, the range of g is a subset of 
the range of J, so the range of g is a subset of A. Note that g is monotone 
increasing. To decide if x is in the range of g, find the least y such that 
x ~ g(y). Such a y must exist since g is monotone increasing. Now, x is in 
the range of g iff x = g(y). Hence, the range of g is an infinite, recursive 
subset of A. 
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Exercise: 2.88. 

a) Suppose by way of contradiction that A= {(x,y)lcpx = cpy} is r.e. A is 
not an index set, so a reduction technique should be used. Choose z and 
u such that IPz = >.x[O] and Cf1u = >.x[j]. By an implicit application of the 
s-m-n theorem, there is a recursive function g such that: 

{ 0 if x E K, 
IPg(x)(Y) = i otherwise. 

For any x, either IPg(x) = cpz or IPg(x) = Cf1u, depending on whether or nor 
x E K. So, to decide if x E K wait to see which pair, (g(x), z) or (g(x), u) 
shows up first in the enumeration of A. One of the two pairs must show up, 
hence if A is r.e. then K is recursive, a contradiction. 

c) Suppose by way of contradiction that the given set C = {xl (3y, z)cpx(Y)! 
and cpy(z) i} is r.e. Let z be such that cpz = >.x[O]. By the mutual recursion 

theorem, there are programs eo and e1 such that: 

Note that We0 = {el}. 

IPe0 (x) = { ~ 

IPe1 (x) = { ~ 

if x = e1 
otherwise. 

if eo E C, 
otherwise. 

eo E C => (3z)cpe1 (z) i=> Cf1e 1 = >.x[j] =>eo fj. C (=>~) 
eo¢ C => Cf1e 1 = >.x[i] =>eo E C (=>~) 

d) Suppose by way of contradiction D = {xl (3y)cpx(Y) ! and ipy is total} 
is r.e. By an implicit use of the s-m-n theorem there is a recursive function 
f such that Wf(i) = {i}. Define a partial function: 

_ { 1 if f(y) E D, 
1/J(y) - i otherwise. 

Since D is assumed to be r.e., 1/J is a partial recursive. Hence, the domain 
of 1/J is r.e. Notice that 1/J(y) converges iff f(y) E D iff cpy is total. Hence, 
{yl cpy is total} is r .e., a contradiction. 

g) Suppose by way of contradiction that G = {xI Wx is infinite} is r.e. 
Suppose Wn = IN. Then n E G. By Lemma 2.83, there is a finite set 
WJ c Wn with f E G, (=>~). 

j) Suppose by way of contradiction that J = { xl Wx is finite} is r.e. Suppose 
Wn = IN and WJ is finite. Then f E J. By Lemma 2.85, since WJ C Wx, 
X E J, (=>~). 
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k) Suppose by way of contradiction that L = { xl W~: = { x}} is r.e. By the 
recursion theorem, there is a program e such that 

(x) = { 1 if x = e or e E L, 
'Pe i otherwise. 

eEL=? 'Pe = .Xx[1] =? e f/. L (=?¢=) 
e f/. L =? We = { e} =? e E L ( =? ¢=) 

o) Suppose by way of contradiction that 0 = {xl cardinality(Wx) = 1} 
is r.e. Let l be such that W1 = {0}. Clearly, l E 0. Let n be such that 
Wn =IN. Then W1 c Wn, so by Lemma 2.85, n E 0, (=?¢=). 

p) Clearly, P = {xlcard(Wx) > 10} is an index set. Let A be the set of all 
x such that Dx has cardinality 10. If Wy ::) Dx for some x E A, then it has 
cardinality at least 10. Furthermore, of Wy has cardinality at least 11, then 
there is a Dx c Wy for some x E A. Therefore, P is r.e. 

Choose nand t such that Wn =IN and Wt = {xlx < 10}. Then t E P 
and n f/. P, therefore, by Theorem 2.48 , Pis not recursive. 

q) Suppose by way of contradiction that Q = {xl (3y)cpx(Y) i andy E K} 
is r.e. Choose u and z such that 'Pu = .Xx[f] and 'Pz = .Xx[O]. Notice that 
u E Q and z f/. Q. However, 'PuC cpz, hence by exercise 2.87, z E Q, (=?¢=). 

r) Suppose by way of contradiction R = {xl Wx ~ K} is r.e. Choose n such 
that Wn =IN. Since R is clearly not empty, by Lemma 2.85 , n E R, ( =?¢= ). 

s) This is same set as Q above in disguise. 

v) The answer depends on the acceptable programming system in use. 

Exercise: 3.1. 
Let P0 , P~, ... be an infinite sequence of RAM programs such that 

on all inputs, Pi puts i in register R1 then clears R1 and halts. Clearly, 
ViVx, Si(x) 2:: i and 'Pi(x) = 0. Now suppose there exists a function g such 
that for all i, Si(x) ~ g(x, 'Pi(x)). Then for all the functions described above 
Si(x) ~ g(x, 0), but this is a contradiction. Consider x = 1. g(1, 0) is finite 
and Sg(l,0)+1(1) > g(1,0). 

