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Preface

Theoretical computer science is the mathematical study of models of
computation. As such, it originated in the 193Os,  well before the existence
of modern computers, in the work of the logicians Church, Giidel, Kleene,
Post, and Turing. This early work has had a profound influence on the
practical and theoretical development of computer science. Not only has
the Turing machine model proved basic for theory, but the work of these
pioneers presaged many aspects of computational practice that are now
commonplace and whose intellectual antecedents are typically unknown to
users. Included among these are the existence in principle of all-purpose
(or universal) digital computers, the concept of a program as a list of
instructions in a formal language, the possibility of interpretive programs,
the duality between software and hardware, and the representation of
languages by formal structures, based on productions. While the spotlight
in computer science has tended to fall on the truly breathtaking technolog-
ical advances that have been taking place, important work in the founda-
tions of the subject has continued as well. It is our purpose in writing this
book to provide an introduction to the various aspects of theoretical
computer science for undergraduate and graduate students that is suffi-
ciently comprehensive that the professional literature of treatises and
research papers will become accessible to our readers.

We are dealing with a very young field that is still finding itself.
Computer scientists have by no means been unanimous in judging which

. . .
XIII



xiv Preface

parts of the subject will turn out to have enduring significance. In this
situation, fraught with peril for authors, we have attempted to select topics
that have already achieved a polished classic form, and that we believe will
play an important role in future research.

In this second edition, we have included new material on the subject of
programming language semantics, which we believe to be established as an
important topic in theoretical computer science. Some of the material on
computability theory that had been scattered in the first edition has been
brought together, and a few topics that were deemed to be of only
peripheral interest to our intended audience have been eliminated. Nu-
merous exercises have also been added. We were particularly pleased to be
able to include the answer to a question that had to be listed as open in
the first edition. Namely, we present Neil Immerman’s surprisingly
straightforward proof of the fact that the class of languages accepted by
linear bounded automata is closed under complementation.

We have assumed that many of our readers will have had little experi-
ence with mathematical proof, but that almost all of them have had
substantial programming experience. Thus the first chapter contains an
introduction to the use of proofs in mathematics in addition to the usual
explanation of terminology and notation. We then proceed to take advan-
tage of the reader’s background by developing computability theory in the
context of an extremely simple abstract programming language. By system-
atic use of a macro expansion technique, the surprising power of the
language is demonstrated. This culminates in a universal program, which is
written in all detail on a single page. By a series of simulations, we then
obtain the equivalence of various different formulations of computability,
including Turing%.  Our point of view with respect to these simulations is
that it should not be the reader’s responsibility, at this stage, to fill in the
details of vaguely sketched arguments, but rather that it is our responsibil-
ity as authors to arrange matters so that the simulations can be exhibited
simply, clearly, and completely.

This material, in various preliminary forms, has been used with under-
graduate and graduate students at New York University, Brooklyn College,
The Scuola Matematica Interuniversitaria -Perugia, The University of Cal-
ifornia-Berkeley, The University of California-Santa Barbara, Worcester
Polytechnic Institute, and Yale University.

Although it has been our practice to cover the material from the second
part of the book on formal languages after the first part, the chapters on
regular and on context-free languages can be read immediately after
Chapter 1. The Chomsky-Schiitzenberger representation theorem for con-
text-free languages in used to develop their relation to pushdown au-
tomata in a way that we believe is clarifying. Part 3 is an exposition of the
aspects of logic that we think are important for computer science and can
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also be read immediately following Chapter 1. Each of the chapters of Part
4 introduces an important theory of computational complexity, concluding
with the theory of NP-completeness. Part 5, which is new to the second
edition, uses recursion equations to expand upon the notion of computabil-
ity developed in Part 1, with an emphasis on the techniques of formal
semantics, both denotational and operational. Rooted in the early work of
Giidel, Herbrand, Kleene, and others, Part 5 introduces ideas from the
modern fields of functional programming languages, denotational seman-
tics, and term rewriting systems.

Because many of the chapters are independent of one another, this book
can be used in various ways. There is more than enough material for a
full-year course at the graduate level on theory of computation. We have
used the unstarred sections of Chapters 1-6 and Chapter 9 in a successful
one-semester junior-level course, Introduction to Theory of Computation,
at New York University. A course on finite automata and formal languages
could be based on Chapters 1, 9, and 10. A semester or quarter course on
logic for computer scientists could be based on selections from Parts 1 and
3. Part 5 could be used for a third semester on the theory of computation
or an introduction to programming language semantics. Many other ar-
rangements and courses are possible, as should be apparent from the
dependency graph, which follows the Acknowledgments. It is our hope,
however, that this book will help readers to see theoretical computer
science not as a fragmented list of discrete topics, but rather as a unified
subject drawing on powerful mathematical methods and on intuitions
derived from experience with computing technology to give valuable in-
sights into a vital new area of human knowledge.

Note to the Reader

Many readers will wish to begin with Chapter 2, using the material of
Chapter 1 for reference as required. Readers who enjoy skipping around
will find the dependency graph useful.

Sections marked with an asterisk (*) may be skipped without loss of
continuity. The relationship of these sections to later material is given in
the dependency graph.

Exercises marked with an asterisk either introduce new material, refer
to earlier material in ways not indicated in the dependency graph, or
simply are considered more difficult than unmarked exercises.

A reference to Theorem 8.1 is to Theorem 8.1 of the chapter in which
the reference is made. When a reference is to a theorem in another
chapter, the chapter is specified. The same system is used in referring to
numbered formulas and to exercises.
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1
Preliminaries

1. Sets and n-tuples

We shall often be dealing with sets of objects of some definite kind.
Thinking of a collection of entities as a set simply amounts to a decision to
regard the whole collection as a single object. We shall use the word class
as synonymous with set. In particular we write N for the set of natural
numbers 0, 1,2,3,. . . . In this book the word number will always mean
natural number except in contexts where the contrary is explicitly stated.

We write

to mean that a belongs to S or, equivalently, is a member of the set S, and

to mean that a does not belong to S. It is useful to speak of the empty set,
written 0, which has no members. The equation R = S, where R and S
are sets, means that R and S are identical as sets, that is, that they have
exactly the same members. We write R G S and speak of R as a subset of
S to mean that every element of R is also an element of S. Thus, R = S if
and only if R G S and S E R. Note also that for any set R, 0 G R and
R G R. We write R c S to indicate that R c S but R # S. In this case R

1



2 Chapter 1 Preliminaries

is called a proper subset of S. If R and S are sets, we write R U S for the
union of R and S, which is the collection of all objects which are members
of either R or S or both. R n S, the intersection of R and S, is the set of
all objects that belong to both R and S. R - S, the set of all objects that
belong to R and do not belong to S, is the diflerence  between R and S. S
may contain objects not in R. Thus R - S = R - (R n S). Often we will
be working in contexts where all sets being considered are subsets of some
fixed set D (sometimes called a domain or a universe). In such a case we
write s for D - S, and call S the complement of S. Most frequently we
shall be writing s for N - S. The De Morgan identities

RuS=h-d,

are very useful; they are easy to check and any reader not already familiar
with them should do so. We write

for the set consisting of the n objects a,, a2,. . . , a,, . Sets that can be
written in this form as well as the empty set are called jinite. Sets that are
not finite, e.g., N, are called infinite. It should be carefully noted that a
and {a} are not the same thing. In particular, a E S is true if and only if
{a} 5 S. Since two sets are equal if and only if they have the same
members, it follows that, for example, {a, b, c} = {a, c, b} = {b, a, c}. That
is, the order in which we may choose to write the members of a set is
irrelevant. Where order is important, we speak instead of an n-tuple or a
list. We write n-tuples using parentheses rather than curly braces:

(a,, . . ..a.).

Naturally, the elements making up an n-tuple need not be distinct. Thus
(4,1,4,2) is a 4-tuple.  A 2-tuple is called an ordered pair, and a 3-tuple is
called an ordered triple. Unlike the case for sets of one object, we do not
distinguish between the object a and the I-tuple  (a). The crucial property of
n-tuples is

if and only if
(ai,a2 ,..., a,) = (b,,b,  ,..., b,J

a, = b, , a2 = b,, . . . . and a,, = b, .

If s,,s2 ,..., S, are given sets, then we write S, X S, X -*a X S, for the
set of all n-tuples(a,,a,,...,a,)such that a, E &,a, E S2,...,a, E S,.
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s, x s, x *-- x s, is sometimes called the Cartesian product o f
Sl&..., S,. In case S, = S, = ... = S, = S we write S” for the Carte-
sian product S, x S, x a- - x S, .

2. Functions

Functions play an important role in virtually every branch of pure and
applied mathematics. We may define a function simply as a set f, all of
whose members are ordered pairs and that has the special property

(a,b) Efand(a,c) Ef implies b = c.

However, intuitively it is more helpful to think of the pairs listed as the
rows of a table. For f a function, one writes f(a) = b to mean that
(a,b)Ef;thed  fi te ni ion of function ensures that for each a there can be
at most one such b. The set of all a such that (a, b) E f for some b is
called the domain of f. The set of all f(a) for a in the domain of f is
called the range of f.

As an example, let f be the set of ordered pairs (n, n2)  for n E IV.
Then, for each n E IV, f(n) = n2. The domain of f is N. The range of f is
the set of perfect squares.

Functions f are often specified by algorithms that provide procedures
for obtaining f(a) from a. This method of specifying functions is particu-
larly important in computer science. However, as we shall see in Chapter
4, it is quite possible to possess an algorithm that specifies a function
without being able to tell which elements belong to its domain. This makes
the notion of a so-called partial  function  play a central role in computabil-
ity theory. A partial  function on a set S is simply a function whose domain
is a subset of S. An example of a partial function on N is given by g(n)
= 6, where the domain of g is the set of perfect squares. If f is a partial
function on S and a E S, then we write f(a) 1 and say that f(a) is defined
to indicate that a is in the domain of f; if a is not in the domain of f, we
write f(a) f and say that f(a) is undejined. If a partial function on S has
the domain S, then it is called total. Finally, we should mention that the
empty set 0 is itself a function. Considered as a partial function on some
set S, it is nowhere defined.

For a partial function f on a Cartesian product S, X S, X --- X S,, we
write f(a, , . . . , a,) rather than f((a,  ,:. . , a,)). A partial function f on a
set S” is called an n-ary partial function on S, or a function of n variables
on S. We use unary  and binary for 1-ary and 2-ary, respectively. For n-ary
partial functions, we often write f(x, , . . . , x,) instead of f as a way of
showing explicitly that f is n-ary.
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Sometimes it is useful to work with particular kinds of functions. A
function f is one-one if, for all X, y in the domain of f, f(x) = f(y)
implies x = y. Stated differently, if x # y then f(x) # f(y). If the range of
f is the set S, then we say that f is an onto function with respect to S, or
simply that f is onto S. For example, f(n) = n2 is one-one, and f is onto
the set of perfect squares, but it is not onto N.

We will sometimes refer to the idea of closure. If S is a set and f is a
partial function on S, then S is closed under f if the range of f is a subset
of S. For example, N is closed under f(n) = n2, but it is not closed under
h(n) = 6 (where h is a total function on N).

3. Alphabets and Strings

An alphabet is simply some finite nonempty set A of objects called
symbols. An n-tuple of symbols of A is called a word or a string on A.
Instead of writing a word as (a,, a2,.  . . , a,,) we write simply ala2  ..a a,. If
u = ala2  a*. a,, then we say that n is the length of u and write lul = n.
We allow a unique null word, written 0, of length 0. (The reason for using
the same symbol for the number zero and the null word will become clear
in Chapter 5.) The set of all words on the alphabet A is written A”. Any
subset of A* is called a language on A or a language with alphabet A. We
do not distinguish between a symbol a E A and the word of length 1
consisting of that symbol. If u, v E A*, then we write z for the word
obtained by placing the string v after the string u. For example, if
A = {a, b, c}, u = bab, and v = caa, then

z = babcaa and
-
vu = caabab.

Where no confusion can result, we write uv instead of z. It is obvious
that, for all u,

uo = ou = u,
and that, for all u, v, w,

u(vw) = (uv)w.

Also, if either uv = uw or vu = wu, then v = w.
If u is a string, and n E N, n > 0, we write

We also write u [‘I = 0 We use the squaze brackets to avoid confusion with.
numerical exponentiation.
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If u E A* we write uR for u written backward; i.e., if u = ala2  a** a,,
for a,, . . . , i E A then uR = a,,
vRuR for u 0” E A’

... a2a,. Clearly, 0 R = 0 and (uv)~ =
, .

4. Predicates

By a predicate or a Boolean-valued function on a set S we mean a total
function P on S such that for each a E S, either

P(a) = T R U E or P(a) = FALSE,

where TRUE and FALSE are a pair of distinct objects called truth values.
We often say P(a) is true for P(a) = TRUE, and P(a) is false for
P(a) = FALSE. For our purposes it is useful to identify the truth values
with specific numbers, so we set

TRUE = 1 and FALSE = 0.

Thus, a predicate is a special kind of function with values in N. Predicates
on a set S are usually specified by expressions which become statements,
either true or false, when variables in the expression are replaced by
symbols designating fixed elements of S. Thus the expression

specifies a predicate on N, namely,

P(x) = i f  x = 0,1,2,3,4
otherwise.

Three basic operations on truth values are defined by the tables in Table
4.1. Thus if P and Q are predicates on a set S, there are also the
predicates -P, P & Q, P V Q . -P is true just when P is false; P & Q is
true when both P and Q are true, otherwise it is false; P V Q is true when
either P or Q or both are true, otherwise it is false. Given a predicate P

Table 4.1

P “P P 4 P&4 PV9

0 1 1 1 1 1
1 0 0 1 0 1

1 0 0 1
0 0 0 0
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on a set S, there is a corresponding subset R of S, namely, the set of all
elements a E S for which P(a) = 1. We write

R = {a E SIP(a)).

Conversely, given a subset R of a given set S, the expression

defines a predicate on S, namely, the predicate defined by

P(x)  = i f  XCR
i f  xeR.

Of course, in this case,

R = {x E SIP(x)}.

The predicate P is called the characteristic  function  of the set R. The close
connection between sets and predicates is such that one can readily
translate back and forth between discourse involving one of these notions
and discourse involving the other. Thus we have

{x E s 1 P(X) & Q(X)>  = {X E s I P(X)) n b E S I QW,
{x E s I P(x) v Q(x))  = { x E s l P(x)) u {x E S I Q(d),

{x E SI -P(x)}  = s - {x E S I P ( x ) } .

To indicate that two expressions containing variables
predicate we place the symbol = between them. Thus,

x<5~x=Ovx=1vx=2vx=3v~

define the same

= 4.

The De Morgan identities from Section 1 can be expressed as follows in
terms of predicates on a set S:

P(X)& Q(x) * -(-P(X) v -Q(x)),
P(x) v Q(x) * -(-P(x)& -Q(x)>.

5. Quantifiers

In this section we will be concerned exclusively with predicates on N”’ (or
what is the same thing, m-ary predicates on N) for different values of m.
Here and later we omit the phrase “on N” when the meaning is clear.
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Thus, let P(t, x1,. . . , xn) be an (n + 1)-ary predicate. Consider the predi-
cate Q(y, x1,. . . , x,) defined by

Q(y, Xl, - - -, xn) * P(0, x1 ). . . , x,1 v PO,  Xl, * - -, &J
v --* v P(y, x1,. . . , n,).

Thus the predicate Q(y, x1,. . . , xn) is true just in case there is a value of
t I y such that P(t, x1 , . . . , x,) is true. We write this predicate Q as

(W,,P(t,  Xl, * * *, XJ

The expression “( 3 t)< ,,” is called a bounded existential quantifier. Similarly,
we write (Vt) s y P(t, x1,. . . , n,) for the predicate

P(O, Xl , ’ ’ - , X,)&z P(l,X, ,..., X,)&4z P(y,x, ,... 9-q.

This predicate is true just in case P(t, x1,. . . , xn) is true for all t I y.
The expression “(V t ) s y” is called a bounded uniuersal  quantifier. We also
write (3t),,P(t, x1,. . . , x,)  for the predicate that is true just in
case P(t,x,,..., x,) is true for at least one value of t < y and
(Vt).,P(t, Xl,. * *, n,) for the predicate that is true just in case
PO, x1, - - - , n,) is true for all values of t < y.

We write

12(x 1,. . . , x,) * (WP(t, Xl,. - *, XJ

for the predicate which is true if there exists some t E N for which
PO, x1, - - * , x,) is true. Similarly, (Vt)P(t,  x1, . . . , xn> is true if
P(t, Xl). . .) x,) is true for all t E IV.

The following generalized De Morgan identities are sometimes useful:

- m,,m,  x1 ) - -a, x,1 * Wl, -PO, Xl, * * ‘,X,),

- (3t)P(t,  Xl,. . . , x,) * oft) -PO, Xl,. . -, x,).

The reader may easily verify the following examples:

(3y)(x+y=4)-xr4,

(3yNx  +y = 4) * By), 4(x + y = 4),

(Vy)(xy  = 0) *x = 0,

(3y>.,(x  +y = 4) -(x+224&x54).
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6. Proof by Contradiction

In this book we will be calling many of the assertions we make theorems
(or corollaties  or lemmas) and providing proofs that they are correct. Why
are proofs necessary? The following example should help in answering this
question.

Recall that a number is called a prime if it has exactly two distinct
divisors, itself and 1. Thus 2, 17, and 41 are primes, but 0, 1, 4, and 15 are
not. Consider the following assertion:

n2 - n + 41 is prime for all n E N.

This assertion is in fact false. Namely, for n = 41 the expression becomes

412 - 41 + 41 = 412,
which is certainly not a prime. However, the assertion is true (readers with
access to a computer can easily check this!) for all n I 40. This example
shows that inferring a result about all members of an infinite set (such as
N) from even a large finite number of instances can be very dangerous. A
proof is intended to overcome this obstacle.

A proof begins with some initial statements and uses logical reasoning to
infer additional statements. (In Chapters 12 and 13 we shall see how the
notion of logical reasoning can be made precise; but in fact, our use of
logical reasoning will be in an informal intuitive style.) When the initial
statements with which a proof begins are already accepted as correct, then
any of the additional statements inferred can also be accepted as correct.
But proofs often cannot be carried out in this simple-minded pattern. In
this and the next section we will discuss more complex proof patterns.

In a proof by contradiction, one begins by supposing that the assertion
we wish to prove is false. Then we can feel free to use the negation of what
we are trying to prove as one of the initial statements in constructing a
proof. In a proof by contradiction we look for a pair of statements
developed in the course of the proof which contradict one another. Since
both cannot be true, we have to conclude that our original supposition was
wrong and therefore that our desired conclusion is correct.

We give two examples here of proof by contradiction. There will be
many in the course of the book. Our first example is quite famous. We
recall that every number is either even (i.e., = 2n for some n E N) or odd
(i.e., = 2n + 1 for some n E N). Moreover, if m is even, m = 2n, then
m2 = 4n2 = 2 - 2n2 is even, while if m is odd, m = 2n + 1, then m2 =
4n2  + 4n + 1 = 2(2n2  + 2n) + 1 is odd. We wish to prove that the
equation

2 = (m/nj2 (6.1)
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has no solution for m, n E N (that is, that fi is not a “rational” number).
We suppose that our equation has a solution and proceed to derive a
contradiction. Given our supposition that (6.1) has a solution, it must have
a solution in which m and n are not both even numbers. This is true
because if m and n are both even, we can repeatedly “cancel” 2 from
numerator and denominator until at least one of them is odd. On the
other hand, we shall prove that for every solution of (6.1) m and n must
both be even. The contradiction will show that our supposition was false,
i.e., that (6.1) has no solution.

It remains to show that in every solution of (6.1), m and n are both
even. We can rewrite (6.1) as

m2 = 2n2,
which shows that m2 is even. As we saw above this implies that m is even,
say m = 2k. Thus, m 2 = 4k2  = 2n2, or n2 = 2k2. Thus, n2 is even and
hence n is even. I

Note the symbol n , which means “the proof is now complete.”
Our second example involves strings as discussed in Section 3.

Theorem 6.1. Let x E {a, b}* such that xa = ax. Then x = aIn]  for some
n E N.

Proof. Suppose that xa = ax but x contains the letter b. Then we can
write x = a[“]bu,  where we have explicitly shown the first (i.e., leftmost)
occurrence of b in X. Then

Thus,
a[nIbua = aa[“Ibu  = Jn+  lIbu_

bua = abu.
But this is impossible, since the same string cannot have its first symbol be
both b and a. This contradiction proves the theorem. n

Exercises

1. Prove that the equation (p/q)2  = 3 has no solution for p, q E N.
2. Prove that if x E {a, b}* and abx = xab, then x = (ab>[“’ for some

n E N.

7. Mathematical Induction

Mathematical induction furnishes an important technique for proving
statements of the form (Vn)P(n),  where P is a predicate on N. One
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proceeds by proving a pair of auxiliary statements, namely,

and
(Vn)(If  P(n) then P(n + 1)). (7.1)

Once we have succeeded in proving these auxiliary statements we can
regard (Vn)P(n)  as also proved. The justification for this is as follows.

From the second auxiliary statement we can infer each of the infinite set
of statements:

If P(0) then P(l),
If P(1) then P(2),
If P(2) then P(3),  . . . .

Since we have proved P(O), we can infer P(1). Having now proven P(1) we
can get P(2), etc. Thus, we see that P(n) is true for all n and hence
(Vn)P(n)  is true.

Why is this helpful? Because sometimes it is much easier to prove (7.1)
than to prove (Vn)P(n) in some other way. In proving this second auxiliary
proposition one typically considers some fixed but arbitrary value k of n
and shows that if we assume P(k) we can prove P(k + 1). P(k) is then
called the induction hypothesis. This methodology enables us to use P(k) as
one of the initial statements in the proof we are constructing. ,

There are some paradoxical things about proofs by mathematical induc-
tion. One is that considered superficially, it seems like an example of
circular reasoning. One seems to be assuming P(k) for an arbitrary k,
which is exactly what one is supposed to be engaged in proving. Of course,
one is not really assuming (Vn)P(n).  One is assuming P(k) for some
particular k in order to show that P(k + 1) follows.

It is also paradoxical that in using induction (we shall often omit the
word mathematical), it is sometimes easier to prove statements by first
making them “stronger.” We can put this schematically as follows. We
wish to prove (Vn)P(n).  Instead we decide to prove the stronger assertion
(VnXP(n)&  Q(n)) (w lc o course implies the original statement). Prov-h’ h f
ing the stronger statement by induction requires that we prove

and
P(0) 8~ Q(O)

(Vn)[If P(n) & Q(n) then P(n + 1) & Q<n + l)].

In proving this second auxiliary statement, we may take P(k) & Q(k) as
our induction hypothesis. Thus, although strengthening the statement to
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be proved gives us more to prove, it also gives us a stronger induction
hypothesis and, therefore, more to work with. The technique of deliber-
ately strengthening what is to be proven for the purpose of making proofs
by induction easier is called induction loading.

It is time for an example of a proof by induction. The following is useful
in doing one of the exercises in Chapter 6.

Theorem 7.1. For all n E N we have CyC0(2i  + 1) = (n + 1)2.

Proof. For n = 0, our theorem states simply that 1 = 12, which is true.
Suppose the result known for n = k. That is, our induction hypothesis is

Then

t (2i + 1) = (k + 1)2.
i=O

k + l
c (2i + 1) = i (2i + 1) + 2(k + 1) + 1

i=O

= (k + 1)2 + 2(k + 1) + 1

= (k + 2j2.
But this is the desired result for n = k + 1.

Another form of mathematical induction that is often very useful is
called course-of-values induction or sometimes complete induction. In the
case of course-of-values induction we prove the single auxiliary statement

(Vn)[  If (Vrn), < ,Pbn) then P(n)], (7.2)

and then conclude that (Vn)P(n)  is true. A potentially confusing aspect of
course-of-values induction is the apparent lack of an initial statement
P(O).  But in fact there is no such lack. The case n = 0 of (7.2) is

If cvmLl< 0 P(m) then P(0).

But the “induction hypothesis” (Vm),  < 0 P(m) is entirely vacuous because
there is no m E N such that m < 0. So in proving (7.2) for n = 0 we really
are just proving P(0). In practice it is sometimes possible to give a single
proof of (7.2) that works for all n including n = 0. But often the case
n = 0 has to be handled separately.

To see why course-of-values induction works, consider that, in the light
of what we have said about the n = 0 case, (7.2) leads to the following
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infinite set of statements:

pm,
IfP(0)  then P(l),

If P(0) & P(1) then P(2),

IfP(0)  & P(l) & P(2)  then P(3),

Here is an example of a theorem proved by course-of-values induction.

Theorem 7.2. There is no string x E {a, b}* such that CLX = xb.

Proof. Consider the following predicate: If x E {a, b}” and 1 xl = n, then
ux # xb. We will show that this is true for all n E N. So we assume it true
for all m < k for some given k and show that it follows for k. This proof
will be by contradiction. Thus, suppose that (xl = k and ax = xb. The
equation implies that a is the first and b the last symbol in x. So, we can
write x = aub. Then

i.e.,
aaub = aubb,

au = ub.

But lul < 1x1.  Hence by the induction hypothesis au # ub. This contradic-
tion proves the theorem. n

Proofs by course-of-values induction can always be rewritten so as to
involve reference to the principle that if some predicate is true for some
element of N, then there must be a least element of N for which it is true.
Here is the proof of Theorem 7.2 given in this style.

Proof. Suppose there is a string x E {a, b}” such that ax = xb. Then
there must be a string satisfying this equation of minimum length. Let x
be such a string. Then ux = xb, but, if IuJ < (xl, then au # ub. However,
ax = xb implies that x = sub, so that au = ub and (~1 < ) xl. This contra-
diction proves the theorem. n

Exercises

1. Prove by mathematical induction that Cy= 1 i = n(n + 1)/2.
2. Here is a “proof’ by mathematical induction that if x, y E N, then

x = y. What is wrong?
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Let

rnax(x,y) =
ifx2y
otherwise

for X, y E N. Consider the predicate

(WNy)Df max(x,y) = n, thenx =y].

For n = 0, this is clearly true. Assume the result for n = k, and let
max(x, y) = k + 1. Let x1 = x - 1, y, = y - 1. Then max(x,, yl> = k .
By the induction hypothesis, x1 = y, and therefore x = x1 + 1 =
y, + 1 = y.
Here is another incorrect proof that purports to use mathematical
induction to prove that all flowers have the same color! What is
wrong?

Consider the following predicate: If S is a set of flowers containing
exactly n elements, then all the flowers in S have the same color. The
predicate is clearly true if n = 1. We suppose it true for n = k and
prove the result for n = k + 1. Thus, let S be a set of k + 1 flowers. If
we remove one flower from S we get a set of k flowers. Therefore, by
the induction hypothesis they all have the same color. Now return the
flower removed from S and remove another. Again by our induction
hypothesis the remaining flowers all have the same color. But now
both of the flowers removed have been shown to have the same color
as the rest. Thus, all the flowers in S have the same color.
Show that there are no strings X, y E {a, b}* such that guy = ybx.
Give a “one-line” proof of Theorem 7.2 that does not use mathemati-
cal induction.
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Programs and
Computable Functions

1. A Programming Language

Our development of computability theory will be based on a specific
programming language y. We will use certain letters as variables whose
values are numbers. (In this book the word number will always mean
nonnegative integer, unless the contrary is specifically stated.) In particu-
lar, the letters

will be called the input variables of y, the letter Y will be called the
output variable of 9, and the letters

will be called the local variables of 9. The subscript 1 is often omitted; i.e.,
X stands for X, and 2 for 2,. Unlike the programming languages in
actual use, there is no upper limit on the values these variables can
assume. Thus from the outset, 9’ must be regarded as a purely theoretical
entity. Nevertheless, readers having programming experience will find
working with y very easy.

In 9 we will be able to write “instructions” of various sorts; a
“program” of y will then consist of a list (i.e., a finite sequence) of

17
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Table 1.1

Instruction Interpretation

V+V+l Increase by 1 the value of the variable V.
V+ V- 1 If the value of V is 0, leave it unchanged; otherwise decrease by 1 the

value of I/.
IF V # 0 GOT0 L If the value of V is nonzero,  perform the instruction with label L next;

otherwise proceed to the next instruction in the list.

instructions. For example, for each variable V there will be an instruction:
I/+-v+1

A simple example of a program of 9 is
X+X+1
X+--X+1

“Execution” of this program has the effect of increasing the value of X by
2. In addition to variables, we will need “labels.” In 9’ these are

A, B, C, D, E, A, B, C, D, E, A, .-a.

Once again the subscript 1 can be omitted. ? We give in Table 1.1 a
complete list of our instructions. In this list V stands for any variable and
L stands for any label.

These instructions will be called the increment, decrement, and condi-
tional branch instructions, respectively.

We will use the special convention that the output variable Y and the
local variables Zi initially have the value 0. We will sometimes indicate the
value of a variable by writing it in lowercase italics. Thus x5 is the value of
X5.

Instructions may or may not have labels. When an instruction is labeled,
the label is written to its left in square brackets. For example,

LB1 Z+--Z-l
In order to base computability theory on the language 9, we will

require formal definitions. But before we supply these, it is instructive to
work informally with programs of 9.

2. Some Examples of Programs

(a) Our first example is the program

[Al X+X-l
Y+-Y+l
IFXzOGOTOA
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If the initial value x of X is not 0, the effect of this program is to copy x
into Y and to decrement the value of X down to 0. (By our conventions
the initial value of Y is 0.) If x = 0, then the program halts with Y having
the value 1. We will say that this program computes the function

f( I-( 1 i f  x=0x - x otherwise.

This program halts when it executes the third instruction of the program
with X having the value 0. In this case the condition X # 0 is not fulfilled
and therefore the branch is not taken. When an attempt is made to move
on to the nonexistent fourth instruction, the program halts. A program will
also halt if an instruction labeled L is to be executed, but there is no
instruction in the program with that label. In this case, we usually will use
the letter E (for “exit”) as the label which labels no instruction.

(b) Although the preceding program is a perfectly well-defined pro-
gram of our language 9, we may think of it as having arisen in an attempt
to write a program that copies the value of X into Y, and therefore
containing a “bug” because it does not handle 0 correctly. The following
slightly more complicated example remedies this situation.

[Al IFXzOGOTOB
Z+Z+l
IFZ#OGOTOE

LB1 X+X-l
Y+Y+l
Z+Z+l
IFZzOGOTOA

As we can easily convince ourselves, this program does copy the value of
X into Y for all initial values of X. Thus, we say that it computes the
function f(x) = x. At first glance. Z’s role in the computation may not be
obvious. It is used simply to allow us to code an unconditional branch. That
is, the program segment

Z+-Z+l
IFZ # OGOTOL (2.1)

has the effect (ignoring the effect on the value of Z) of an instruction

GOT0 L

such as is available in most programming languages. To see that this is true
we note that the first instruction of the segment guarantees that Z has a
nonzero value. Thus the condition Z # 0 is always true and hence the next
instruction performed will be the instruction labeled L. Now GOT0 L is
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not an instruction in our language 9’, but since we will frequently have use
for such an instruction, we can use it as an abbreviation for the program
segment (2.1). Such an abbreviating pseudoinstruction will be called a
macro and the program or program segment which it abbreviates will be
called its macro expansion.

The use of these terms is obviously motivated by similarities with the
notion of a macro instruction occurring in many programming languages.
At this point we will not discuss how to ensure that the variables local to
the macro definition are distinct from the variables used in the main
program. Instead, we will manually replace any such duplicate variable
uses with unused variables. This will be illustrated in the “expanded”
multiplication program in (e). In Section 5 this matter will be dealt with in
a formal manner.

(c) Note that although the program of (b) does copy the value of X
into Y, in the process the value of X is “destroyed” and the program
terminates with X having the value 0. Of course, typically, programmers
want to be able to copy the value of one variable into another without the
original being “zeroed out.” This is accomplished in the next program.
(Note that we use our macro instruction GOT0 L several times to shorten
the program. Of course, if challenged, we could produce a legal program of
y by replacing each GOT0 L by a macro expansion. These macro
expansions would have to use a local variable other than 2 so as not to
interfere with the value of 2 in the main program.)

[Al If X # 0 GOT093
GOT0 C

[Bl X+X-l
Y+Y+l
Z+Z+l
GOT0 A

[Cl IFZ#OGOTOD
GOT0 E

IDI 2+-Z-l
x+x+1
GOT0 C

In the first loop, this program copies the value of X into both Y and 2,
while in the second loop, the value of X is restored. When the program
terminates, both X and Y contain X’s original value and z = 0.

We wish to use this program to justify the introduction of a macro which
we will write

v+- V’
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the execution of which will replace the contents of the variable V by the
contents of the variable V’ while leaving the contents of V’ unaltered.
Now, this program (c) functions correctly as a copying program only under
our assumption that the variables Y and 2 are initialized to the value 0.
Thus, we can use the program as the basis of a macro expansion of
V + V’ only if we can arrange matters so as to be sure that the corre-
sponding variables have the value 0 whenever the macro expansion is
entered. To solve this problem we introduce the macro

which will have the effect of setting the contents of V equal to 0. The
corresponding macro expansion is simply

Ll v+v-1
IFVzOGOTOL

where, of course, the label L is to be chosen to be different from any of
the labels in the main program. We can now write the macro expansion of
V + V’ by letting the macro V + 0 precede the program which results
when X is replaced by V’ and Y is replaced by V in program (c). The
result is as follows:

I/+-O
[Al IF V’ # 8,GOTO B

GOT0 C
[Bl V’ + V’ - 1

V+-V+l
Z+Z+l
GOT0 A

cc1 IFZzOGOTOD
GOT0 E

Dl Z+Z-1
V’ + V + 1
GOT0 C

With respect to this macro expansion the following should be noted:

1.

2.

It is unnecessary (although of course it would be harmless) to include
a Z + 0 macro at the beginning of the expansion because, as has
already been remarked, program (c) terminates with z = 0.
When inserting the expansion in an actual program, the variable Z
will have to be replaced by a local variable which does not occur in
the main program.
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3. Likewise the labels A, B, C, D will have to be replaced by labels
which do not occur in the main program.

4. Finally, the label E in the macro expansion must be replaced by a
label L such that the instruction which follows the macro in the main
program (if there is one) begins [L].

(d) A program with two inputs that computes the function

f(Xl7 x2) = x1 + x2

is as follows:

Y + x,
z + x2

[Bl IFZzOGOTOA
GOT0 E

[Al Z+Z-1
Y+--Y+l
GOT0 B

Again, if challenged we would supply macro expansions for “Y +- X1”
and “Z + X2” as well as for the two unconditional branches. Note that Z
is used to preserve the value of X2.

(e) We now present a program that multiplies, i.e. that computes
f(x,,x,) =x1 ‘X2. Since multiplication can be regarded as repeated addi-
tion, we are led to the “program”

Z2 +X2

[Bl IFZ,#OGOTOA
GOT0 E

[Al z, + z, -’ 1
z, *X, + Y
Y+Z,
GOT0 B

Of course, the “instruction” Z, + X, + Y is not permitted in the lan-
guage y. What we have in mind is that since we already have an addition
program, we can replace the macro Z, +- X, + Y by a program for
computing it, which we will call its macro expansion. At first glance, one
might wonder why the pair of instructions

z, +X, + Y

Y+Z,
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was used in this program rather than the single instruction

Y+X,+Y

since we simply want to replace the current value of Y by the sum of its
value and x, . The sum program in (d) computes Y = X, + X2. If we were
to use that as a template, we would have to replace X2 in the program by
Y. Now if we tried to use Y also as the variable being assigned, the macro
expansion would be as follows:

Y * x,
Z+Y

[Bl IFZzOGOTOA
GOT0 E

[Al Z+Z-1
Y+Y+l
GOT0 B

What does this program actually compute? It should not be difficult to see
that instead of computing x1 + y as desired, this program computes 2x,.
Since X, is to be added over and over again, it is important that X, not be
destroyed by the addition program. Here is the multiplication program,
showing the macro expansion of Z, + X, + Y:

Z2 +X2
[Bl IFZ,#OGOTOA

GOT0 E
[Al z, + z, - 1

Z, +X1
z, + Y

[&I IFZ,#OGOTOA, Macro Expansion of
GOT0 E, z, +x; + Y

[A,] z, + z, - 1
z, + z, + 1
GOT0 B,

[E21 Y+Z,
GOT0 B

Note the following:

1. The local variable Z, in the addition program in (d) must be replaced
by another local variable (we have used Z,) because Z, (the other
name for Z) is also used as a local variable in the multiplication
program.
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The labels A, B, E are used in the multiplication program and hence
cannot be used in the macro expansion. We have used A,, B, , E,
instead.

3. The instruction GOT0 E, terminates the addition. Hence, it is
necessary that the instruction immediately following the macro ex-
pansion be labeled E, .

In the future we will often omit such details in connection with macro
expansions. All that is important is that our infinite supply of variables and
labels guarantees that the needed changes can always be made.

(f) For our final example, we take the program

Y + Xl
z +- x;!

[Cl IFZ#OGOTOA
GOT0 E

[Al IFYzOGOTOB
GOT0 A

[Bl Y+Y-1
2+--Z-l
GOT0 C

If we begin with X1 = 5, X2 = 2, the program first sets Y = 5 and 2 = 2.
Successively the program sets Y = 4, 2 = 1 and Y = 3, 2 = 0. Thus, the
computation terminates with Y = 3 = 5 - 2. Clearly, if we begin with
X, = m, X2 = n, where m 2 n, the program will terminate with Y =
m - n.

What happens if we begin with a value of Xi less than the value of X2,
e.g., Xi = 2, X2 = 5? The program sets Y = 2 and 2 = 5 and successively
sets Y = 1, 2 = 4 and Y = 0, 2 = 3. At this point the computation enters
the “loop”:

[Al IFYzOGOTOB
GOT0 A

Since y = 0, there is no way out of this loop and the computation will
continue “forever.” Thus, if we begin with X1 = m, X2 = n, where m < n,
the computation will never terminate. In this case (and in similar cases) we
will say that the program computes the partial function

i

Xl -x2
g(x,,x,)  =  T

if x1 2 x2
i f  x1 <x2.

(Partial functions are discussed in Chapter 1, Section 2.)
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Exercises
1.

2.
3.

4.

5.

6.

7.

3.

Write a program in 9’ (using macros freely) that computes the
function f(x) = 3x.
Write a program in 9 that solves Exercise 1 using no macros.
Let f<x> = 1 if x is even; f(x) = 0 if x is odd. Write a program in 9
that computes f.
Let f<~) = 1 if x is even; f(x) undefined if x is odd. Write a program
in 9 that computes f.
Let f<q,  x2) = 1 if x1 = x,; f<q , nz) = 0 if x1 # x2. Without using
macros, write a program in ~7 that computes f.
Let f(x) be the greatest number y1 such that n2 I X. Write a program
in 9 that computes f.
Let gcd(x, , x2) be the greatest common divisor of x1 and x2. Write a
program in 9 that computes gtd.

Syntax

We are now ready to be mercilessly precise about the language 9. Some
of the description recapitulates the preceding discussion.

The symbols
x, x2 x3 a**

are called input variables,

2, 2, 2, ---

are called local variables, and Y is called the output variable of 9’. The
symbols

are called labels of 9. (As already indicated, in practice the subscript 1 is
often omitted.) A statement is one of the following:

V+V+l
V+V-1
V+V
IFV#OGOTOL

where V may be any variable and L may be any label.
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Note that we have included among the statements of 9 the “dummy”
commands V + I/. Since execution of these commands leaves all values
unchanged, they have no effect on what a program computes. They are
included for reasons that will not be made clear until much later. But their
inclusion is certainly quite harmless.

Next, an instruction is either a statement (in which case it is also called
an unlabeled instruction) or [L] followed by a statement (in which case the
instruction is said to have L as its label or to be labeled L). A program is
a list (i.e., a finite sequence) of instructions. The length of this list is called
the length of the program. It is useful to include the empty program of
length 0, which of course contains no instructions.

As we have seen informally, in the course of a computation, the
variables of a program assume different numerical values. This suggests
the following definition:

A state of a program 9 is a list of equations of the form V = m, where V
is a variable and m is a number, including an equation for each variable
that occurs in 9 and including no two equations with the same variable.
As an example, let 9 be the program of (b) from Section 2, which contains
the variables X Y 2. The list

x= 4, Y= 3, Z=3

is thus a state of 9. (The definition of state does not require that the state
can actually be “attained” from some initial state.) The list

x, =4, x2 = 5, Y= 4, Z=4

is also a state of 9. (Recall that X is another name for X1 and note that
the definition permits inclusion of equations involving variables not actu-
ally occurring in 9.) The list

x=  3 , z=3

is not a state of 9 since no equation in Y occurs. Likewise, the list

x=  3 , x=  4 , Y= 2, Z=2

is not a state of 9: there are two equations in X.
Let u be a state of 9 and let V be a variable that occurs in (7. The

value of V at CT is then the (unique) number 4 such that the equation
V = q is one of the equations making up u. For example, the value of X
at the state

x=  4 , Y= 3, Z=3
is 4.
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Suppose we have a program 9 and a state u of 9. In order to say what
happens “next,” we also need to know which instruction of 9 is about to
be executed. We therefore define a snapshot or instantaneous description
of a program 9 of length n to be a pair (i, a) where 1 I i I n + 1, and u
is a state of 9. (Intuitively the number i indicates that it is the ith
instruction which is about to be executed; i = n + 1 corresponds to a
“stop” instruction.)

If s = (i, a) is a snapshot of 9 and I/ is a variable of 9, then the value
of Vat s just means the value of V at CT.

A snapshot (i, a) of a program 9 of length n is called terminal if
i=n+  l.If( i, U) is a nonterminal snapshot of 9, we define the successor
of (i, cr) to be the snapshot (j, r) defined as follows:

Case 1.