Exercise: 3.11. 
Notice that if cpi = Yi for some j, then 'Pi = /i, a recursive function. 

In this case, the domain of cpi is IN, the same as the domain of Yi· If 
cpi = !Iii, then iPi, !Iii and 'Pi all have the same domain. Hence, the first 
axiom of abstract complexity measures holds for iPo, iP1, · · ·. Let R(i, x, y) 
be the recursive predicate that is guaranteed to exist by the second axiom 
of abstract complexity measures for the complexity measure !Ji0 , !li~, 
Define: 

R(i,x,y) = { ~ 
R(i,x,y) 

if i = F(j) andy 2:: Yi, 
if i = F(j) and y < Yi, 
otherwise. 

Since F is monotone increasing, its range is a recursive set. Hence, R is 
recursive and it satisfies the second axiom of abstract complexity measures 
for iPo, iP1, · · ·. 
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Exercise: 3.17. 
Suppose such a recursive function b exists. Then by implicit use of 

the recursion theorem there is a program E such that: 

e(x) = { 0 if 4>e(X~ > b(x, 0) 
cp i otherwise. 

Notice that 'Pe(x) is the everywhere zero function. This is so because 4>e is 
a complexity measure and so must have the same domain as 'Pe· But by the 
definition of 'Pe, if 'Pe(x) j, then 4>e(x) ::=; b(x,O), which is a contradiction. 
Now, 'v'x,4>i(x) > b(x,O) = b(x,cpe(x)), so the function b can not exist. 

Exercise: 3.21. 
The idea is to run the same construction as in Theorem 3.20, only 

starting with an identifying set of initial values. Let h be as in the hy
pothesis. For each j E IN, we construct an arbitrarily complex /j, in ef
fective stages of finite extension, such that if i =f. j then fi =f. /j. Let j 
be given. To reduce notational complexity, we will write simply f for /j. 
Let r denote the finite amount of f determined prior to stage s. let X 8 

denote the least value not in the domain of fB. By way of initialization, 
let f 0 = {(y,1)1 y:::; j} U {(j + 1,0)}. Execute the following stages for 
s = 0, 1,·. ·. 

Stage s. Let i be the least uncancelled program such that i ::=; 
X 8 and 4>i(x8 ) < h(x8 ). If there is no such i, set f(x 8 ) = 0. 
Otherwise, set f(x 8 ) = 1..:... 'Pi(x8 ) and cancel program i. Go to 
stages+ 1. 
End stages. 

The proof that f is h-complex is the same argument as used in the 
proof of Theorem 3.20. Since the range of f starts with a string of j ones 
followed by a zero, the f we get for each j is unique. Hence, there are 
infinitely many f's satisfying Theorem 3.20. 

Exercise: 3.22. 
The solution to this problem is superficially similar to the proof of 

Theorem 3.20, but there are several key points of difference. 
• In order to make f sparse, there will be stages in which we have to 

define f on more than one value. 
• We must test complexity functions 4>i against all domain values. 

Specifically, we can not skip over the domain values that we use to 
make f sparse because there are an infinite number of these and we 
don't want to produce a function j with 4>j < h on these domain 
values. 

• We must be sure that 'Pi converges in order to diagonalize against it. 
The second point above is a key one. Let X 8 be the least undefined 

domain element of f at the beginning of stage s. A naive approach to this 
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problem would be to find an i such 4>i(x8 ) < h(x8 ) and to diagonalize. 
But, if f(xs) = 1 by the diagonalization, then we also have to define f at 
Xs + 1, Xs + 2, ... Xs + g(xs)· Then for stage s + 1, Xs+l = Xs + g(xs) + 1. 
There is a problem, though, in skipping over the elements we use to make 
f sparse. Suppose there exists some j < i with cpi = f and some y among 
the elements we used to make f sparse, that is, X 8 + 1 < y :::; X 8 + g(x8 ) 

such that !'Pi(Y) < h(y). Further suppose that by making f sparse (in all 
stages), we miss an infinity of elements where !Pi < h. Then we have not 
diagonalized against function j and the construction fails. 

Our construction is by finite extension. Let X 8 be the least undefined 
element in the domain off at the beginning of stageS, so xo = 0. 

Stage s: If for all i :::; s, !'Pi(Xs) ~ h(xs) then set f(x 8 ) = 0, set 
Xs+l = X8 + 1 and go to stage s + 1. Otherwise, let i be the 
least uncancelled program such that i :::; s and !Pi(X8 ) < h(x8 ). 

Now we have to ensure that we do not skip over some 
function j < i when making f sparse. 