Case 2.

Case 3.
Case 4.

Case 4a. (T contains the equation V = 0. Then j = i + 1.
Case 4b. (T contains the equation V = m where m # 0. Then, if there is

an instruction of 9 labeled L, j is the least number such that
the jth instruction of 9 is labeled L. Otherwise, j = n + 1.

For an example, we return to the program of (b), Section 2. Let u be
the state

The ith instruction of 9 is V + V + 1 and u contains the
equation I/ = m. Then j = i + 1 and r is obtained from u by
replacing the equation V = m by V = m + 1 (i.e., the value of I/
at 7 is m + 1).
The ith instruction of 9 is V + V - 1 and (T contains the
equation I/ = m. Then j = i + 1 and r is obtained from u by
replacing the equation V = m by V = m - 1 if m # 0; if m = 0,
r= (7.
The ith instruction of 9 is V + V. Then r = CT and j = i + 1 .
The ith instruction of 9 is IF I/ # 0 GOT0 L. Then r = (T, and
there are two subcases:

x=  4 , Y= 0, Z=O

and let us compute the successor of the snapshots (i, a) for various values
of i.

For i = 1, the successor is (4, a) where 0 is as above. For i = 2, the
successor is (3, r), where r consists of the equations

x=  4 , Y= 0, z = 1.

For i = 7, the successor is (8, a). This is a terminal snapshot.
A computation of a program 9 is defined to be a sequence (i.e., a list)

S],S2, . . . . sk of snapshots of 9 such that s~+~ is the successor of Si for
i-1,2 , . . . , k - 1 and Sk is terminal.
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Note that we have not forbidden a program to contain more than one
instruction having the same label. However, our definition of successor of
a snapshot, in effect, interprets a branch instruction as always referring to
the first statement in the program having the label in question. Thus, for
example, the program

[Al X + - - X - l
IFX#OGOTOA

[Al X+--X+1

is equivalent to the program

[Al X+X-l
IFXzOGOTOA
x+x+ 1

Exercises
1. Let 9 be the program of(b), Section 2. Write out a computation of 9

beginning with the snapshot (1, a), where CT consists of the equations
x = 2, Y = 0, 2 = 0.

2. Give a program 9 such that for every computation s1 , . . . , sk of 9,
k = 5.

3. Give a program 9 such that for any n 2 0 and every computation
s1 =(l,a),s, ,..., sk of 9 that has the equation X = n in (T, k =
2n + 1.

4. Computable Functions

We have been speaking of the function computed by a program 9. It is
now time to make this notion precise.

One would expect a program that computes a function of m variables to
contain the input variables X, , X2,. . . , Xm  , and the output variable Y,
and to have all other variables (if any) in the program be local. Although
this has been and will continue to be our practice, it is convenient not to
make it a formal requirement. According to the definitions we are going to
present, any program 9 of the language 9 can be used to compute a
function of one variable, a function of two variables, and, in general, for
each m 2 1, a function of m variables.

Thus, let 9 be any program in the language 9 and let rl,. . . , r,,, be m
given numbers. We form the state (T of 9 which consists of the equations

X, = r1, x2 = r2, . . . , Xm = rm 9 Y=O
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together with the equations V = 0 for each variable V in 9 other than
Xi , . . . , Xm , Y. We will call this the initial state, and the snapshot (1, a>,
the initial snapshot.

Case 1. There is a computation sl, s2, . . . , sk of 9 beginning with the initial
snapshot. Then we write +$“‘)(rl,  r2,. . . , rm)  for the value of the
variable Y at the (terminal) snapshot Sk.

Case 2. There is no such computation; i.e., there is an infinite sequence
$1,  s2, $3 7 * - - beginning with the initial snapshot where each si+ 1
is the successor of si . In this case $Am)(rl  , . . . , rm)  is undefined.

Let us reexamine the examples in Section 2 from the point of view of
this definition. We begin with the program of (b). For this program 9, we
have

@y(x) = x

for all x. For this one example, we give a detailed treatment. The following
list of snapshots is a computation of 9:

(1, {X = r,Y = 0,Z = 011,
(4, {X = r, Y = 0,Z = 011,
(5, {X = r - 1, Y = 0,Z = 011,
(6,{X=r-  l,Y= l,Z=O)),
(7, {X = r - l,Y = 1,Z = l}),
(1, {X = r - l,Y = 1,Z = l)),

(1, {X = 0,Y = r, 2 = r}),
(2, {X = 0, Y = r, 2 = r}),
(3,(X  = 0,Y = r,Z = r + l}),
(8, {X = 0, Y = r, 2 = r + 1)).

We have included a copy of 9 showing line numbers:

[Al IFXzOGOTOB
Z+Z+l
IFZ#OGOTOE

LB1 X+X-l
Y+Y+l
Z+Z+l
IFZzOGOTOA

(1)
(2)
(3)
(4)
(5)
(6)
(71
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For other examples of Section 2 we have

(a) @‘)(r>  = ’
i

i f  r=O

(b) , (c )  @“(r) = T,T
otherwise,

(d) +(2)(~1 , r2> = rl + r2,
63) +(2)(rl  , r2) = rl - r2,

(f) $(2)(r1,  r2> = r1 - r2
i

if rl 2 r2
t if rl < r2.

Of course in several cases the programs written in Section 2 are abbrevia-
tions, and we are assuming that the appropriate macro expansions have
been provided.

As indicated, we are permitting each program to be used with any
number of inputs. If the program has n input variables, but only m < n
are specified, then according to the definition, the remaining input vari-
ables are assigned the value 0 and the computation proceeds. If on the
other hand, m values are specified where m > n the extra input values are
ignored. For example, referring again to the examples from Section 2, we
have

(c)
(d)

$$%j  , r2 > = rl ,
am) = rl + 0 = rl ,
$$iWl , r2 , r3) = rl + r2 .

For any program 9 and any positive integer m, the function
$$% 17”‘9 x,) is said to be computed by 9. A given partial function g
(of one or more variables) is said to be partially computable if it is
computed by some program. That is, g is partially computable if there is a
program 9 such that

h-1 r ) = *,JY)(r,..‘, m r >17”‘,  m
for all rl , . . . , rm  . Here this ‘equation must be understood to mean not only
that both sides have the same value when they are defined, but also that
when either side of the equation is undefined, the other is also.

As explained in Chapter 1, a given function g of m variables is called
total if g(r,  ,. . ., r,) is defined for all  rl , . . . , r,,, . A function is said to be
computable if it is both partially computable and total.

Partially computable functions are also called partial recursive, and
computable functions, i.e., functions that are both total and partial recur-
sive, are called recursive. The reason for this terminology is largely histori-
cal and will be discussed later.

Our examples from Section 2 give us a short list of partially computable
functions, namely: X, x + y, x *y, and x - y. Of these, all except the last
one are total and hence computable.
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Computability theory (also called recursion theory) studies the class of
partially computable functions. In order to justify the name, we need some
evidence that for every function which one can claim to be “computable”
on intuitive grounds, there really is a program of the language 9 which
computes it. Such evidence will be developed as we go along.

We close this section with one final example of a program of 9:

[Al X+--X+1
IFXzOGOTOA

For this program 9, q+&‘)(x) is undefined for all x. So, the nowhere
defined function (see Chapter 1, Section 2) must be included in the class of
partially computable functions.

Exercises
1. Let 9 be the program

IFXzOGOTOA
[Al X+--X+1

IFXzOGOTOA
[Al Y+-Y+l

What is +-$)(x)7.

2. The same as Exercise 1 for the program

LB1 IFXzOGOTOA
Z+-Z+l
IFZzOGOTOB

[A] X+-X

3. The same as Exercise 1 for the empty program.
4. Let 9 be the program

[A] r’F>xL 0 GOT0 E
Yt2Y+1
Y+-Y+l
x2 + x2 - 1
GOT0 A

What is r,!~-)(r~)? +$)(r, , r,)? +$?(r, , r2, r,)?
5. Show that for every partially computable function f<xl,.  . . , x,), there

is a number m 2 0 such that f is computed by infinitely many
programs of length m.
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6. (a)

(b)

Cc)

(d)

For every number k 2 0, let fk be the constant function fk(lz) =
k. Show that for every k, fk is computable.
Let us call an 9 program a straightlineprogram  if it contains no
(labeled or unlabeled) instruction of the form IF I/ # 0 GOT0
L. Show by il,duction on the length of programs that if the length
of a straightline program 9 is k, then +$)(x)  I k for all x.
Show that, if 9 is a straightline program that computes fk, then
the length of 9 is at least k.
Show that no straightline 9 program computes the function
f(x) = x + 1. Conclude that the class of functions computable by
straightline 9’ programs is contained in but is not equal to the
class of computable functions.

Let us call an 9 program 9 forward-branching if the following
condition holds for each occurrence in 9 of a (labeled or unlabeled)
instruction of the form IF V # 0 GOT0 L. If IF V # 0 GOT0 L is
the ith instruction of 9, then either L does not appear as the label of
an instruction in 9, or else, if j is the least number such that L is the
label of the jth instruction in 9, then i < j. Show that a function is
computed by some forward-branching program if and only if it is
computed by some straightline program (see Exercise 6).
Let us call a unary function f(x) partially n-computable if it is com-
puted by some 9 program 9 such that 9 has no more than n
instructions, every variable in 9 is among X, Y, 2,) . . . , 2, , and every
label in 9 is among A 1 , . . . , A, , E.
(a)

(b)

(c)

Show that if a unary function is computed by a program with no
more than n instructions, then it is partially n-computable.
Show that for every n 2 0, there are only finitely many distinct
partially n-computable unary functions.
Show that for every n 2 0, there are only finitely many distinct
unary functions computed by 9’ programs of length no greater
than n.

(d) Conclude that for every n 2 0, there is a partially computable
unary function which is not computed by any 9’ program of
length less than n.

5 . More about Macros

Chapter 2 Programs and Computable Functions

In Section 2 we gave some examples of computable functions (i.e., x + y,
x - y) giving rise to corresponding macros. Now we consider this process in
general.
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Let f(x, ) - . - , x,) be some partially computable function computed by
the program 9. We shall assume that the variables that occur in 9 are all
included in the list Y, Xi,. . . , Xn, 2,). . . ,Z, and that the labels that
occur in 9 are all included in the list E, A,, . . . , A,. We also assume that,
for each instruction of 9 of the form

IFV#OGOTOAi

there is in 9 an instruction labeled Ai. (In other words, E is the only
“exit” label.) It is obvious that, if 9 does not originally meet these
conditions, it will after minor changes in notation. We write

9 =P(Y, Xi , . . . , X,, , 2, , . . . , Z, ; E, A, , . . . , A,)

in order that we can represent programs obtained from 9 by replacing the
variables and labels by others. In particular, we will write

&,,,A m+17*--9 A,+,)
for each given value of m. Now we want to be able to use macros like

w+-fW,,...,v,>

I in our programs, where Vi, . . . , Vn, W can be any variables whatever. (In
particular, W might be one of Vi, . . . , Vn .) We will take such a macro to be
an abbreviation of the following expansion:

z, +- 0
Zm+l + Vl
Zm-+2 + ‘2
.

Zm+n + K
Zm+n+l +O
Zm+n+2 + O

‘m+n+k + O
@m

[E,I W+Zm

Here it is understood that the number m is chosen so large that none of
. the variables or labels used in @m occur in the main program of which the

expansion is a part. Notice that the expansion sets the variables corre-
sponding to the output and local variables of 9 equal to 0 and those
corresponding to Xi,. . . , X,, equal to the values of VI , . . . , Vn , respec-
tively. Setting the variables equal to 0 is necessary (even though they are
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all local variables automatically initialized to 0) because the expansion may
be part of a loop in the main program; in this case, at the second and
subsequent times through the loop the local variables will have whatever
values they acquired the previous time around, and so will need to be
reset. Note that when @m terminates, the value of 2, is f(V, , . : . , V,), so
that W finally does get the value f(V, , . . . , V,).

Iff(v,, . . . , V,) is undefined, the program @m will never terminate. Thus
if f is not total, and the macro

W+f(V, )..., v,)

is encountered in a program where VI,. . . , Vn have values for which f is
not defined, the main program will never terminate.

Here is an example:

z + x, - xz
Y+Z+X,

This program computes the function f(xl , x2, x,), where

fhl , x2, x3) =

i

(x, -n& +x3 if xi 2 x2
t i f  x1 <x2.

In particular, f(2,5,6)  is undefined, although (2 - 5) + 6 = 3 is positive.
The computation never gets past the attempt to compute 2 - 5.

So far we have augmented our language 9 to permit the use of macros
which allow assignment statements of the form

W+f(V,,...,V,),
where f is any partially computable function. Nonetheless there is avail-
able only one highly restrictive conditional branch statement, namely,

IFV#OGOTOL

We will now see how to augment our language to include macros of the
form

IF P<V, , . . . , V,) GOT0 L

where P(x, , . . . , x,) is a computable predicate.
the convention, introduced in Chapter 1, that

Here we are making use of

TRUE= 1, FALSE = 0.
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Hence predicates are just total functions whose values are always either 0
or 1. And therefore, it makes perfect sense to say that some given
predicate is or is not computable.

Let P(x, , . . . , xn) be any computable predicate. Then the appropriate
macro expansion of

IF P( Vi , . . . , V,) GOT0 L

is simply

2 + P(V, , . . . ) VJ
IFZsOGOTOL

Note that P is a computable function and hence we have already shown
how to expand the first instruction. The second instruction, being one of
the basic instructions in the language 9, needs no further expansion.

A simple example of this general kind of conditional branch statement
which we will use frequently is

IFV=OGOTOL

To see that this is legitimate we need only check that the-predicate P(x),
defined by P(x) = TRUE if x = 0 and P(x) = FALSE otherwise, is
computable. Since TRUE = 1 and FALSE = 0, the following program
does the job:

IFX#OGOTOE
Y+Y+l

The use of macros has the effect of enabling us to write much shorter
programs than would be possible restricting ourselves to instructions of the
original language 9. The original “assignment” statements I/ + V + 1,
V +- V - 1 are now augmented by general assignment statements of the
form W+f(V,,..., V,) for any partially computable function f. Also, the
original conditional branch statements IF V # 0 GOT0 L are now aug-
mented by general conditional branch statements of the form IF
P<v, , - * * , V,) GOT0 L for any computable predicate P. The fact that any
function which can be computed using these general instructions could
already have been computed by a program of our original language L@
(since the general instructions are merely abbreviations of programs of 9)
is powerful evidence of the generality of our notion of computability.

Our next task will be to develop techniques that will make it easy to see
that various particular functions are computable.
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Exercises
1.

2.

3.

4.

5.

6.

7.

8.

(a) Use the process described in this section to expand the program
in example (d) of Section 2.

(b) What is the 1ength of the 9 program expanded from example
(e) by this process?

Replace the instructions

2, +x, + Y
Y+Z,

in example (e) of Section 2 with the instruction Y + X, + Y, and
expand the result by the process described in this section. If 9 is the
resulting 9’ program, what is $&?)(~i,  r2)?

Let f(x), g(x) be computable functions and let h(x) = f(g(x)).  Show
that h is computable.
Show by constructing a program that the predicate xi I x2 is com-
putable.
Let P(x) be a computable predicate. Show that the function f
defined by

f(q ,x2) = Xl +x2 if P(x, +x2>
t otherwise

is partially computable.
Let P(x) be a computable predicate. Show that

EX,(r) =
1 if there are at least r numbers YE such that P(n) = 1
t otherwise

is partially computable.
Let 7r be a computable permutation (i.e., one-one, onto function) of
N, and let 7~’ be the inverse of T, i.e.,

7+(y) =x if and only if T(X) =y.

Show that vTT-l  is computable.
Let f<x) be a partially computable but not total function, let M be a
finite set of numbers such that f(m) t for all m E M, and let g(x) be
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9.

10.

an arbitrary partially computable function. Show that

h(x) =
i

g(x) if x E M
f(x) otherwise

is partially computable.
Let 9’+ be a programming language that extends 9 by permitting
instructions of the form I/ +- k, for any k 2 0. These instructions
have the obvious effect of setting the value of V to k. Show that a
function is partially computable by some 9’+ program if and only if it
is partially computable.
Let 9’ be a programming language defined like Y except that its
(labeled and unlabeled)

These instructions are given the obvious meaning. Show that a

instructions are of the three types

I/+ V’
I/+-V+1
If V/z V’GOTOL

function is partially computable in 9’ if and only if it is partially
computable.
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1. Composition f

We want to combine computable functions in such a way that the output
of one becomes an input to another. In the simplest case we combine
functions f and g to obtain the function

h(x) = f(g(x)).
More generally, for functions of several variables:

Definition. Let f be a function of k variables and let g,, . . . , gk be
functions of n variables. Let

h(x 1,. . ., &) = f(g,h,,  . . . , &I,. . .,&(x, ,. . ., n,)).

Then h is said to be obtained from f and g, , . . . , gk by composition.

Of course, the functions f, g, , . . . , gk need not be total. h(x, , . . . , xn)
will be defined when all of .q = g&x,,  . . . , xn), . . . , zk = &(x1,. . . , xJ are
defined and also f (i1 , . . . , zk) is defined.

Using macros it is very easy to prove

Theorem 1.1. If h is obtained from the (partially) computable functions
f,&Y, gk by composition, then h is (partially) computable.

39
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The word partially is placed in parentheses in order to assert the
correctness of the statement with the word included or omitted in both
places.

Proof. The following program obviously computes h:

If f, g,, * * -,
so is h.

21 + &(X1 ,...,X,)

zk + &(x1,. . . , x,)
y+f(z,,...,z,>

gk are not Only pahilly computable but are alSO total, then
H

By Section 4 of Chapter 2, we know that x, x + y, x my, and x - y are
partially computable. So by Theorem 1.1 we see that 2x = x + x and
4x2 = (2x) - (2x) are computable. So are 4x2 + 2x and 4x2 - 2x. Note
that 4x2 - 2x is total, although it is obtained from the nontotal  function
x - y by composition with 4x2 and 2x.

2. Recursion

Suppose k is some fked number and

h(O) = k ,
h(t + 1) = g(t, h(t)), (2.1)

where g is some given total function of two variables. Then h is said to be
obtained from g by primitive recursion, or simply recursion.’

Theorem 2.1.  Let  h be obtained from g as in (2.11, and let g be
computable. Then h is also computable.

Proof. We first note that the constant function f(x)  = k is computable;
in fact, it is computed by the program

Y-Y+1
Y+Y+l
. I k lines.. I
Y+Y+lJ

’ Primitive recursion, characterized by Equations (2.1) and (2.21, is just one specialized
form of recursion, but it is the only one we will be concerned with in this chapter, so we will
refer to it simply as recursion. We will consider more general forms of recursion in Part 5.
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1 Hence we have available the macro Y + k. The following is a program
that computes h(x):

[Al I F X = O G O T O E

y + g(z, n
Z+-Z+l

X+X-l

GOT0 A

To see that this program does what it is supposed to do, note that, if Y
has the value h(z) before executing the instruction labeled A, then it has
the value g( z, h(z)) = h( z + 1) after executing the instruction Y +-
g(Z, Y). Since Y is initialized to k = h(O), Y successively takes on the
values h(O), h(l), . . . , h(x) and then terminates. n

A slightly more complicated kind of recursion is involved when we have

h(.q , . . . , x, ,O) = fb, , . . . , x,J,
(2.2)

Kq , . . . , x,, , t + 1) = g(t, h(q).  . .,x, , t), x1,. . . , xn).

Here the function h of n + 1 variables is said to be obtained by primitive
recursion, or simply recursion, from the total functions f (of n variables)
and g (of n + 2 variables). The recursion (2.2) is just like (2.1) except that
parameters xi,. . . , x, are involved. Again we have

Theorem 2.2. Let  h be obtained from f and g as in (2.2) and let f, g be
computable. Then h is also computable.

Proof. The proof is almost the same as for Theorem 2.1. The following
program computes h(x, , . . . , x, , x, + 1 1:

Y+ f(X,,...,X,)

[Al IFKl.1 =OGOTOE

Y + gcz,  Y, x, ) * * a, XJ

Z-Z+1
Xn+l +Tz+1 - l

GOT0 A
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3. PRC Classes

So far we have considered the operations of composition and recursion.
Now we need some functions on which to get started. These will be

s(x) =x + 1,

n(x) = 0,

and the projection functions

[For example, u~<x~,  x2, x3, x4) = x3 .] The functions s, n, and ul are
called the initial functions.

Definition. A class of total functions E’ is called a MC2  class if

1. the initial functions belong to $57,
2. a function obtained from functions belonging to %? by either composi-

tion or recursion also belongs to g.

Then we have

Theorem 3.1. The class of computable functions is a PRC class.

Proof. By Theorems 1.1, 2.1, and 2.2, we need only verify that the initial
functions are computable.

Now this is obvious; s(x) = x + 1 is computed by

Y+X+l

n(x) is computed by the empty program, and ul(xI,. . . , x,) is computed
by the program

Y t Xi n

Definition. A function is called primitive recursive if it can be obtained
from the initial functions by a finite number of applications of composition
and recursion.

It is obvious from this definition that

2 This is an abbrevi’ation for “primitive recursively closed.”
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Corollary 3.2. The class of primitive recursive functions is a PRC class.

Actually we can say more:

Theorem 3.3. A function is primitive recursive if and only if it belongs to
every PRC class.

Proof. If a function belongs to every PRC class, then, in particular, by
Corollary 3.2, it belongs to the class of primitive recursive functions.

Conversely let a function f be a primitive recursive function and let %F
be some PRC class. We want to show that f belongs to %?. Since f is a
primitive recursive function, there is a list fi , f2, . . . , f, of functions such
that f,, = f and each L in the list is either an initial function or can be
obtained from preceding functions in the list by composition or recursion.
Now the initial functions certainly belong to the PRC class 55’. Moreover
the result of applying composition or recursion to functions in %Y is again a
function belonging to g. Hence each function in the list fi , . . . , f,, belongs
to %“. Since fn = f, f belongs to %5’. n

Corollary 3.4. Every primitive recursive function is computable.

Proof. By the theorem just proved, every primitive recursive function
belongs to the PRC class of computable functions. n

In Chapter 4 we shall show how to obtain a computable function that is
not primitive recursive. Hence it will follow that the set of primitive
recursive functions is a proper subset of the set of computable functions.

Exercises

Let ‘59  be a PRC class, and let g, , g, , g, , g, belong to ‘8’. Show that if

h,(x, y, d = g,k Y, d,

h,(x) = g,(x, X, ~3, and

h,b, x, y, d = h,(g,b, y), z, g&L g,(y, d)),

then h,  , h, , h, also belong to ‘%
Show that the class of all total functions is a PRC class.
tit n > 0 be some given number, and let SF be a class of total
functions of no more than n variables. Show that G? is not a PRC
class.
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4. Let %? be a PRC class, let h belong to %Y, and let

f(x) = h(g(xN and
g(x) = h(.f(x)).

Show that f belongs to %? if and only if g belongs to $F.
5. Prove Corollary 3.4 directly from Theorems 1.1, 2.1, 2.2, and the proof

of Theorem 3.1.

4. Some Primitive Recursive Functions

We proceed to make a short list of primitive recursive functions. Being
primitive recursive, they are also computable.

1.  x + y

To see that this is primitive recursive, we have to show how to obtain this
function from the initial functions using only the operations of composi-
tion and recursion.

If we write f(x, y) = x + y, we have the recursion equations

f(x,O) =x,
f(x,y + 1) =f(x,y)  + 1.

We can rewrite these equations as

fk0) = u;(x),
f(x, y + 1) = g(y, fh, y>, d,

where g(x, , x2, x,) = s(u~(x, , x2, x,)). The functions u:(x), u~(x, , x2, x3>,
and s(x) are primitive recursive functions; in fact they are initial functions.
Also, g(x, , x2, x3) is a primitive recursive function, since it is obtained by
composition of primitive recursive functions. Thus, the preceding is a valid
application of the operation of recursion to primitive recursive functions.
Hence f(x, y> = x + y is primitive recursive.

Of course we already knew that x + y was a computable function. So we
have only obtained the additional information that it is in fact primitive
recursive.

2.  x-y
The recursion equations for h(x, y) = x - y are

h(x,O)  = 0,
h(x, y + 1) = h(x,  y) + x.
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This can be rewritten

hk 0)
h(x, y + 1)

= n(x)

= g(y, h(x, y), xl.

Here, n(x) is the zero function,

g(x, , X2) xg) = f(u;(xl, x2, x,1, +, 7 x2 7 x3)),

f(xl, x2) is x1 + x2, and u~<x,  , x2, x,), u~(x, , x2, x3) are projection func-
tions. Notice that the functions n(x), ui(xl, x2, x,), and u~(x,, x2, x3) are
all primitive recursive functions, since they are all initial functions. We
have just shown that f(x,,  x2) = x1 + x2 is primitive recursive, so
g(x, , x2, x3) is a primitive recursive function since it is obtained from
primitive recursive functions by composition. Finally, we conclude that

h(x,y) =x.y

is primitive recursive.

3. x!

The recursion equations are

O!= 1,

(x + l)! = x!*s(x).

More precisely, x! = h(x), where

h(0) = 1 ,

h(t + 1) = ,y(t, h(O),

g(x, ) x2) = s(x1) ‘X2 *

Finally, g is primitive recursive because

g(x, ) x2> = s<u& , x2)) * 4(x1 7 x2)

and multiplication is already known to be primitive recursive.
In the examples that follow, we leave it to the reader to check that the

recursion equations can be put in the precise form called for by the
definition of the operation of recursion.
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4. xy

The recursion equations are

x0 = 1 ,

xY+l  = XY .x*

Note that these equations assign the value 1 to the “indeterminate” 0’.

The predecessor  function p(x) is defined as follows:

p ( x )  =  * -;
(

i f  x#O
i f  x=0.

It corresponds to the instruction in our programming language X + X - 1.
The recursion equations for p(x) are simply

p(O) = 0,

p(t + 1) = t.
Hence, p(x) is primitive recursive.

6. x’y

The function x L y is defined as follows:

x-y= 1 X-Y i f  x2y
0 i f  x<y.

This function should not be confused with the function x - y, which is
undefined if x < y. In particular, x 2 y is total, while x - y is not.

We show that x 2 y is primitive recursive by displaying the recursion
equations:

x -0=x,
x -(t + 1) = p(x f- t).

The function Ix - y J is defined as the absolute value of the difference
between x and y. It can be expressed simply as

I x - y l =  (n’y) + (y-x)

and thus is primitive recursive.
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8. a(x)

The function a( X) is defined as

47

a(x) =
i

1 i f  x=00 i f  x#O.

a(x) is primitive recursive since

c&K) = 1 IX.

Or we can simply write the recursion equations:

C!(o) = 1,

a(t + 1) = 0.

Exercises
1. Give a detailed argument that xY,  p(x), and x L y are primitive

recursive.
2.
3.

Show that for each k, the function f<~> = k is primitive recursive.
Prove that if fc~) and g(x) are primitive recursive functions, so is
f(x) + g(x).

4. Without using x + y as a macro, apply the constructions in the
proofs of Theorems 1 .l, 2.2, and 3.1 to give an 9 program that
computes x ’ y.

5. For any unary function f(x), the nth iteration of f, written f”, is

6.*

where f is composed with itself rz times on the right side of the
equation. (Note that f’(x) = x.) Let rf(n, X) = f”(x). Show that if f
is primitive recursive, then lf is also primitive recursive.
(a) Let E(x) = 0 if x is even, E(x) = 1 if x is odd. Show that

E(x) is primitive recursive.
(b) Let H(x) = x/2  fi x is even, (X - 1)/2  if x is odd. Show that

H(x) is primitive recursive.
7.’ Let fc0) = 0, fcl) = 1, f(2) = 22, f(3) = 333 = 327,  etc. In general,

f(n) is written as a stack n high, of n’s as exponents. Show that f is
primitive recursive.



48

8.*

9.’

10.*

11.”

Let g(x) be a primitive recursive function and let f(0, x) = g(x),
f(n + 1, x) = f(n,  f(n,  xl>. prove that f(n,  x) is primitive recursive.
Let COMP be the class of functions obtained from the initial
functions by a finite sequence of compositions.
(a)

(b)

Cc)

Cd)

Show that for every function f<xl,.  . . , xn)  in COMP, either
f(x1,.  . *, x,) = k for some constant k, or f(xl,.  . ., x,) =
xi + k for some 1 I i I n and some constant k.
An n-ary  function f is monotone if for all n-tuples (x, , . . . , xn),
(Y 1,. . . , y,) such that xi I yi, 1 I i I n, f(xl,.  . . , xn)  5
f(Yl9.  a. 7 y,). Show that every function in COMP is monotone.
Show that COMP is a proper subset of the class of primitive
recursive functions.

Let

Show that the class of functions computed by straightline 9
programs is a proper subset of COMP. [See Exercise 4.6 in
Chapter 2 for the definition of straightline programs.]
&@I be the class of all functions obtained from the initial
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Let k be some fixed number, let f be a function such that f(x + 1)
< x + 1 for all x, and let

h(0) = k
h(t + 1) = g(h( f(t + 1))).

Show that if f and g belong to some PRC class %7,  then so does h.
[Hint: Define f’(x) = min, I x f ‘(x) = 0. See Exercise 5 for the
definition of f ‘(x).1

functions by any finite number of compositions and no more than
one recursion (in any order).
(a) Let f(x,,.. ., xn) belong to COMP. [See Exercise 10 for the

definition of COMP.] Show that there is a k > 0 such that
f(x,,  - - *, xn> I max{x,, . . . , xn> + k.

(b) Let
h(O) = c

h(t + 1) = g(t, hit)),
where c is some given number and g belongs to COMP. Show
that there is a k > 0 such that h(t) I tk + c.

(c) L e t

h(n,  , . . . , x, ,O) = f(x, , . . . , xn>

h(x, , . . .,x, , t + 1) =g(t,h(x,  ,..., x,&,x,  ,..., xn),
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where f, g belong to COMP. Show that there are k, 2 > 0 such
that h(x,, . . .,x,, t) I tk + max{x,,  . . . , x,} + 1.

(d) Let f(x,,.. . , x,) belong to pi. Show that there are k, I > 0
such that f(xi, . . . , x,) I max{x,,  . . . , xn} * k + 1.

(e) Show that ~3$  is a proper subset of the class of primitive
recursive functions.

5. Primitive Recursive Predicates

We recall from Chapter 1, Section 4, that predicates or Boolean-valued
functions are simply total functions whose values are 0 or 1. (We have
identified 1 with TRUE and 0 with FALSE.) Thus we can speak without
further ado of primitive recursive predicates.

We continue our list of primitive recursive functions, including some
that are predicates.

9. x=y

The predicate x = y is defined as 1 if the values of x and y are the same
and 0 otherwise. Thus we wish to show that the function

dky) =
i

1 i f  x=y
0 i f  x#y

is primitive recursive. This follows immediately from the equation

d(x, y) = 4x - Yl).

10 .  xsy

I This predicate is simply the primitive recursive function cw(x A y).
i
i Theorem 5.1. Let ‘2? be a PRC class. If P, Q are predicates that belong to
r ti?, then so are -P, P V Q, and P & Q.3

Proof. Since N P = a(P), it follows that N P belongs to ‘57. (a! was
defined in Section 4, item 8.)

3 See Chapter 1, Section 4.
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Also, we have
P&Q=P-Q,

so that P & Q belongs to ‘Z.
Finally, the De Morgan law

PVQ =-(-P&-Q)
shows, using what we have already done, that P V Q belongs to E’. n

A result like Theorem 5.1 which refers to PRC classes can be applied to
the two classes we have shown to be PRC. That is, taking % to be the class
of all primitive recursive functions, we have

Corollary 5.2. If P, Q are primitive recursive predicates, then so are -P,
P V Q, and P & Q.

Similarly taking g to be the class of all computable functions, we have

Corollary 5.3. If P, Q are computable predicates, then so are -P,
P V Q, and P & Q.

As a simple example we have

II. x<y

We can write
x<y@xsy& -(x=y),

or more simply

Theorem 5.4 (Definition by Cases). Let ‘iiF be a PRC class. Let the
functions g, h and the predicate P belong to 57.  Let

f(xp*.,x,) =
g(x, , * * a, x,)
h(x1,..4,)

i f  P(xI,...,x,)
otherwise.

Then f belongs to @.

This will be recognized as a version of the familiar “if.. . then.. . ,
else . . . ” statement.

Proof. The result is obvious because

f(xI,...,X,)
= g(x, , . . . , x,) - P(x, , . . . , xJ + h(x, , . . . , x,) - d’(x,, . . . , x,>).

w
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Corollary 5.5. Let F be a PRC class, let n-ary functions g, , . . . , g,, h
and predicates P, , . . . , P,,, belong to g, and let

pj(xl  7. * * 7 XJ & Pj<Xl , . . .)X,> = 0

for all 1 I i < j I m and all x1,. . . , x, . If

g,(x, , * - *, x,) i f  PI(xI,...,xn)
. .* .. .

&r&x 1,...,x,) i f  P,(x,,...,x,)
h(x,  , . . . , x,> otherwise,

then f also belongs to g.

Proof. We argue by induction on m. The case for m = 1 is given by
Theorem 5.4, so let

if P,(x, , . . . , xn)
..

f(x .
i f  Pm+l(xl,...,xJ
otherwise,

and let

h’(x, ,...,x,) = g?n+ 1(x1 ,...,xJ i f  Pm+l(xI,...,x,)
h(x 1,...,x,)  - otherwise.

Then

dx, ,...,x,l i f  P1(xI,...,x,)
. .

f(x],...,XJ = *I .
g,(x, , ’ * * 7 x,) i f  P,(x,,...,x,)

th’h, , . . . , x,) otherwise,

and h’ belongs to g by Theorem 5.4, so f belongs to g by the induction
hypothesis. n

Exercise

1. Let us call a predicate trivial if it is always TRUE or always FALSE.
Show that no nontrivial predicates belong to COMP (see Exercise 4.10
for the definition of COMP.)
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6. Iterated Operations and Bounded Quantifiers

Theorem 6.1. Let ii!? be a PRC class. If f(t, x1,. . . , nn)  belongs to %,
then so do the functions

g(Y 7 Xl ,...,xJ  =  if(t,x, ,...,&I
t=O

and
Y

My,  x1  , . . . , xn>  =  n.fct,  Xl,. . . , n,).
t=O

A common error is to attempt to prove this by using mathematical
induction on y. A little reflection reveals that such an argument by
induction shows that

g(O,x, )..., Xn),g(l,xl ,..., x,1 ,...

all belong to $9, but not that the function g(y, x1,. . . , x,), one of whose
arguments is y, belongs to E’.

We proceed with the correct proof.

Proof. We note the recursion equations

g(O, x1 7 - - - 7 xn> =f(O,x,  ,..., -XI,),

go + 1, x1 ,***, x,1 = go, x1, * - -, x,1 + f(t + 1, x1, * - a, x,1,

and recall that since + is primitive recursive, it belongs to $9.
Similarly,

h(O, x1,. . . , x,> = f(O, x1, * - -, XJ,

h(t + 1,x1 ,..., xn>  =h(t,x,  ,..., x,).f(t  + 1,x1 ,..., x,). n

Sometimes we will want to begin the summation (or product) at 1
instead of 0. That is, we will want to consider

g(Y9  Xl ,..., xn) =  if(t,x,,.. .,xJ
t = l

or
Y

h(y,  ~1 ,..., xn>  =  nfct,x,  ,...) XJ.
t=1
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Then the initial recursion equations can be taken to be

g(O, x1 ,...,x,) = 0,

h(0, Xl,. . . , XJ = 1,

with the equations for g(t + 1, x1, . . . , xn) and h(t + 1, xi, . . . , xn) as in
the preceding proof. Note that we are implicitly defining a vacuous sum to
be 0 and a vacuous product to be 1. With this understanding we have
proved

Corollary 6.2. If f(t, x1 , . . . , x,J belongs to the PRC class 59, then so do
the functions

and

dY  9 Xl ,...,  x,) = if(t.x, )..., x,>
t = l

h(y,x,..., x,) = &t, Xl,. . . , x,).
t = l

If the predicate P(t, x1,. . . , x,) belongs to some PRC class
g, then so do the predicates4 * ‘_ -

Wt),,fYt, x1, - - -,qJ and (W,,P(t, x1, * - *,x,).

proof. We need only observe that

(Vt),,P(t,x,  ,. ..,xn) *
[
f-p(t,x, ,...7 x,) = 1
t=O 1

and

(3t),,P(t,x I,..., x,) * i Pkx, 7...9 x,) # 0.1
Lt=o _I

* Actually for the universal quantifier it would even have been correct to
r write the equation

(vt)~,P(t,x,  )...) XJ = fiPCt,x, ,...) x,1.
t=O

4 See Chapter 1, Section 5.
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Sometimes in applying Theorem 6.3 we want to use the quantifier

(Vt),, or at),, .

That the theorem is still valid is clear from the relations

(3t).,P(t,x,,..., n,) * (3t)Jt + y & m, x1, * * *, n,)l,

W), ,m, x1 , * * -, x,) * oft), Jt = y v m, x1, * * a, n,)l.

We continue our list of examples.

12. ylx

This is the predicate “y is a divisor of x.” For example,

3112 is true
while

3 I 13 is false.

The predicate is primitive recursive since

ylx * (W, Jy * t = xl.

13. Prime(x)

The predicate “x is a prime” is primitive recursive since

Prime(x) *X > 1 &(Vt),.{t  = 1 V t =x V - (tlx)}.

(A number is a prime if it is greater than 1 and it has no divisors other
than 1 and itself.)

Exercises

1.

2.

3.

4.

Let f<~) = 2x if x is a perfect square; fc~) = 2x + 1 otherwise. Show
that f is primitive recursive.
Let U.(X) be the sum of the divisors of x if x # 0; a(O) = 0 [e.g.,
a(6) = 1 + 2 + 3 + 6 = 121. Show that a(x) is primitive recursive.
Let m(x) be the number of primes that are < X. Show that r(x) is
primitive recursive.
Let SQSM(x)  be true if x is the sum of two perfect squares; false
otherwise. Show that SQSM(x) is primitive recursive.
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6.

7.

7.

Let 2? be a PRC class, let P(t,  xl,. . . , xn) be a predicate in ‘8, and let

(where <WY s t s z P(t, x1,. . . , x,1 and (30, It I .P(t, x1,. . . , n,) mean
that P(t, x1,. . . , x,) is true for all t (respectively, for some t) from y
to z). Show that g, h also belong to g.
Let RP (x, y) be true if x and y are relatively prime (i.e., their greatest
common divisor is 1). Show that RP(x, y) is primitive recursive.
Give a sequence of compositions and recursions that shows explicitly
that Prime(x) is primitive recursive.

Minimalization

Let P(t, x1,. . . , xn> belong to some given PRC class 59.  Then by Theorem
6.1, the function

Y u
g(y,n, ,...,  xn) = c ndP(Lq ,‘.., n,>)

u=o t=O

also belongs to %‘. (Recall that the primitive recursive function cy was
defined in Section 4.) Let us analyze this function g. Suppose for definite-
ness that for some value of t, I y,

P(t, x1,. . . , x,) = 0 f o r  t<t,,

but
P(t,,  x1, - * -, x,1 = 1,

i.e., that t, is the least value oft I y for which P(t, x1,. . . , x,) is true. Then

fia(PCt,x
i

1
p*.,Xn)) =

if u < t,

t=O 0 i f  u2t,.

Hence,

g(y,x, ,...,x,) = c 1 =t,,
u < to

so that g(y, xl,. . . , xn) is the least value of t for which P(t, x, . . . , x,) is
true. Now, we define

minP(t,  x1  , . . . , x,) =
g(y, Xl, - - -, x,1 i f  (3t),yP(t,xI,...,x,)_

t<Y 0 otherwise.
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Thus, min, 5 ,p(t, x1,. . . , n,)  is the least value of t I y for which
Ht, x1, - * - , x,) is true, if such exists; otherwise it assumes the (default) value
0. Using Theorems 5.4 and 6.3, we have

Theorem 7.1. If P(t,  x1, . . . , xn> belongs to some PRC class E’ and
f(y, x1,.  . . , n,) = min,,,P(t, x1,. . . , xn), then f also belongs to $5’.

The operation “min, 5 y” is called bounded rninimalization.
Continuing our list:

[x/y] is the “integer part” of the quotient x/y. For example, (7/2] = 3
and [2/3] = 0. The equation

Lx/y] = min[(t  + 1)-y >x]
tsx

shows that lx/y] is primitive recursive. Note that according to this equa-
tion, we are taking lx/O] = 0.

R(x, y) is the remainder when x is divided by y. Since

we can write

X R(X, y>
y = lx/y1 + -

Y ’

R(x,  y) = X -cy * lx/yl),
so that R(x, y) is primitive recursive. [Note that R(x, 0) = x.1

Here, for n > 0, p, is the nth prime number (in order of size). So that p,
be a total function, we set p0 = 0. Thus, p. = 0, p1 = 2, p2 = 3, p3 = 5,
etc. \

Consider the recursion equations

PO = 0,
pn+* = min [Prime(t) & t > p,].

t<p,!  + 1

To see that these equations are correct we must verify the inequality

pn+l I (p,>!+  1. (7.1)
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To do so note that for 0 < i 5 YE we have

(p,)!+  1 _K+L
Pi Pi ’

where K is an integer. Hence (p,) ! + 1 is not divisible by any of the
primes pl,p2,..., pn . So, either (p,)  ! + 1 is itself a prime or it is divisible
by a prime > p,. In either case there is a prime 4 such that p, < q I
(p,)  ! + 1, which gives the inequality (7.1). (This argument is just Euclid’s
proof that there are infinitely many primes.)