Let y = Xs· 
While there is a j < i and a z such that y < z:::; y + g(y) 

and !'Pj(z) < h(z), set y = z and i = j. 
For x such that X8 :::; x < y, set f(x) = 0. Set f(y) = 

1-'- cpi(y). For x such that y < x:::; y + g(y), set f(x) = 0. Set 
Xs+l = y + g(y) + 1 and go to stages+ 1. 
By our construction, f is sparse. Suppose that there exists a cpi = f 

and !Pi(x) < h(x) for infinitely many x. Let D8 be the elements for which 
f is defined in stage S. Choose the least stage s such that i :::; s and 
!'Pi(Y) < h(y) for some y E Ds and all functions j < i that are ever canceled 
are canceled before stage s. Then f(y) will be made =1- cpi(Y) at stage s, a 
contradiction. 

Exercise: 3.25. 
See C. Smith, A note on arbitarily complex recursive functions, Notre 

Dame Journal of Formal Logic, Vol. 29, 1988, pp. 198-207. 

Exercise: 3.27. 
Modify the proof of the gap theorem (Theorem 3.26) as follows. In

stead of finding Yo < Yl < · · · < Yx, find Yo < Yl < · · · Yb(x)+x in the same 
way. Since Yb(x) > b(x) by the monotonicity of g, there is a string of at 
least x + 1 larger and larger values, each larger than b(x) in the y's just 
constructed. The result follows. 

Exercise: 3.40. 
Theorem: (Complexity Theoretic Fixed Point Theorem) There are 

recursive functions r and h such that h is monotone nondecreasing in its 
second argument and Vi such that cpi is total: 

(1) Vx cpr(i)(x) = cp.,,(r(i))(x) and 
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00 

(2) Vx E domain cpr(i)• Pr(i)(x) ~ h(x,P<pi(r(i))(x)). 
Proof: The r is supplied by the fully effective proof of the fixed point 

theorem. Define: 

k(i X ) = { Pr(i)(x) if P<p;(r(i))(x) = y 
' ,y 0 th . o erw1se. 

Note that if P<p;(r(i))(x) = y then cp<p,(r(i))(x) is defined and consequently, 
cpr(i)(x) is defined. Hence k is recursive. Let 

h(x,y) = ~axmaxk(i,x,z). 
t~x z~y 

The function h is clearly monotone nondecreasing. Now, suppose x E do
main cpr(i) and x ~ i. Then: 

Exercise: 3.46. 
Given ani and j such that cpi(i) = 1 and (cpi(x) = limplies cpz = cpi), 

construct via the parametric recursion theorem the following function p: 

x = { cpi(x) if cpi(p(k)) = 0, 
cpp(k)( ) cpi(x) + 1 otherwise. 

We claim that cpi(p(j)) = 0. Suppose by way of contradiction cpi(p(j)) = 
1. From the definition of j we have that cpp(j) = cpi. However, from the 
definition of p, we have that cpp(j) = Ax[cpi(x) + 1), (:::?~) 

Exercise: 4.9. 
By an implicit application of the s-m-n theorem, there is a recursive 

function f such that: 

If cpz is total, then so is cpf(x)· If cpz(Y) is undefined, then Wf(x) C {zlz < y}. 

Exercise: 4.23. 
Yes. Program f( (i, j) ), on input x, runs program i, on input x, for 

j · xi steps, outputting the answer if the simulation converges and zero 
otherwise. Clearly, cp/((i,i)) E P, for all values of i and j. Suppose g E Pas 
witnessed by program i and polynomial p. Choose j such that j ·xi ~ p(x) 
for all x. Then cp/((i,i)) =g. 
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Exercise: 4.32. 
Let Po, 4>1 , be the complexity measure formed by counting steps 

in Thring machine computations. Let x denote the lexicographically least 
input of size x. Define a recursive function f as follows: 

f(x) = { 1 if Px(x~ = 0, 
0 otherwise. 

Suppose by way of contradiction that f is time constructible. Then there 
is an i such that, for any x, f(x) = Pi(x). A contradiction is obtained by 
noting that f(i) =/; Pi(i). 

Exercise: 4.33. 
Let r be given. Consider a RAM program that, on input x, first 

computes z = max{r(y)ll yl =I xl }. Then the program decrements z to 
0. The running time of this RAM program, on input x, is z plus the time 
taken to compute the max, a quantity that is larger than r(x). Furthermore, 
given any two inputs of the same size, the running time of the program will 
be the same. The running time of this program is time constructible by 
definition. 

Exercise: 4.34. 
No. Suppose by way of contradiction that f is a recursive function 

such that { cpJ(i)li E IN} is precisely the time constructible functions. Define 
a recursive function r as follows: 

X 

r(x) = 1 + L cpf(i)(x). 
i=O 

Since all the time constructible functions are total, r is recursive. By exercise 
4.33, there is a time constructible function r' such that r'(x) ~ r(x), for 
all x. Hence, there is ani such that cpJ(i) = r'. For all x ~ i, cpf(i)(x) = 
r'(x) ~ r(x) > cpf(i)(x), (=?¢=) 

Exercise: 4.60. 
R may be as large as c8 (n). Each of these configurations takes up to 

S(n) space to store. c8 (n) · S(n) =j; O(S(n)). 
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