Before we can confidently assert that p, is a primitive recursive func-
tion, we need to justify the interleaving of the recursion equations with
bounded minimalization. To do so, we first define the primitive recursive
function

h(y, 2) = min [Prime(t) & t > y].
IIZ

Then we set

k(x) = h(x,x!+  l),

another primitive recursive function. Finally, our recursion equations
reduce to

po = 0,

Pn+  1 = k(PtJ,

so that we can conclude finally that pn is a primitive recursive function.
It is worth noting that by using our various theorems (and appropriate

macro expansions) we could now obtain explicitly a program of 9 which
actually computes pn . Of course the program obtained in this way would
be extremely inefficient.

Now we want to discuss minimalization when there is no bound. We
write

minP(x,  , . . . , X, , y>
Y

for the least value of y for which the predicate P is true if there is me. If
there is no value of y for which P(x, , . . . , x, , y) is true, then
min, P(x,  , . . . , x, , y) is undefined. (Note carefully the difference with
bounded minimalization.) Thus unbounded minimalization of a predicate
can easily produce a function which is not total. For example,

x-y = min[y +z =x]
Z
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is undefined for x < y. Now, as we shall see later, there are primitive
recursive predicates P(x, y) such that min, P(x, y) is a total function
which is not primitive recursive. However, we can prove

Theorem 7.2. If P(x,,  . . . , x,, y) is a computable predicate and if

gk,, * * *, x,) = minP(x, , . . . , x, , y),
Y

then g is a partially computable function.

Proof. The following program obviously computes g:

[Al IF P( X, , . . . , X,, , Y) GOT0 E
Y*Y+l
GOT0 A

Exercises

1.

2.

3.

4.

5.

6.

7.

Let h(x) be the integer n such that n 5 fix < n + 1. Show that h(x)
is primitive recursive.
Do the same when h(x) is the integer n such that

nI(l+&)x<n+l.

p is called a larger  twin prime if p and p - 2 are both primes. (5, 7, 13,
19 are larger twin primes.) Let T(0) = 0, T(n) = the nth larger twin
prime. It is widely believed, but has not been proved, that there are
infinitely many larger twin primes. Assuming that this is true prove
that T(n) is computable.
Let u(n) be the nth number in order of size which is the sum of two
squares. Show that u(n) is primitive recursive.
Let R(x, t) be a primitive recursive predicate. Let

gk, v) = ma Nx, 0,
tsy

i.e., g(x, y) is the largest value of t I y for which R(x, t) is true; if
there is none, g(x, y) = 0. Prove that g(x, y) is primitive recursive.
Let gcd(x, y) be the greatest common divisor of x and y. Show that
gcd(x,  y) is primitive recursive.
Let lcm(x, y) be the least common multiple of x and y. Show that
lcm( x, y) is primitive recursive.



8. Pairing Functions and GUdel Numbers 59

8.

9.’

Give a computable predicate P(x, , . . . , X, , y) such that the function
min, P(x,,  . . . , x,, y) is not computable.
A function is elementary if it can be obtained from the functions s, n,
Uf,  + , L by a finite sequence of applications of composition, bounded
summation, and bounded product. (By application of bounded summa-
tion we mean obtaining the function C,Y_ 0 fc t, x1 , . . . , xn) from
f(t, x1, - - *, x,J and similarly for bounded product.)
(a) Show that every elementary function is primitive recursive.
(b) Show that x ’ y, xY, and X! are elementary.
(c) Show that if n + 1-ary predicates P and Q are elementary, then

so are N P, P v Q, P ‘3~ Q, (Vt), ,p(t, x1, . . . , xn),
Ut), y PO, x1,. . . , xn), and min, I ,P(t, x1,. . . , x,).

(d) Show that Prime(x) is elementary.
(e) Let the binary function exp,(x) be defined

exp,(x) =x

exp, + 1(~) = 2expy(x).

Show that for every elementary function f(-xi , . . . , xn), there is a
constant k such that f(~i , . . . , xn) I exp,(max{x,  , . . . , n,}). [Hint:
Show that for every n there is an m 2 n such that x - exp,(x)  I
exp,(x) for all x.1

(f) Show th ta exp,(x) is not elementary. Conclude that the class of
elementary functions is a proper subset of the class of primitive
recursive functions.

8. Pairing Functions and Giidel Numbers

In this section we shall study two convenient coding devices which use
primitive recursive functions. The first is for coding pairs of numbers by
single numbers, and the second is for coding lists of numbers.

We define the primitive recursive function

(X, y) = 2”(2y + 1) I 1.

Note that 2”(2y + 1) # 0 so

(X, y) + 1 = 2”(2y + 1).

If z is any given number, there is a unique solution X, y to the equation

ky> =z, (8.1)
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Godel numbering satisfies the following uniqueness property:

Theorem 8.2. If [a,, . . . , a,] = [b, , . . . , b,], then

ai = b,17 i = l ,‘a’, n.

This result is an immediate consequence of the uniqueness of the
factorization of integers into primes, sometimes referred to as the unique
factorisation theorem or the fundamental theorem of arithmetic. (For a
proof, see any elementary number theory textbook.)

However, note that

[a 1, . . . . a,1 = [aI ,..., a,,01 03.2)
because p,“, 1 = 1. This same result obviously holds for any finite number
of zeros adjoined to the right end of a sequence. In particular, since

1 = 20 = 2030 = 203050 = . . . ,
it is natural to regard 1 as the Gijdel number of the “empty” sequence of
length 0, and it is useful to do so.

If one adjoins 0 to the left end of a sequence, the Gijdel number of the
new sequence will not be the same as the Gijdel number of the original
sequence. For example,

[2,3] = 22 - 33 = 108,
and

but
[2,3,0] = 22-33-50 = 108,

[O, 2,3] = 2O * 32 * 53 = 1125.

We will now define a primitive recursive function (X)j so that if

X = [al ,...,a,l,
then (X)i = aj. We set

(X)j  = min( -p:+l I X).
tsx

Note that (x), = 0, and (0)i  = 0 for all i.
We shall also use the primitive recursive function

Lt(X) = min ((X)j # O& (Vj)Sx(j I i V (X)i = 0)).
isx

(Lt stands for “length.“) Thus, if x = 20 = 2’ - 5’ = [2,0,1],  then (x), = 1,
but(x),  = (x), = --- = (x),,  = 0. so, Lt(20) = 3. Also, Lt(0) = Lt(1) = 0.
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If x > 1, and Lt( x) = II, then p, divides x but no prime greater than pn
divides X. Note that Lt([a, , . . . , a,]) = n if and only if a, # 0.

We summarize the key properties of these primitive recursive functions.

Theorem 8.3 (Sequence Number Theorem).

a. ([a,, . . . , a,l>i =
i

ai i f  lliln
0 otherwise.

b. [(x),,...,(x),1  =X if  n  2 Lt(x).

Our main application of these coding techniques is given in the next
chapter. The following exercises indicate that they can also be used to
show that PRC classes are closed under various interesting and useful
forms of recursion.

Exercises

1.

2.

3.

4.

Let f(x, , * * a, n,) be a function of n variables, and let f’(x) be a unary
function defined so that f’([x,,  . . . , x,]) = f<xl, . . . , x,) for al l
Xl,...,X,. Show that f’ is partially computable if and only if f is
partially computable.
Define Sort([ x1 , . . . , x,1)  = [ y1 , . . . , y,l, where yl, . . . , y, is a permu-
tation of x1,. . . , x, such that y1 I y, I _a I y,. Show that Sort(x) is
primitive recursive.
Let F(0) = 0, F(1) = 1, F(n + 2) = F(n  + 1) + F(n). [F(n) is the
nth so-called Fibonacci number.] Prove that F(n) is primitive recur-
sive.
(Simultaneous Recursion) Let

h,(x,O) = f&x),

h,(x,  0) = fi(d,

h,(x,  l + 1) = g,(x,  h,(x,  0, h,(x,  01,

h,(x,  t + 1) = g&n, h,(x,  0, h,(x,  m.

Prove that if fi , f2, g, , g, all belong to some PRC class ‘8, then h, , h,
do also.

5.* (Course-of-Values Recursion)
(a) For f(n) any function, we write

fl(O) = l,f’(n) = [f(O), f(l), . . . , f(n - l)] if n # 0.



P

(b)

Functions and G&de1 Numbers

Let

f(n) =g(n,f<d)
for all n. Show that if g is primitive recursive so is f.
Let

f(O) = 1, f(l) = 4, f(2)  = 6,

fb + 3) = f(x) + f(x  + 1j2 + f<x  + 2)3.

Show that f(x) is primitive recursive.
(c) L e t

h(0) = 3

h(x  + 1) = i h(t).
t=O

Show that h is primitive recursive.
6.* (Unnested Double Recursion) Let

f (0, Y) = g&y>

f(x + LO) =g,(x)

f(x + Ly + 1) = h(x,y,fb,y  + l),f(x + l,y 1).

Show that if g, , g, , and h all belong to some PRC class ‘8, t
L - l - - - _  A.- r/7
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A Universal Program

1. Coding Programs by Numbers

i We are going to associate with each program 9 of the language 9 a
1 number, which we write #(9), in such a way that the program can be
1 retrieved from its number. To begin with we arrange the variables in order
L as follows:

b Y x, 2, x2 2, x3 2,. . . .

1 Next we do the same for the labels:

[ A, B, C, D, E, A, B, C, D, E, A,. . . .
I
i We write #(V), #(L) for the position of a given variable or label in the
1 appropriate ordering. Thus #(X,> = 4, #(Z,) = #(Z) = 3, #(E) = 5,
i #(El,) = 7.
f Now let I be an instruction (labeled or unlabeled) of the language 9.
Then we write

where
#(I) = (a, (b, c>>

1. if I is unlabeled, then a = 0; if I is labeled L, then a = #CL);
2. if the variable V is mentioned in I, then c = #(V) - 1;

65
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3. if the statement in I is

v+v or I/+-V+1 o r V+V-1,

then b = 0 or 1 or 2, respectively;
4. if the statement in I is

IF Vz OGOTOL’

then b = #(L’) + 2.

Some examples:
The number of the unlabeled instruction X + X + 1 is

a (LO> = (0,5) = 10,
whereas the number of the instruction

[A] X+-X+1

is

(1, (1,1)) = (1,5) = 21.

Note that for any given number 4 there is a unique instruction I with
#(I) = 4. We first calculate Z(q). If Z(q) = 0, Z is unlabeled; otherwise I
has the Z(q)th label in our list. To find the variable mentioned in I, we
compute i = r(r(q))  + 1 and locate the ith variable V in our list. Then,
the statement in Z will be

I/+-v if Z(r(q)) = 0,
V+V+l if Z(r(q)) = 1,
V+--V-l if Z(r(q)) = 2,
IFV#OGOTOL i f  j=Z(r(q))-2>0

and L is the jth label in our list.
Finally, let a program 9 consist of the instructions I,, 12, . . . , Zk . Then

we set

#(9) = [#(Z,),#U,),. * .A&)1 - 1. (1 .l)

Since Godel numbers tend to be very large, the number of even rather
simple programs usually will be quite enormous. We content ourselves
with a simple example:

[A] X+X+1
IFXzOGOTOA
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The reader will recognize this as the example given in Chapter 2 of a
program that computes the nowhere defined function. Calling these in-
structions I, and I,, respectively, we have seen that #(I,) = 21. Since Z2
is unlabeled,

#(I,) = (0, (3,l))  = (0,23) = 46.

Thus, finally, the number of this short program is
221  . 346 _ 1,

Note that the number of the unlabeled instruction Y + Y is

(0, (0,O)) = (0,O) = 0.

Thus, by the ambiguity in Gijdel numbers [recall Eq. (8.21, Chapter 31, the
number of a program will be unchanged if an unlabeled Y + Y is tacked
onto its end. Of course this is a harmless ambiguity; the longer program
computes exactly what the shorter one does. However, we remove even
this ambiguity by adding to our official definition of program of 9 the
harmless stipulation that the final instruction in a program is not permitted to
be the unlabeled statement Y +- Y.

With this last stipulation each number determines a unique program. As
an example, let us determine the program whose number is 199. We have

199 + 1 = 200 = 23 * 3O * s2 = [3,0,2].

Thus, if #(LPI = 199, LP consists of 3 instructions, the second of which is
the unlabeled statement Y + Y. We have

and
3 = (2,O) = (2, (0,O))

2 = (0,l) = (O,(l,O)).
Thus, the program is

[B]Y + Y
Y-Y
Y-Y+1

a not very interesting program that computes the function y = 1.
Note also that the empty program has the number 1 - 1 = 0.

Exercises
1. Compute #(PI for 9 the programs of Exercises 4.1, 4.2, Chapter 2.
2. Find 9 such that #(LPI = 575.
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2. The Halting Problem

In this section we want to discuss a predicate HALT(x, y), which we now
define. For given y, let 9 be the program such that #(9) = y. Then
HALT&  y) is true if &$)(x)  is defined and false if $$!)(x) is undefined. To
put it succinctly:

HALT(x,y) * program number y eventually halts on input x.

We now prove the remarkable:

Theorem 2.1. HALT(x, y) is not a computable predicate.

Proof. Suppose that I-IALT(x, y) were computable. Then we could con-
struct the program 9:

[Al IF HALT(X, X) GOT0 A

(Of course 9 is to be the macro expansion
clear that 9 has been constructed so that

of this program.) It is quite

+Q)(x) = 1 ’ undefined if HALT(x,  x)
! if - HALT(x,  x).

Let #(g) = y, . Then using the definition of the HALT predicate,

HAL’Jk yo> - - HALT(x,  x).

Since this equivalence is true for all x, we can set x = y, :

l+IALToI, 9 Yo) * 4IALT(y,,y,).
But this is a contradiction. n

To begin with, this theorem provides us with an example of a function
that is not computable by any program in the language 9. But we would
like to go further; we would like to conclude the following:

There is no algorithm that, given a program of ~7 and an input to
that program, can determine whether or not the given program will
eventually halt on the given input.

In this form the result is called the unsolvability of the haltingproblem. We
reason as follows: if there were such an algorithm, we could use it to check
the truth or falsity of HALax, y) for given x, y by first obtaining program
@ with #(a)  = y and then checking whether @ eventually halts on input
x. But we have reason to believe that any algorithm for computing on
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numbers can be carried out by a program of 9’. Hence this would contradict
the fact that HALT(x, y> is not computable.

The last italicized assertion is a form of what has come to be called
Church’s thesis. We have already accumulated some evidence for it, and we
will see more later. But, since the word algotithm  has no general definition
separated from a particular language, Church’s thesis cannot be proved as
a mathematical theorem.

In fact, we will use Church’s thesis freely in asserting the nonexistence
of algorithms whenever we have shown that some problem cannot be
solved by a program of Y.

In the light of Church’s thesis, Theorem 2.1 tells us that there really is
no algorithm for testing a given program and input to determine whether it
will ever halt. Anyone who finds it surprising that no algorithm exists for
such a “simple” problem should be made to realize that it is easy to
construct relatively short programs (of 9’) such that nobody is in a position
to tell whether they will ever halt. For example, consider the assertion
from number theory that every even number 2 4 is the sum of two prime
numbers. This assertion, known as Goldbach’s conjecture, is clearly true for
small even numbers: 4 = 2 + 2, 6 = 3 + 3, 8 = 3 + 5, etc. It is easy to
write a program 9 of Y that will search for a counterexample to
Goldbach’s conjecture, that is, an even number n 2 4 that is not the sum
of two primes. Note that the test that a given even number n is a
counterexample only requires checking the primitive recursive predicate

- (3x), .(W,,[P rime(x) &Prime(y) & x + y = n].

The statement that 9 never halts is equivalent to Goldbach’s conjecture.
Since the conjecture is still open after 250 years, nobody knows whether
this program 9 will eventually halt.

Exercises
1. Show that HALT(x, x) is not computable.
2. Let HALT(x, y) be defined

HAWx, y> - program number y never halts on input x.

Show that HALT(x, y) is not computable.
3. Let HALT’(x)  be defined HALT’(x) * HALT(Z(x), r(x)).  Show that

HALT’(x) is not computable.
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4.

5.

6.

3.
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Prove or disprove: If f( x1 , . . . , x,) is a total function such that for
some constant k, f(xl , . . . , x,)  I k for all x1, . . . , x, , then f is
computable.
Suppose we claim that 9 is a program that computes HALnx,  x).
Give a counterexample that shows the claim to be false. That is, give
an input x for which 9 gives the wrong answer.
Let

f(x) =
i

X
if Goldbach’s conjecture is true

0 otherwise.

Show that f<x) is primitive recursive.

Universality

The negative character of the results in the previous section might lead
one to believe that it is not possible to compute in a useful way with
numbers of programs. But, as we shall soon see, this belief is not justified.

For each n > 0, we define -

@(“)(x1 , . . .,x, , y) = @“)(X1,. . . , x )A ’ where #(9) =y.

One of the key tools in computability theory is

Theorem 3.1 (Universality Theorem). For each n > 0, the function
@qX,,  . . . , x, , y) is partially computable.

We shall prove this theorem by showing how to construct, for each
n > 0, a program %n which computes Qcn). That is, we shall have for each
n > 0,

@#+1)(x1  )..., n,,x,+,) = @YX, ,..., &x,+1).
n

The programs 2Yn  are called universal. For example, 2V1 can be used to
compute any partially computable function of one variable, namely, if f(x)
is computed by a program 9 and y = #(9), then f< X) = @l)( X, y) =
&$)(x,  y). The program %n will work very much like an interpreter. It
must keep track of the current snapshot in a computation and by “decod-
ing” the number of the program being interpreted, decide what to do next
and then do it.

In writing the programs Vn we shall freely use macros corresponding to
functions that we know to be primitive recursive using the methods of
Chapter 3. We shall also freely ignore the rules concerning which letters
may be used to represent variables or labels of 9’.
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In considering the state of a computation we can assume that all
variables which k-e not given values have the value 0. With this under-
standing, we can code thestate in which the ith variable in our list has the
value ai and all variables after the mth have the value 0, by the GGdel
number [a,, . . . , a,]. For example, the state

Y= 0. x, = 2, x, = 1

is coded by the number

[0,2,0,  l] = 32 l 7 = 63.

Notice in particular that the input variables are those whose position in
our list is an even number.

Now in the universal programs, we shall allocate storage as follows:

i K will be the number such that the Kth instruction is about to be
t executed;
1 S will store the current state coded in the manner just explained.
I
i We proceed to give the program %n for computing

e Y = amx, ,..., X” ,X”J.
I, , ,,’ ,‘ I A

We begin by exhibiting %n in sections, explaining
Finally, we shall put the pieces together. We begin:

2 +xn+l + 1

S + fi (p2jlxi
i = l

what each part does.

F K-1

If&+, = #(9), where 9 consists of the instructions I,, . . . , Zm  , then 2
gets the value [#(I,), . . . , #(Z,J [see Eq. (l.l)]. S is initialized as
[o,X,,O,X,,..., 0, X,,], which gives the first n input variables their appro-
priate values and gives all other variables the value 0. K, the instruction
counter, is given the initial value 1 (so that the computation can begin with
the first instruction). Next,

[C]  IFK=Lt(Z) + 1 vK=OGOTOP

If
01
a

’ the computation has ended, GOT0 F, where the proper value will be
utput. (The significance of K = 0 will be explained later.) Otherwise, the
srrent instruction must be decoded and executed:

u t d(Zhd
p + Pr(v)+ 1
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(Z), = (a, (b, c)) is th e number of the Kth instruction. Thus, U = (b, c)
is the code for the statement about to be executed. The variable mentioned
in the Kth instruction is the (c + l)th, i.e., the (r(U) + l)th, in our list.
Thus, its current value is stored as the exponent to which P divides S:

IF Z(U) = 0 GOT0 N

IF Z(U) = 1 GOT0 A

IF -(PIS)GOTON

IF l(U) = 2 GOT0 A4

If l(U) = 0, the instruction is a dummy I/ + I/ and the computation need
do nothing to S. If Z(U)  = 1, the instruction is of the form V + V + 1, so
that 1 has to be added to the exponent on P in the prime power
factorization of S. The computation executes a GOT0 A (for Add). If
l(U) # 0, 1, then the current instruction is either of the form V + V - 1
or IF V # 0 GOT0 L. In either case, if P is not a divisor of S, i.e., if the
current value of Y is 0, the computation need do nothing to S. If P I S and
l(U) = 2, then the computation executes a GOT0 M (for Minus), so that
1 can be subtracted from the exponent to which P divides S. To continue,

K + min [Z((Z)i)  + 2 = Z ( U ) ]
is Lt(Z)

GOT0 C

If Z(U)  > 2 and P I S, the current instruction is of the form IF I/ # 0
GOT0 L where I/ has a nonzero value and L is the label whose position
in our list is Z(U)  - 2. Accordingly the next instruction should be the first
with this label. That is, K should get as its value the least i for which
l((Z>i> = f(U) - 2. If there is no instruction with the appropriate label, K
gets the value 0, which will lead to termination the next time through the
main loop. In either case the GOT0 C causes a “jump” to the beginning
of the loop for the next instruction (if any) to be processed. Continuing,

1~1 s +- D/PI
GOT0 N

[ A ]  S+-S-P
[ N ]  K+K+l

GOT0 C

1 is subtracted or added to the value of the variable mentioned in the‘
current instruction by dividing or multiplying S by P, respectively. The
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z +x,+, + 1
n

s + n(p*JX,

[Cl

[Ml

[Al
[Nl

El

i= 1

K+l
IFK=Lt(Z)+ 1 VK
u + r((Z),>
p + Pr(lJ)+ 1
IF 1(U) = 0 GOT0 N
IF 1(U) = 1 GOT0 A
IF -(PIS)GOTON
IF Z(U)  = 2 GOT0 M
K  + m i n  [1((Z),)  +

IS Ltcz)

GOT0 C
s + lW-7
GOT0 N
S+S*P
K-K+1
GOT0 C
Y +- (S),

73

=OGOTOF

2 = W>l

Figure 3.1. Program %$,  which computes Y = @“)(X1  , . . . , X, , X, + 1>.

instruction counter is increased by 1 and the computation returns to
process the next instruction. To conclude the program,

On termination, the value of Y for the program being simulated is stored
as the exponent on pr( = 2) in S. We have now completed our description
of ‘%n and we put the pieces together in Fig. 3.1.

For each n > 0, the sequence

enumerates all partially computable functions of n variables. When we
want to emphasize this aspect of the situation we write

ap<x,  ) . . . ) x,) = W)(X, , . . .,x, , y).

It is often convenient to omit the superscript when n = 1, writing

@y(n) = mx y) = @‘)(x,  y).,
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A simple modification of the programs Z/ would enable us to prove that
the predicates

STPcn,(x,  , . . . , X, , y , t) - Program number y halts after t or fewer
steps on inputs x1 , . . . , x,

* There is a computation of program y of
length 5 t + 1, beginning with inputs
Xl ,*-*, XrJ

are computable. We simply need to add a counter to determine when we
have simulated t steps. However, we can prove a stronger result.

Theorem 3.2 (Step-Counter Theorem). For each n > 0, the predicate
STP’%q  , . . :, x, , y, t) is primitive recursive.

Proof. The idea is to provide numeric versions of the notions of snapshot
and successor snapshot and to show that the necessary functions are
primitive recursive. We use the same representation of program states that
we used in defining the universal programs, and if z represents state 0,
then (i, z) represents the snapshot (i, u).

We begin with some functions for extracting the components of the ith
instruction of program number y:

LABEL(i,y) = l((y + l)i)

VfNi, y) = r(r((y + l)i)) + 1

INSTR(i,y) = Z(r((y  + 1)i))

LABEL'(i,  y) = Z(r((y + 1)i)) I 2

Next we define some predicates that indicate, for program y and the
snapshot represented by X, which kind of action is to be performed next.

SKIP(X, y) w [INSTRMX),  y) = 0 &Z(X) I Lt(y + 01
v [INSTR(l(x),  y) 2 2 & -( pVAR~l~x~,y~  1 r(d)]

INCR(x,y) * INSTR(Z(x),y) = 1

DECR(x, y> * INSTR(Kd, y) = 2 &pVAR~l~r~,y~ I dd

BRANCH(x,  y) * INS’WNd,  y) > 2 &PvAR(~(~),~)  1 r(X)

& (3i) s Lt(y+  ,,LABEL(i,  y) = wEL’(l(d, y>
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representative of the successor to the snapshot kpresented by’x.”

(cd + 1, d-d) if SKIP(x,  y)
(l(x) + I9 r(x) ‘PvAR(~(~) Yj>
(l(x) + 19 lr(x)/J)v~~(l(x;.~jl)

if INCR(x, y)
if DECR(x, y)

(min is Lt(y+  ,,[~EW,  y> = MEL’ (W, y)], dd)
if BRANCH( x, y)

My + 1) + l,rW) otherwise.

INIT’“‘(x, , . . ..&I = 0, fI(P2Y)~
i = l

which gives the representation of the initial snapshot for inputs x1,. . . , x, ,

TERM(x, y) = Z(x) > Lt(y + l),

which tests whether x represents a terminal snapshot for program y.
Putting these together we can define a primitive recursive function that

gives the numbers of the successive snapshots produced by a given pro-

SNAP’“‘(x,  , . . . , x, , y , 0) = INIT(“‘(x,  , . . . , x,)

x, , y, i + 1) = SUCC(SNAP(“)(x,  , . . . , x, , y, i), y)

x, , y, t) * T.=M(SNAP(%,  , . . . , x, , y, d, y>,

%
and it is clear that STP(“)(x,  , . . . 9 x, , y, t) is primitive recursive . n

By using the technique of the above proof, we can obtain the following
important result.

Theorem 3.3 (Normal Form Theorem). Let f(xl , . . . , x,) be a partially
computable function. Then there is a primitive recursive predicate
R(x l,“‘, x,, y) such that

f(x1,. . . , xn> = Z minR(x, , . . . , x,, 2) .( z )
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Proof. Let y, be the number of a program that computes f(xl , . . . , x,>.
We shall prove the following equation, which clearly implies the desired
result:

f(x1,. . ., xn) = I minR(x, , . . . , x,, 2)( ) (3.1)
Z

where R(x, , . . . , x, , z) is the predicate

STP’“‘(x, , . . . , x, , y,, r(z))
& (r(SNAP(“‘(x, , . . . , x, , y,, r(z))))1

= E(z).
First consider the case when the righthand side of this equation is

defined. Then, in particular, there exists a number z such that

STP’“‘(x,  , . . . , x, ,yo, r(z))

and (r(SNAP(")(x,  , . . . , x, , y,, r(z))))1

= l(z).

For any such z, the computation by the program with number y, has
reached a terminal snapshot in Y(Z) or fewer steps and Z(z)  is the value
held in the output variable Y, i.e., Z(z)  = f(x,, . . .,x,).

If, on the other hand, the right side is undefined, it must be the case that
STP’“‘(x, , . . . . x, , y, , t) is false for all values of t, i.e., f ( x1 , . . . , x,) T .

n

The normal form theorem leads to another characterization  of the class
of partially computable functions.

Theorem 3.4. A function is partially computable if and only if it can be
obtained from the initial functions by a finite number of applications of
composition, recursion, and minimalization.

Proof. That every function which can be so obtained is partially com-
putable is an immediate consequence of Theorems 1.1,2.1,2.2,3.1,  and 7.2
in Chapter 3. Note that a partially computable predicate is necessarily
computable, so Theorem 7.2 covers all applications of minimalization to a
predicate obtained as described in the theorem.

Conversely, we can use the normal form theorem to write any given
partially computable function in the form

1 minR(x,,...,x,,( Y
Y))?

where R is a primitive recursive predicate and so is obtained from the
initial functions by a finite number of applications of composition and
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recursion. Finally, our given function is obtained from R by one use of
minimalization and then by composition with the primitive recursive func-
tion 1. n

When min, R(x, , . . . , x,, y) is a total function [that is, when for each
Xl , . . . , x, there is at least one y for which R(x, , . . . , x, , y) is true], we say
that we are applying the operation of proper minimalization to R. Now, if

I minR(x, ,..., x,,
( 4Y

is total, then min, R(x, , . . . , x, , y) must be total. Hence we have

Theorem 3.5. A function is computable if and only if it can be obtained
from the initial functions by a finite number of applications of composi-
tion, recursion, and proper minimalization.

Exercises

1. Show that for each u, there are infinitely many different numbers v
such that for all x, @Jx) = O,(x).

2. (a) Let

H,(x) =
i

1 if @,(x, x) J,
1‘ otherwise.

Show that H,(x) is partially computable.
(b) Let A = { a , , . . . , a,} be a finite set such that @(ai,  ai) T for

1 I i I n, and let

(

1 if Q(x, x) L
H,(X)= 0 ifxEA

f otherwise.

Show that H,(x) is partially computable.
(c) Give an infinite set B such that @(b, b) T for all b E B and such

that

1 if Q(x, x) .J
H,(x) = 0 ifxEB

T otherwise

is partially computable.
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(d) Give an infinite set C such that @(c, c) t for all c E C and such
that

H,(X)  =
(

1 if @,(x,x)J
0 if x E C
f otherwise

is not partially computable.
Give a program 9 such that I&(x,,  x,), defined

&(x1, x2> * program 9 eventually halts on inputs x1 , x2

is not computable.
Let f(X,  ) . . * ) xn) be computed by program 9, and suppose that for
some primitive recursive function g(x, , . . . , xn),

STP’“‘(x,  , . . . , x, ,699, gb, , . . .,x,1)

is true for all x1 , . . . , x, . Show that JQ,, . . . , x,) is primitive recursive.
Give a primitive recursive function counter(x) such that if an is a
computable predicate, then

an(counter(  n)) * - HALT(counter(n), counter(n)).

That is, counter(n) is a counterexample to the possibility that Qn
computes HALT(x, x). [Compare this exercise with Exercise 2.5.1
Give an upper bound on the length of the shortest 9’ program that
computes the function Q,,(X).

Recursively Enumerable Sets

The close relation between predicates and sets, as described in Chapter 1,
lets us use the language of sets in talking about solvable and unsolvable
problems. For example, the predicate HALTXx,  y) is the characteristic
function of the set {(x,  y) E N2 1 HALT(x,  y)}. To say that a set B, where
B c N”, belongs to some class of functions means that the characteristic
function P(x, , . . . , xm) of B belongs to the class in question. Thus, in
particular, to say that the set B is computable or recursive is just to say
that P(x, , . . . , x,) is a computable function. Likewise, B is a primitive
recursive set if P(x, , . . . , n,) is a primitive recursive predicate.
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We have, for example,

Theorem 4.1. Let the sets B, C belong to some PRC class %?. Then so do
the sets B u C, B n C, B.

Proof. This is an immediate consequence of Theorem 5.1, Chapter 3.
w

As long as the Giidel numbering functions [x1,.  . . , x,] and (x)~ are
availaole, we can restrict our attention to subsets of N. We have, for
example,

Theorem 4.2. Let %F be a PRC class, and let B be a subset of N”,
m 2 1. Then B belongs to E’ if and only if

B’ = {[x1  ,..., x,] E N I(.q ,..., x,) E B}

belongs to ‘27.

Proof. If P,<x,,.  .., x,)  is the characteristic function of B, then

P&) * P,((x),  , - a., (x>,) & LtW = m

is the characteristic function of B ‘, and Pst clearly belongs to %Y if PB
belongs to S?. On the other hand, if PB’(x)  is the characteristic function of
B’, then

P&1,. .., x,1 - PfJ[x,,  . . .,x,1)

is the characteristic function of B, and PB clearly belongs to SF if PB,
belongs to ‘Z. n

It immediately follows, for example, that {[x, y] E N I HALT(x, y)} is
not a computable set.

Definition. The set B G N is called recursively enumerable if there is a
partially computable function g(x) such that

B = {x -JlgkdL}. (4.1)

The term recursively enumerable is usually abbreviated r.e. A set is
recursively enumerable just when it is the domain of a partially corn,
putable function. If 9 is a program that computes the function g in (4.1),
then B is simply the set of all inputs to 9 for which 9 eventually halts. If
we think of 9 as providing an algorithm for testing for membership in B,
we see that for numbers that do belong to B, the algorithm will provide a
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“yes” answer; but for numbers that do not, the algorithm will never
terminate. If we invoke Church’s thesis, r.e. sets B may be thought of
intuitively as sets for which there exist algorithms related to B as in the
previous sentence, but without stipulating that the algorithms be expressed
by programs of the language 9. Such algorithms, sometimes called semi-
decision procedures, provide a kind of “approximation” to solving the
problem of testing membership in B.

We have

Theorem 4.3. If B is a recursive set, then B is r.e.

Proof. Consider the program 9:

[ A ]  IF-(XEB)GOTOA

Since B is recursive, the predicate x E B is computable and 9 can be
expanded to a program of 9’. Let 9 compute the function h(x). Then,
clearly,

B = {XENIh(&}. n

If B and B are both r.e., we have a pair of algorithms that will terminate
in case a given input is or .is not in B, respectively. We can think of
combining these two algorithms to obtain a single algorithm that will
always terminate and that will tell us whether a given input belongs to B.
This combined algorithm might work by “running” the two separate
algorithms for longer and longer times until one of them terminates. This
method of combining algorithms is called dovetailing, and the step-counter
theorem enables us to use it in a rigorous manner.

Theorem 4.4. The set B is recursive if and only if B and B are both r.e.

Proof. If B is recursive, then by Theorem 4.1 so is B, and hence by
Theorem 4.3, they are both r.e.

Conversely, if B and B are both r.e., we may write

B= {XENI&)l],

B= {XEN]h(x)5.},

where g and h are both partially computable. Let g be computed by
program 9 and h be computed by program B, and let p = #(9),
q = #(ET).  Then the program that follows computes B. (That is, the
program computes the characteristic function of B.)
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[Al IF STP’l’(X p T) GOT0 C, ,

IF STP”‘(X, q, T) GOT0 E
T+T+l

/ GOT0 A
[Cl Y+l

; Theorem 4.5. If B and C are r.e. sets so are B u C and B n C.

; Proof. Let

I B= bENIg(x)JJ,
c = {x ENlh(xM,

! where g and h are both partially computable. Let f(x) be the function
i computed by the programc

Y + g(x)

Y + h(X)

Then f(x) is defined if and only if g(x) and h(x) are both defined. Hence

i BnC={x~Nlf(xhl,
I so that B n C is also r.e.
i To obtain the result for B U C we must use dovetailing again. Let g and
i h be computed by programs 9 and ~7, respectively, and let #(9) = p,
1 #(a) = q. Let k(x) be the function computed by the program
i
[ L-4 IF STP(l’(X p T) GOT0 E7 ,

1 IF S@‘(X q T) GOT0 E, 7

!
T-T+1

I GOT0 A’

! Then k(x) is defined just in case either g(x) or h(x) is defined. That is,
L

I B u c = {x ENlk(x)~}. n
1

i Definition. We write

Then we have

wn = {XENIaJ(x,n)~l.

Theorem 4.6 (Enumeration Theorem). A set B is r.e. if and only if there
is an n for which B = Wn .
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Proof. This is an immediate consequence of the definition of @,(x,  n).
n

The theorem gets its name from the fact that the sequence

is an enumeration of all r.e. sets.
We define

K = {n EN  1 n E W,}.

Now,

n E Wn - Q,(n,n)J  * HALT(r2,n).

Thus, K is the set of all numbers n such that program number n
eventually halts on input n. We have

Theorem 4.7. K is r.e. but not recursive.

P r o o f .  Since K = {n E N I @,(  n, n) J } and (by the universality
theorem-Theorem 3.1), @,(n,  n) is certainly partially computable, K is
clearly r.e. If K were also r.e., by the enumeration theorem we would have

for some i. Then

iEK-iEy=iEK,

which is a contradiction.

Actually the proof of Theorem 2.1 already shows not only that
HALfix, z) is not computable, but also that HALT(x, X) is not com-
putable, i.e., that K is not a recursive set. (This was Exercise 2.1.)

We conclude this section with some alternative ways of characterizing
r.e. sets.

Theorem 4.8. Let B be an r.e. set. Then there is a primitive recursive
predicate R(x, t) such that B = {x E N I’(3t)R(x,  t)}.

Proof. Let  B = Wn . Then B = {x E N I(3 t)STP(‘)( X, n, t)}, and STP(‘) is
primitive recursive by Theorem 3.2. n

Theorem 4.9. Let S be a nonempty r.e. set. Then there is a primitive
recursive function f(u)  such that S = {f(n)  I n E N} = {f(O), f(l),
f(2), . . . }. That is, S is the range of f.
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Proof. By Theorem 4.8

s = 1x I EwNx, OL

where R is a primitive recursive predicate. Let x0 be some tied member
of S (for example, the smallest). Let

f(u) =
i
:.u) i f  R(l(u),  r(u))

otherwise.

n by Theorem 5.4 in Chapter 3, f is primitive recursive. Each value
in S, since x0 is automatically in S, while if R(Z(u),  r(u)) is true,

ertainly (3t)R(Z(u),  t) is true, which implies that f(u) = Z(u)  E S.
rsely, if x E S, then R(x, to) is true for some t, . Then

f(k t,)) = KG ta)) = x,
that x = f(u)  for u = (x, ta>. n

eorem 4.10. Let f(x) be a partially computable function and let
= {f(x)1  f(x)J}.  (That is, S is the range of f.) Then S is r.e.

g(x) =
i

0 if x6S
t otherwise.

suffices to show that g(x) is partially computable. Let 9 be a program
at computes f and let #(9) = p. Then the following program computes

[A] IF N STP”‘(Z,p,  T) GOT0 B
V-f(Z)
IFV=XGOTOE

[ B ]  2+-Z+ 1
IFZITGOTOA
T+T+l
Z-0
GOT0 A

e that in this program the macro expansion of V +- f(Z) will be
ered only when the step-counter test has already guaranteed that f is

H
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Combining Theorems 4.9 and 4.10, we have

Theorem 4.11. Suppose that S # 0. Then the following statements are
all equivalent:

1. S is r.e.;
2. S is the range of a primitive recursive function;
3. S is the range of a recursive function;
4. S is the range of a partial recursive function.

Proof. By Theorem 4.9, (1) implies (2). Obviously, (2) implies (3), and (3)
implies (4). By Theorem 4.10, (4) implies (1). Hence all four statements are
equivalent. n

Theorem 4.11 provides the motivation for the term recursively enurner-
able. In fact, such a set (if it is nonempty) is enumerated by a recursive
function.

Exercises

1. Let B be a subset of N”, m > 1. We say that B is r.e. if B =
{(x1,  * - - , xm) E N” I gb,, . . . , x,) J. } for some partially computable
function g(x, , . . . , x,). Let

B’ = {[x1,.  . . , x,] E N 1(x1,. . . , x,) E B}.

Show that B’ is r.e. if and only if B is r.e.
2. Let K, = {(x, y) 1 x E IV,,}. Show that K, is r.e.
3. Let f be an n-ary partial function. The graph of f, denoted gr( f ), is

: sthe
(a)

et {[xl,. . .,x,1 f(xl,.  . . , x,)1 I f<xl  ,-. .A x,)1).
Let Ci? be a PRC class. Prove that if f belongs to 5Y then gr( f)
belongs to %?.

(b)
(c)

4 .  Let

Prove that if gr (f)  is recursive then f is partially computable.
Prove that the recursiveness of gr( f) does not necessarily imply
that f is computable.
B = {f(n) 1 n E N}, where f is a strictly increasing computable_ .

function [i.e., f(n + 1) > f(n) for all n]. Prove that B is recursive.
5. Show that every infinite r.e. set has an infinite recursive subset.
6. Prove that an infinite set A is r.e. if and only if A = {f(n) I n E N}

for some one-one computable function f(x).
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7. Let A, B be sets. Prove or disprove:
(a) If A u B is r.e., then A and B are both r.e.
(b) If A c B and B is r.e., then A is r.e.

8. Show that there is no computable function f(x) such that f(x) =
@,(x,  x) + 1 whenever @(x,  x)S..

9. (a)

(b)

10. (a)

(b)

Let g(x), h(x) be partially computable functions. Show there is
a partially computable function f(x) such that j(x) J. for pre-
cisely those values of x for which either g(x) & or h(x) J, (or
both) and such that when f(x) .J , either f(x) = g(x) or f(x) =
h(x).
Can f be found fulfilling all the requirements of (a) but such
that in addition fcx) = g(x) whenever g(x) _1? Proof?
Let A = {y I (3t)P(t,  y)}, where P is a computable predicate.
Show that A is r.e.
Let B = {y /(3t,)  ..* (3t,)Q(t,,  . . . , t,, y)}, where Q is a com-
putable predicate. Show that B is r.e.

11. Give a computable predicate R(x, y) such that {y 1 (W)R(t, y)) is not
r.e.

5. The Parameter Theorem

The parameter theorem (which has also been called the iteration theorem
and the s-m-n theorem) is an important technical result that relates the
various functions @“)(x1,  x2,. . . , x, , y) for different values of n.

Theorem 5.1 (Parameter Theorem). For each n, m > 0, there is a primi-
tive recursive function S$(u, , u2, . . . , u, , y) such that

(p+n1(X xl,“‘, m, q , - - a? u, ? y) = @@qx, ,-**, x*,s;(ul,-‘,u,,Y)).
(5.1)

Suppose that values for variables ui, . . . , u, are fixed and we have in
mind some particular value of y. Then the left side of (5.1) is a partially
computable function of the m arguments xi,. . . , x,. Letting 4 be the
number of a program that computes this function of m variables, we have

a@+“)(Xl , . . . ) x, , Ul , . . . ) u, , y) = a@)(X, 9.“, x,, 4).
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The parameter theorem tells us that not only does there exist such a
number q, but that it can be obtained from u1 , . . . , u, , y in a computable
(in fact, primitive recursive) way.

Proof. The proof is by mathematical induction on n.
For n = 1, we need to show that there is a primitive recursive function

Sj!,Ju, y) such that

@(” + ‘)(x, , . . . , x, , u, y) = wqx, ) . . . , x, , s;cu, y)).

Here Sk(u,  y ) must be the number of a program which, given m inputs
Xl:,...,x,7 computes the same value as program number y does when
given the m + 1 inputs x1,. . .,x,, u. Let 9 be the program such that
#(9) = y. Then S,!&, y) can be taken to be the number of a program
which first gives the variable Xm+ 1 the value u and then proceeds to carry
out 9. Xm+l will be given the value u by the program

Xm+l txm+* + 1.. I U

x,+1 +x?l+1+ 1

The number of the unlabeled instruction

Xm + l cxrn+l +  1

is

(0, (1,2m + 1)) = 16m + 10.

So we may take

16m + 10 Lt(y  + 1) 1 I 1,

a primitive recursive function. Here the numbers of the instructions of 9
which appear as exponents in the prime power factorization of y + 1 have
been shifted to the primes pu + 1, pu + 2, . . . , p, + Ltcy + 1j.

To complete the proof, suppose the result known for n = k. Then we
have

17**‘7 myx Ul ,-*a, uk,“k+l,Y )

=  @(m+k)(X1 ,..., x,,, ,ul ,..., Uk,s;+khk+l  ,Y))

= @-)(X, , . . . , x, , s;(u,,  . . . , uk, S;+k(Uk+l  7 Y))),
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using first the result for n = 1 and then the induction hypothesis. But now,
if we define

s;+‘(u~ ,...,uk, uk+l,y) = S~(U1,...,Uk,S~+k(Uk+l,y)),

we have the desired result. n

We next give a sample application of the parameter theorem. It is
desired to find a computable function g(u, u) such that

@J@,(x)) = @&&x).

We have by the meaning of the notation that

cp,(q(X))  = @(@(x,  u), u)

is a partially computable function of X, u, v. Hence, we have

a, (@ (X)) = @3VX u v, 2,)u V , 9

for some number zO. By the parameter theorem,

@‘3’(X,  u, v, 2,) = @(X, sF(u, v, 2,)) = @S~@v,zOj(X).

Exercises

Given a partially computable function f(x, y), find a primitive recur-
sive function g(u, v) such that

@g(U,v)(x) = f(@Jx),  Q,(x)).

Show that there is a primitive recursive function g(u, v, w) such that

Qt3)(u, u, w, 2) = @~(U,c,w)(2).

Let us call a partially computable function g(x) extendable if there is a
computable function fc X) such that f(x) = g(x) for all x for which
g(x) J . Show that there is no algorithm for determining of a given z
whether or not az(x) is extendable. [Hint: Exercise 8 of Section 4
shows that @(x,  X) + 1 is not extendable. Find an extendable function
k(x) such that the function

h(x, t) =
@(x,x)  +  1  i f  @(t, t)J.
k(x) otherwise

is partially computable.]



88 Chapter 4 A Universal Program

4.’ A programming system is an enumeration S = { @) I i E N, n > 0) of
the partially computable functions. That is, for each partially com-
putable function f(x, , . . . , x,) there is an i such that f is +i”).
6)

(b)

A programming system S is universal if for each II > 0, the
function !PCn), defined

*@)(x1  , . . . , x, , i) = &+(x1  , . . . , A$,

is partially computable. That is, S is universal if a version of the
universality theorem holds for S. Obviously,

{@!“I 1 i E N, n > 0)

is a universal programming system. Prove that a programming
system S is universal if and only if for each n > 0 there is a
computable function f, such that 4:“) = @;‘i, for all i.
A universal programming system S is acceptable if for each
n, m > 0 there is a computable function sh(ur , . . . , u, , y) such
that

*(” +n> (x1  7 - - - , x, 9 Ul 9 * * ’ 7 u, , Y)
= WqX, ) ---, x s” (u1 , * - -, u, , y)).m, m

That is, S is acceptable if a version of the parameter theorem
holds for S. Again, @I$“)  ) i E N, n > 0) is obviously an acceptable
programming system. Prove that S is acceptable if and only if for
each n > 0 there is a computable function g, such that @‘“I =
+i::i, for all i.

6. Diagonalization and Reducibility

So far we have seen very few examples of nonrecursive sets. We now
discuss two general techniques for proving that given sets are not recursive
or even that they are not r.e. The first method, diagonalization, turns on
the demonstration of two assertions of the following sort:

1. A certain set A can be enumerated in a suitable fashion.
2. It is possible, with the help of the enumeration, to define an object b

that is different from every object in the enumeration, i.e., b G!! A.

We sometimes say that b is defined by diagonalizing  over A. In some
diagonalization arguments the goal is simply to find some b 4 A. We will
give an example of such an argument later in the chapter. The arguments
we will consider in this section have an additional twist: the definition of b
is such that b must belong to A, contradicting the assertion that we began
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with an enumeration of all of the elements in A. The end of the
L argument, then, is to draw some conclusion from this contradiction.

For example, the proof given for Theorem 2.1 is a diagonalization
argument that the predicate IIALYI(x,  y), or equivalently, the set

is not computable. The set A in this case is the class of unary partially
computable functions, and assertion 1 follows from the fact that Y
programs can be coded as numbers. For each n, let LP~ be the program
with number n. Then all unary partially computable functions occur

I among +$I g(l)O’ P1,“” We began by assuming that HALT&  y ) is com-
putable, and we wrote a program 9 that computes +$!). The heart of the
proof consisted of showing that $$? does not appear among &$i$ $--,#),  . . . .
In particular, we wrote 9 so that for every X, &j?(x)& if and only if
+$)(x)t , i e. *,x

WTh,  d+(T)) w - HALT(x,  x),
so $--)  differs from each function $--~, &.$t), . . . on at least one input
value. That is, n is a counterexample to the possibility that e&i) is $&afl,
since @A’)(  yt) J, if and only if $--y(n) T . Now we have the unary partially
computable function +$I that is not among t,@$ ~$2,‘). . . , so assertion 2 is
satisfied, giving us a contradiction. In the proof of Theorem 2.1 the
contradiction was expressed a bit differently: Because Q$$) is partially
computable, it must appear among +__$ @,$/, . . . , and, in particular, it
must be $5: 9j, since 9#(9j is 9 by definition, but we have the counterex-
ample +-,$)(&(9))  J if and only if $$:C,,(#(9))  T , i.e.,

=T(#(P), #(P)) * - HALT(#(9),  #(9)).
1 Since we know assertion 1 to be true, and since assertion 2 depended on

I
the assumption that HALT(x, y) is computable, HALT(x, y) cannot be

i
computable.

i
To present the situation more graphically, we can represent the values

i
I

of each function (c($$ &$),  . . . by the infinite array
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Each row represents one function. It is along the diagonal of this array
that we have arranged to find the counterexamples, which explains the
origin of the term diagonalization.

We can use a similar argument to give an example of a non-r.e. set. Let
TOT be the set of all numbers p such that p is the number of a program
that computes a total function fc~) of one variable. That is,

TOT = {z E NI(V’x)@(x,z)J}.

Since

@(x,z)J =x E Iq,

TOT is simply the set of numbers z such that Wz is the set of all
nonnegative integers.

We have

Theorem 6.1. TOT is not r.e.

Proof. Suppose that TOT were r.e. Since TOT # 0, by Theorem 4.9
there is a computable function g(x) such that TOT = {g(O), g(l), g(2), . . . }.
Let

h(x) = @(x,g(x))  + 1.

Since each value g(x) is the number of a program that computes a total
function, a,(~, g(x)) 1 for all X, u and hence, in particular, h(x) 1 for all X.
Thus h is itself a computable function. Let h be computed by program 9,
and let p = #(9).  Then p E TOT, so that p = g(i) for some i. Then

h(i) = @(i, g(i)) + 1 by definition of h

= @(i,p)  + 1 since p = g(i)

= h(i) + 1 since h is computed by 9,

which is a contradiction. 0

Note that in the proof of Theorem 6.1, the set A is TOT itself, and this
time assertion 1 was taken as an assumption, while assertion 2 is shown to
be true. Theorem 6.1 helps to explain why we base the study of com-
putability on partial functions rather than total functions. By Church’s
thesis, Theorem 6.1 implies that there is no algorithm to determine if an 9
program computes a total function.

Once some set such as K has been shown to be nonrecursive, we can
use that set to give other examples of nonrecursive sets by way of the
reducibility method.
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Definition. Let  A, B be sets. A is many-one reducible to B, written
A I, B, if there is a computable function f such that

A = {x E N I f(x) E B}.

That is, x E A if and only if f(x) E B. (The word many-one simply refers
to the fact that we do not require f to be one-one.)

If A I, B, then in a sense testing membership in A is “no harder
than” testing membership in B. In particular, to test x E A, we can
compute f(x) and then test f(x) E B.

Theorem 6.2. Suppose A I, B.

1. If B is recursive, then A is recursive.
2. If B is r.e., then A is r.e.

Proof. Let  A = {x E N 1 f(x)  E B}, where f is computable, and let P,(x)
be the characteristic function of B. Then

A = {x E N 1 P,(f(.d)),

and if B is recursive then PB( f(x)), the characteristic function of A, is
computable. I

Now suppose that B is r.e. Then B = {x E N I g(x) 1) for some partially
computable function g, and A = {x E N 1 g( f(x)) J, }. But g( f(x)> is par-
tially computable, so A is r.e. n

We generally use Theorem 6.2 in the form: If A is not recursive (r.e.),
then B is not recursive (respectively: not r.e.). For example, let

K, is clearly r.e. However, we can show by reducing K to K,, that is, by
showing that K I, K,, that K, is not recursive: x E K if and only if
(x,x> E K,, and the function f(x)  = (x, x> is computable. In fact, it is
easy to show that every r.e. set is many-one reducible to K,: if A is r.e.,
then

A={xEN

={_xEN

={xEN

g(x) 4.1 for some partially computable g

QC& 20) 11 for some zO

(x, A-J E K,,).
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Definition. A set A is m-complete if

1. A is r.e., and
2. for every r.e. set B, B I, A .

So K, is m-complete. We can also show that K is m-complete. First we
show that K, srn K. This argument is somewhat more involved because
K, seems, at first glance, to contain more information than K. K,
represents the halting behavior of all partially computable functions on all
inputs, while K represents only the halting behavior of partially com-
putable functions on a single argument. We wish to take a pair (n, q) and
transform it to a number fc( n, q)) of a single program such that

Q&n) J, if and only if @~cc~,sl,(f(<n, 4))) 1,

i.e., such that (n, q) E K, if and only if f(< n, q)) E K. The parameter
theorem turns out to be very useful here. Let 9 be the program

Y + aqI(x*), T-(x*))

and let p = #(P). Then @Jxi,  x2) = @“‘(Kx~),  hz)), and

tkiF& 9 x2) = (P’*‘(x,,  x2, p) = @(‘Yx, , $(x2 9 P))

by the parameter theorem, so for any pair (n, q),

(6.2)

Now, (6.1) holds for all values of x1 , so, in particular,

and therefore

@‘)( n q) J+, if and only if @$~c,,,,,p,(S:(h  q), PI) 1 y

i.e.,

( n , q )  E K, if and only if S#n,q),p)  E K.

With p held constant S:(x, p> is a computable unary function, so K, I, K.
To complete the argument that K is m-complete we need

Theorem 6.3. If A I , B and B I, C, then A I , C.
Proof. Let  A = {x E N I f(x) E B} and B = {x E N 1 g(x)  E C}. T h e n
A = {x E N I g(f(x))  E C}, and g( f(x)>  is computable. n
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As an immediate consequence we have

Corollary 6.4. If A is m-complete, B is r.e., and A I, B, then B is
m-complete.

Proof. If C is r.e. then C I, A, and A I, B by assumption, so C I, B.
n

Thus, K is m-complete. Informally, testing membership in an m-com-
plete set is “at least as difficult as” testing membership in any r.e. set. So
an m-complete set is a good choice for showing by a reducibility argument
that a given set is not computable. We expand on this subject in Chapter 8.

Actually, we have shown both K I, K, and K, I, K, so in a sense,
testing membership in K and testing membership in K, are “equally
difficult” problems.

Definition. A -m B means that A I, B and B I, A.

In general, for sets A and B, if A srn B then testing membership in A
has the “same difficulty as” testing membership in B.

To summarize, we have proved

Theorem 6.5.

1. K and K, are m-complete.
2. K =,,, K,.

,

: We can also use reducibility arguments to show that certain sets are not
I r.e. Let

EMPTY = {x E N) Wx = 0).

i Theorem 6.6. EMPTY is not r.e.

I Proof. We will show that K I, EMPTY. K is not r.e., so by Theorem
1 6.2, EMPTY is not r.e. Let 9 be the program

1 and let p = #(9). 9 ignores its first argument, so for a given z,

@$?(x,  z)J for all x if and only if @,(z, z)J..

, By the parameter theorem

I &%x, , x2) = @‘2’(x,, x2 ,p) = amx,  ) s3x,, p)),
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so, for any 2,
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ZEK i f andon ly i f  @(z,z)T
if and only if #$)(x z) t for all x
if and only if @(‘)(A-: S:(Z, p)) t for all x
if and only if W,;,,,,, = 0
if and only if Si(z,p) E EMPTY.

f(z) = s:(z,p) is computable, so E I, EMPTY. n

Exercises
1.
2.

3.

4.

5.

6.
7.
8.
9.

10.

11.

Show that the proof of Theorem 4.7 is a diagonalization argument.
Prove by diagonalization that there is no enumeration f. , fi , f2, . . .
of all total unary (not necessarily computable) functions on N.
Let A = {x E N I @Jx)&  and @Jx> > x}.
(a) Show that A is r.e.
(b) Show by diagonalization that A is not recursive.
Show how the diagonalization argument in the proof of Theorem 6.1
fails for the set of all numbers p such that p is the number of a
program that computes a partial function, i.e., the set N.
Let A, B be sets of numbers. Prove
(a) A I, A.
(b) A I, B if and only if x I, B.
Prove that no m-complete set is recursive.
Let A, B be m-complete. Show that A =m B.

Prove that K gm K, i.e., K is not many-one reducible to K.
For every number n, let A, = {x I n E TV,}.
(a) Show that Ai is r.e. but not recursive, for all i.
(b) Show that Ai =m Aj for all i, j.
Define the predicate P(x) * @Jx)  = 1. Show that P(n) is not
computable.
Define the predicate

Q(x) = the variable Y assumes the value 1 sometime dur-
ing the computation of Iclya(x),  where #(g) = x.
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Show that Q(X) is not computable. [Hint: Use the parameter theorem
and a version of the universal program %I .]

12. Let INF = {X E N ( Wx is infinite}. Show that INF =m TOTAL.
13. Let FIN = {x E N ) Wx is finite}. Show that K I, FIN.

MONOTONE = (y E N I Qy(n)  is total and

my(x) i mY(x + 1) for all x).

(a) Show by diagonalization that MONOTONE is not r.e.
(b)  Show that MONOTONE =m TOTAL.

7. Rice’s Theorem

Using the reducibility method we can prove a theorem that gives us, at a
single stroke, a wealth of interesting unsolvable problems concerning

Let be some collection of partially computable functions of one
variable. We may associate with I the set (usually called an index set)

v
l?,={t~N[@,~l?}.

R, is a recursive set just in case the predicate g(t), defined g(t) * @, E I?,
is computable. Consider the examples:

1. I’ is the set of computable functions;
2. I is the set of primitive recursive functions;
3. I is the set of partially computable functions that are defined for all

but a finite number of values of X.

These examples make it plain that it would be interesting to be able to
show that R, is computable for various collections I. Invoking Church’s
thesis, we can say that R, is a recursive set just in case there is an
algorithm that accepts programs 9 as input and returns the value TRUE
or FALSE depending on whether or not the function $-&!I does or does not
belong to I. In fact, those who work with computer programs would be
very pleased to possess algorithms that accept a program as input and
which return as output some useful property of the partial function
computed by that program. Alas, such algorithms are not to be found! This
dismal conclusion follows from Rice’s theorem.



Then, for any i, Si(i,  q) is the number of

X2 +-- i

z + wx,,  x,>

Y+fW,)
Now

and
.

i $Z K implies @(i,  i) T
implies ~s:(i,q)(X)  T for all x
implies ~s:(i,q)  = h
implies ~S:(i,q) GZ r
implies S:(i, q) e R,,

so K I, R,. By Theorem 6.2, R, is not recursive.
If h(x) does belong to I, then the same argument with I and f(x)

replaced by F and g(x) shows that RF is not recursive. But RF = F, so,
by Theorem 4.1, R, is not recursive in this case either. n

Corollary 7.2. There are no algorithms for testing a given program 9 of
the language 9 to determine whether @g)(x)  belongs to any of the classes
described in Examples l-3.

Proof. In each case we only need find the required functions f(x),  g(x)
to show that R, is not recursive. The corollary then follows by Church’s
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Theorem 7.1 (Rice’s Theorem). Let IY be a collection of partially com-
putable functions of one variable. IA there be partially computable
functions f(x), g(x) such that fcx> belongs to I but g(x) does not. Then
R, is not recursive.

Proof. Let h(x) be the function such that h(x)? for all x. We assume
first that h(x) does not belong to I. Let q be the number of

2 + @(X,, x,1

Y+ fix,)

iEK implies @(i,  i) &
implies ~,t,i,,,(n>  = f(X)  for all x
i m p l i e s  ~s:(i,g) E r
implies  Si(i,q)  E R,,
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thesis. For 1, 2, or 3 we can take, for example, f(x) = u:(x) and g(x) =
1 - x [so that g(x) is defined only for x = 0, 11. n

Exercises
1.

6.

Show that Rice’s theorem is false if the requirement for functions
fc~), g(x) is omitted.
Show there is no algorithm to determine of a given program 9 in the
language 9 whether &,(x) = x2 for all X.
Show that there is no algorithm to determine of a pair of numbers u, v
whether @Jx> = au(x) for all X.
Show that the set A = {x 1 ax is defined for at least one input} is r.e.
but not recursive.
Use Rice’s theorem to show that the following sets are not recursive.
[See Section 6 for the definitions of the sets.]
(a) T O T ;
(b) EMPTY;
(c) INF;
(d) FIN;
(e) MONOTONE;
(f) {y E N I @J1) is a predicate}. l

Let I’ be a collection of partially computable functions of m variables,
m > 1, and let Rkm) = {t E N 1 @irn) E r}. State and prove a version of
Rice’s theorem for collections of partially computable functions of m
variables, m > 1.
Define the predicate

PROPER(n) e min, [ @A2)(x, 2) = 31 is an application of proper
minimalization to the predicate @A2)( X, Z) = 3.

Show that PROPER(x) is not computable.
Let F be a set of partially computable functions of one variable. Show
that R, is r.e. if and only if it is m-complete.

“8. The Recursion Theorem

In the proof that HALT(x, y) is not computable, we gave (assuming
HALT(x,  y) to be computable) a program 9 such that

HALT(#(?@,  #(9’)) = - HALT(#(9),  #(9’)).
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We get a contradiction when we consider the behavior of the program 9
on input #(9). The phenomenon of a program acting on its own descrip-
tion is sometimes called self-reference, and it is the source of many
fundamental results in computability theory. Indeed, the whole point of
diagonalization in the proof of Theorem 2.1 is to get a contradictory
self-reference. We turn now to a theorem which packages, so to speak, a
general technique for obtaining self-referential behavior. It is one of the
most important applications of the parameter theorem.

Theorem 8.1 (Recursion Theorem). Let g(z, xi,. . . , xm) be a partially
computable function of m + 1 variables. Then there is a number e such
that

ap)(Xl , . . . , x,) = g(e, x1 , . . . , x,)-

Discussion. Let e = #(9), so that +$F)(xi,.  . . ,x,1 = @Jm)(xl,.  . .,x,1.
The equality in the theorem says that the m-ary function #&m)(xl,.  . . , x,)
is equal to g(z, xi,. . . , x,.,,) when the first argument of g is held constant
at e. That is, 9 is a program that, in effect, gets access to its own number,
e, and computes the m-ary function g(e, xi,. . . , x,). Note that since
Xl ,.“, x, can be arbitrary values, e generally does not appear among the
inputs to &P)(xi, . . . . x,), so 9 must somehow compute e. One might
suppose that 9 might contain e copies of an instruction such as 2 +
Z + 1, that is, an expansion of the macro Z + e, but if 9 has at least e
instructions, then certainly #(9) > e. The solution is to write 9 so that it
computes e without having e “built in” to the program. In particular, we
build into 9 a “partial description” of 9, and then have 9 compute e
from the partial description. Let @’ be the program

Y+g(Z,X,,...,X,)

We prefix #( &‘) copies of the instruction X,.,,+ 1 + Km + 1 + 1 to get the
program 3:

Xm+l txrn+l + l
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After the first #(&) instructions are executed, Xm+ I holds the value
#(&?),  and SA(#( @), #(@)), as defined in the proof of the parameter
theorem, computes the number of the program consisting of #CL?‘) copies
ofXrn+1 +Xm+1 + 1 followed by program &?‘. But that program is 9’. So
~+x!lKl+l?Kn+l)g ives Z the value #CL%‘),  and Y + g(Z, X, , . . . , X,)
causes 9 to output g(#(9),  x1,. . . , x,). We take e to be #CL%‘)  and we
have

(Dim)&,  . . . , x,) = $$Yxl,. . .,x,1 = g(e, x1,. . . , -1cJ.

We now formalize this argument.

Proof. Consider the partially computable function

gLqJv,  v), Xl,. . .) x,1

where Sh is the function that occurs in the parameter theorem. Then we
have for some number q,,

g(S~(v,v),x,  ,..., x,) = @(m+‘)o~ ). .., x, ,v, .z()>

= wqx, , . . . , x, , s’ (v, z,))m ,

where we have used the parameter theorem. Setting v = zO and e =
SA(z,, z,), we have

g(e, x1 ,...,x,)  = <P'"'(x X19"', m, e) = <ptm)(x,,e x ).---,  m n

We can use the recursion theorem to give another self-referential proof
that HALT(x, y) is not computable. If HALT(x, y) were computable, then

fb,  y) =  ; ;tEi;iy7x)
i

would be partially computable, so by the recursion theorem there would be
a number e such that

if HALT(y, e)
othemise

,

that is,

- HALT(y, e) * HALT(y, e).

SO HALT(x, y) is not computable. The self-reference occurs when ae
computes e, tests HALT(y,  e), and then does the opposite of what
HALny, e) says it does.
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One of the many uses of the recursion theorem is to allow us to write
down definitions of functions that involve the program used to compute
the function as part of its definition. For a simple example we give

Corollary 8.2. There is a number e such that for all x

me(x) = e.

Proof. We consider the computable function

g(z, x) = uf(z, x) = 2.

Applying the recursion theorem we obtain a number e such that

and we are done.
(De(x) = g(e, x) = e

n

It is tempting to be a little metaphorical about this result. The program
witn number e “consumes” its “environment” (i.e., the input x) and
outputs a “copy” of itself. That is, it is, in miniature, a self-reproducing
organism. This program has often been cited in considerations of the
comparison between living organisms and machines.

For another example, let

f(xTt) = ,k(t I 1 @ (t I 1))i 9 x ~t~~~~se 7
where g(x, y) is computable. It is clear that f( x, t) is partially computable,
so by the recursion theorem there is a number e such that

@JO = f(e, 0 =
k if t = 0
g(t L 1, Qe<t L 1)) otherwise.

An easy induction argument on t shows that Qe is a total, and therefore
computable, function. Now, Qe satisfies the equations

@JO) = k

q&t + 1) = go, q,(t)),

that is, ae is obtained from g by primitive recursion of the form (2.1) in
Chapter 3, so the recursion theorem gives us another proof of Theorem 2.1
in Chapter 3. In fact, the recursion theorem can be used to justify
definitions based on much more general forms of recursion, which explains
how it came by its name.’ We give one more example, in which we wish to

’ For more on this subject, see Part 5.
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know if there are partially computable functions f, g that satisfy the
/ equations

f(O) = 1
f<t + 1) = g(2t) + 1

g(O) = 3
g(2t + 2) = f(t) + 2.

Let F(z, t) be the partially computable function

(8.1)

i 1 ifx= (0,O)

F(z,x)  = I qw,2(r(x)  - 1))) + 1 if By),, (x = (0, y + 1))
3 if x = (1,O)
Qz((O,  16-(x) L 2)/21))  + 2 if By),,(x = (1,2y + 2)).

By the recursion theorem there is a number e such that

i

1 ifx=(O,O)
@J(l,2(r(x)  L 1))) + 1 if(3y)sx(x  = (0,~ + 1))=
3 if x = (1,0)
@J(O, Md L 2)/21N + 2 if Uy),,(x = (1,2y + 2)).

Now, setting

we have

f(x) = @J(O, a and g(x) = @J(l,x>)

f(O) = quo, 0)) = 1
f(t + 1) = @J(O, t + 1)) = @J(l,2t>) + 1 = g(2t)  + 1

g(O) = @J(l,ON = 3

g(2t + 2) = @J(1,2t + 2)) = @J(O, t)) + 2 = f(t) + 2 ,

so f, g satisfy (8.1).
Another application of the recursion theorem is

Theorem 8.3 (Fixed Point Theorem). Let f(z)  be a computable function.
Then there is a number e such that

for all x.
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Proof. Let g(z, x) = Qftz,(x>, a partially computable function. By the
recursion theorem, there is a number e such that

QJx) = g(e, x) = (I&+). I

Usually a number n is considered to be a fixed point of a function f(x)
if f(n) = n. Clearly there are computable functions that have no fixed
point in this sense, e.g., S(X). The fixed point theorem says that for every
computable function f(x), there is a number e of a program that computes
the same function as the program with number f(e).

For example, let P(x)  be a computable predicate, let g(x) be a com-
putable function, and let while(n) = #(Hn),  where &n is the program

X2 + n
Y+X

[Al IF - P(Y) GOT0 E
Y + Q&(Y))

It should be clear that while(x) is a computable, in fact primitive recursive,
function, so by the fixed point theorem there is a number e such that

It follows from the construction of while(e) that

@eCx> = @while(e)(X) = x if - P ( x )
@Jg(x)) otherwise.

Moreover,

ae(g(x)) = @while(e)(g(X))  =
g(x) if -P(g(d)
Q (g(g(x)))

e otherwise,

so

X if - P ( x )
@eCx)  = @while(e)(x)  = g(x) if P(x)  &-P(g(x))

Qe(g(g(x)))  otherwise,
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and continuing in this fashion we get

i

x if -P(x)

@e(x)  = @while(e)(X>  =
g(x) if P(x)  & -P(g(x))
g(g(x>> if P(x)  & P(g(xH  & -P(g(g(x>>>
. .. .. .

In other words, program e behaves like the pseudo-program

Y+X

WHILE P(Y) D O

Y +- g(Y)

END

We end this discussion of the recursion theorem by giving another proof
of Rice’s theorem. Let I, f(x), g(x) be as in the statement of Theorem
7.1.

Altematiue  Proof of Rice’s Theorem. 2 Suppose that R, were computable.
Let

P,(t) =
1  iftERr
0 otherwise.

That is, P, is the characteristic function of R,. Let

h(t,d  =
g(x) if t E R,
f(xj otherwise.

Then, since (as in the proof of Theorem 5.4, Chapter 3)

h(t, x) = g(x) . P,(t) + f(x) - dPr(t)),

h(t, x) is partially computable. Thus, by the recursion theorem, there is a
number e such that

Qe<x) = h(e,x) =
g(x) if ae belongs to I
f(x) otherwise.

* This elegant proof was called to our attention by John Case.
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Does e belong to R r? Recalling that f(x) belongs to IY but g(x) does not,
we have

eER, implies Qe(x> = g(x)
implies fDe is not in r
implies e E R r.

But likewise,

e@R, implies me(x)= f(x)
implies (De is in r
implies e E R, .

This contradiction proves the theorem.

Exercises
1.

2.

3.
4.

5.

6.

Use the proof of Corollary 8.2 and the discussion preceding the proof
of the recursion theorem to write a program 9 such that e-(n) =
HP).
Let A = {x E N I @J&j,  and (a,(x) > x}. Use the recursion theo-
rem to show that A is not recursive.
Show that there is a number e such that We = {e}.
Show that there is a program 9 such that q9(x)J if and only if
x = #q&q.
(a) Show that there is a

fies the equations
partially computable function f that satis-

f&O)  =x + 2
f(x, 1) = 2 * f(x,2x)

f(x,2t + 2) = 3*f(x,2t)
f(x,2t  + 3) = 4*f(x,2t + 1).

What is f(2,5)?
(b) Prove that f is total.
(c) Prove that f is unique. (That is, only one function satisfies the

given equations.)
Give two distinct partially computable functions f, g that satisfy the
equations

f(O) = 2 g(O)  =2
f(2t  + 2) = 3 *f(2t) g(2t  + 2)=3 ag(2t).

For the specific functions f, g that you give, what are f(1) and g(l)?
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7.

8.

9.

10.

11.

12.

13.

Let f(x) = x + 1. Use the proof of the fixed point theorem and the
discussion preceding the proof of the recursion theorem to give a
program 9 such that @Nc9,(~)  = @ft#(9jj(n). What unary function
does 9 compute?
Give a function f(y) such that, for all y, f(y) > y and aY<x)  =
@fCYW
Give a function f(y) such that, for all y, if aY(x) = Qfcr,(x), then
Q&x) is not total.
Show that the function while(x) defined following the fked point
theorem is primitive recursive. [Hirtt:  Use the parameter theorem.]
(a) Prove that the recursion theorem can be strengthened to read:

There are infinitely many numbers e such that

@irn)(X1 , . . . ) x,1 = g(e, x1,. . . , x,1.

(b) Prove that the fixed point theorem can be strengthened to read:
There are infinitely many numbers e such that

<pr(&)  =  @Jx>.

Prove the following version of the recursion theorem: There is a
primitive recursive function self(x) such that for all z

@self(zJ~) = @J2)(self(z), x).

Prove the following version of the fixed point theorem: There is a
primitive recursive function fix(u) such that for all X, u,

@ fix(u)(x) = @@,(fix(u))(x)*

14.* Let S be an acceptable programming system with universal functions
@m). Prove the following: For every partially computable function
gk x1 7 - - *, x,) there is a number e such that

*e(m,(xi , . . ., x,) = g(e, x1,. . . , x,).

That is, a version of the recursion theorem holds for S. [See Exercise
5.4 for the definition of acceptable programming systems.]

“9. A Computable Function That Is Not
Primitive Recursive

In Chapter 3 we showed that all primitive recursive functions are com-
putable, but we did not settle the question of whether all computable
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functions are primitive recursive. We shall deal with this matter by
showing how to obtain a function h(x) that is computable but is not
primitive recursive. Our method will be to construct a computable function
4(t, x) that enumerates all of the unary primitive recursive functions. That
is, it will be the case that

1. for each fixed value t = t,, the function &,, , x) will be primitive
recursive;

2. for each unary primitive recursive function j(x), there will be a
number t, such that f<x> = 4(to, x).

Once we have this function 4 at our disposal, we can diagonalize,
obtaining the unary computable function 4(x, x) + 1 which must be
different from all primitive recursive functions. (If it were primitive recur-
sive, we would have

+(x,x)  + 1= +(t(+)

for some tied t,, and setting x = t, would lead to a contradiction.)
We will obtain our enumerating function by giving a new characteriza-

tion of the unary primitive recursive functions. However, we begin by
showing how to reduce the number of parameters needed in the operation
of primitive recursion which, as defined in Chapter 3 (Eq. (2.2)), proceeds
from the total n-ary function f and the total n + 2-ary function g to yield
the n + 1-ary function h such that

h(x I)..., Xn,O) =f(x, ,..., nn>

h(x l,.-*, x,, t + 1) = g(t, h(x, , . . . , x, , t), x1,. . . , n,).

If n > 1 we can reduce the number of parameters needed from IZ to n - 1
by using the pairing functions. That is, let

!(x17 . . . . x,-,1  =f(x, ,..., X,_~,Z(Xn_l),r(x,_,)),

go, l.4 9 x1 9***, X,-l) = g(t, u, x1,. . ., x,-z ,Z(x,_,),  I(X,_1)),

h(x, , . . . , x,-~, t) = h(x, , . . . , x,-2,  l(x,_,),  r(x,_,),  t).

Then, we have

&x
_

I,..., X,-l $1 =f(x, ,.. .,-q-1>

F&x, , . . . ) x,_ ,,t + 1) =g(t,i;(x~,..., xn-l,t),xl ,..., x,-J.

Finally, we can retrieve the original function h from the equation

h(x 19*“7 x,, t) = i;<x, ,..., Xn_2,(X,_1 ,x,),t).
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iterating this process we can reduce the number of parameters to 1,
rsions of the form

%00 = f(x)
(9.1)

h(x, t + I) = g(t, h(x, 0, x)

Recursions with no parameters, as in Eq. (2.1) in Chapter 3, can also
readily be put into the form (9.1). Namely, to deal with

$(O) = k

*(t + I) = 00, $(t)),

we set f(x) = k (which can be obtained by k compositions with S(X)
beginning with n(x)) and

g(x, , x2,x,) = e(u:(x,, x2, x3), qx, ,x2, x,)1

in the recursion (9.1). Then, $(t) = h(x, t) for all x. In particular, $(t) =

We can simplify recursions of the form (9.1) even further by using the
pairing functions to combine arguments. Namely, we set

k t) = (h(x, t), (x, t>>.

Gx, 0) = (f(x), (-0))

i(x, t + 1) = (h(x,  t + l), (x, t + 1))

= (g(t, h(x, t), x), (x, t + I>>

= g<Gx,  t)),

g(u) = (g(r(dd), &d, Wd), (X&d), rM.d) + 0).

Once again, the original function h can be retrieved from i; we can use

h(x, t) = 1(&x, t)).

Now this reduction in the complexity of recursions was only possible
using the pairing functions. Nevertheless, we can use it to get a simplified
characterization of the class of primitive recursive functions by adding the
pairing functions to our initial functions. We may state the result as a



1 0 8 Chapter 4 A Universal Program

Theorem 9.1. The primitive recursive functions are precisely the func-
tions obtainable from the initial functions

s(x), n(x), Z(z), r(z), (x, y) and ~1, 1 I i I n

using the operations of composition and primitive recursion of the particu-
lar form

h(x, 0) = f(x)

h(x,  t + 1) = g(h(x,  t)).

The promised characterization  of the unary primitive recursive functions
is as follows.

Theorem 9.2. The unary primitive recursive functions are precisely those
obtained from the initial functions s(x) = x + 1, n(x) = 0, E(x), T(X)  by
applying the following three operations on unary functions:

1. to go from f(x) and g(x) to f(g(x));
2. to go from fcx) and g(x) to ( f< x), g(x)>;
3. to go from fcx) and g(x) to the function defined by the recursion

h(0) = 0

L

t

f( 12 if t + 1 is odd,
h(t + 1) =

(( )I

t + l
FA2 if t + liseven.

Proof. Let us write PR for the set of all functions obtained from the
initial functions listed in the theorem using operations 1 through 3. We
will show that PR is precisely the set of unary primitive recursive functions.

To see that all the functions in PR are primitive recursive, it is necessary
only to consider operation 3. That is, we need to show that if f and g are
primitive recursive, and h is obtained using operation 3, then h is also
primitive recursive. What is different about operation 3 is that h(t + 1) is
computed, not from h(t) but rather from h(t/2)  or h((t  + 1)/2),  depend-
ing on whether t is even or odd. To deal with this we make use of Godel
numbering, setting

h(O) = 0,

h(n) = [h(O) , . . . , h(n  - l)] if n > 0.
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We will show that i is primitive recursive and then conclude that the same
is true of h by using the equation3

h(n) = (i7(rl + 1)),+1.

Then (recalling that p,, is the nth prime number) we have

tS<n  + 1) = &l) -p,“yl’

i

A(n)  .pnf(!y21) if n is odd,
=

i;(n) -pt!(i;(n))la/21) if n is even.

Here, we have used [n/2]  because it gives the correct value whether n is
even or odd and because we know from Chapter 3 that it is primitive

Next we will show that every unary primitive recursive function belongs
to PR. For this purpose we will call a function g(x, , . . . , x,) satisfactmy  if
it has the property that for any unary functions h,(t),  . . . , h,(t)  that belong
to PR, the function g(h,(t), . . . , h,(t))  also belongs to PR. Note that a
unary function g(t)  that is satisfactory must belong to PR because g(t) =
g(uf(t))  and u:(t) = (Z(t), r(t)) belongs to PR. Thus, we can obtain our
desired result by proving that all primitive recursive functions are satisfac-

We shall use the characterization  of the primitive recursive functions of
Theorem 9.1. Among the initial functions, we need consider only the
pairing function ( x1 , x2) and the projection functions ur where 1 I i I n.
If h,(t)  and h,(t)  are in PR, then using operation 2 in the definition of PR,
we see that (h,(t),  h,(t)) is also in PR. Hence, (x1 , x2) is satisfactory. And
evidently, if h,(t  ), . . . , h,(t) belong to PR, then u;(h,(t),  . . . , h,(t)), which
is simply equal to hi(t),  certainly belongs to PR, so u: is satisfactory.

To deal with composition, let

h(x,  , . . . , xn) = f(g,(x,,  . . . , n,),. . ., g/+1 ,. . ., x,)1
, . . . , g, and f are satisfactory. Let h,(t), . . . , h,(t) be given

functions that belong to PR. Then, setting

gi(t) = gi(h,(t),  * * * 7 h,(t))

3 This is a general technique for dealing with recursive definitions for a given value in
terms of smaller values, so-called course-of-value  recursions. See Exercise 8.5 in Chapter 3.

4 This is an example of what was called an induction Zoading device in Chapter 1.
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for 1 I i I k we see that each gi belongs to PR. Hence

h(h,W,.  . . , h,(t))  = f&(t),  . . . , g,(t))

belongs to PR, and so, h is satisfactory.
Finally, let

M-q01 = f(x)

h(x,  t + 1) = g(hb,  t))

where f and g are satisfactory. Let e(O) = 0 and let +(t + 1) =
h( t( t), Z(t)). Recalling that

(a, b) = 2’(2b + 1) - 1,

we consider two cases according to whether t + 1 = 2a(2b + 1) is even or
odd. If t + 1 is even, then a > 0 and

+(t + 1) = h(b,a)

= g(h(b, a - 1))

= g( @(2”-‘(2b  + 1)))

= g( *Cl((t  + 1)/m.

On the other hand, if t + 1 is odd, then a = 0 and

+(t + 1) = h(b,O)

= f(b)

= f(t/2).
In other words,

*cl(o) = 0

if t + 1 is odd,

if t + 1 iseven.

Now f and g are satisfactory, and, being unary, they are therefore in PR.
Since + is obtained from f and g using operation 3, +Q also belongs to PR.
To retrieve h from + we can use h(x, y > = $(( x, y > + 1). So,

h(h,(t), h,(t))  = +Mh,W, h,(t))))
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from which we see that if hi and h, both belong to PR, then so does
h(h,(t),  h,(t)). Hence h is satisfactory. n

Now we are ready to define the function 4(t, x), which we shall also
write as &(x), that will enumerate the unary primitive recursive functions:

+t<x> =

x+1 ift=O
0 ift=l
l(x) ift=2
r(x) ift=3

A(@( AC&)) if t = 3n + 1,n > 0

(+l~n~(~),  &,,(x)> if t = 3n + 2, n > 0
0 if t = 3n + 3, n > 0 and x = 0
&cn,((X  - 1)/D if t = 3n + 3, n > 0 and x is odd

4+2,(4(x/2)) if t = 3n + 3, n > 0 and x is even

Here 4&x>, $1(x), 42(-d, &( >x are the four initial functions. For t > 3, t
is represented as 3n + i where n > 0 and i = 1, 2 or 3; the three
operations of Theorem 9.2 are then dealt with for values of t with the
corresponding value of i. The pairing functions are used to guarantee all
functions obtained for any value of t are eventually used in applying each
of the operations. It should be clear from the definition that +(t, x> is a
total function and that it does enumerate all the unary primitive recursive
functions. Although it is pretty clear that the definition provides an
algorithm for computing the values of 4 for any given inputs, for a
rigorous proof more is needed. Fortunately, the recursion theorem makes
it easy to provide such a proof. Namely, we set

=

x+1 i f t = O
0 i f t = l
l(x) if t = 2
r(x) if t = 3
@~2YG), Qi2)(r(n), x)) ift=3n+l,n>O

(@~2)(Z(n), x), @i2)(r(n), x)) if t = 3n + 2, n > 0
0 if t = 3n + 3, n > Oand x = 0
@i2W(n),  1x/21) if t = 3n + 3, n > 0 and x is odd
Qt2)(r(  n) fP2)(  t 1 x/21))Z 7 z , ift=3n+3,n>Oandxiseven
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Then, g( z, t, x) is partially computable, and by the recursion theorem,
there is a number e such that

g(e t  x) =  Qc2)(t x)7 , e 3 *

Then, since g(e, t, x) satisfies the definition of 4(t, x> and that definition
determines C$ uniquely as a total function, we must have

40, x1 = g(e, t, ~1,

so that 4 is computable.
The discussion at the beginning of this section now applies and we have

our desired result.

Theorem 9.3. The function 4(.x,  x) + 1 is a computable function that is
not primitive recursive.

Exercises

1.
2.

Show that 4(t, x) is not primitive recursive.
Give a direct proof that 4(t, x) is computable by showing how to
obtain an 9 program that computes 4. [Hint: Use the pairing func-
tions to construct a stack for handling recursions.]


