XML DTD and Schemas

Type system to enforce data constraints.

Document Type Definitions (DTDs)

A way to specify the structure of XML documents.

DTD adds syntactical requirements in addition to the well-formed requirement.
DTDs help in
o Eliminating errors when creating or editing XML documents.

o Clarifying the intended semantics.
o Simplifying the processing of XML documents.

DTDs
o Use “regular expression” like syntax to specify a grammar for the XML document.

o Have limitations such as weak data types, inability to specify complex constraints, no
support for schema evolution, etc.

Example: An Address Book

<person>

<name> Homer Simpson </name>} Exactly one name

<greet> Dr. H. Simpson </greet$} At most one greeting

, , as needed (in order)
<addr> Springfield USA, 98765 </addr>

<addr>1234 Springwater Road </addr> }As many address lines

<tel> (321) 786 2543 </tel>

Mixed telephones and
<fax> (321) 786 2544 </fax> faxes

<tel> (321) 786 2544 </tel>

As many as

<email> homer@math.springfield.edu </email>j}needed

</person>

Specifying the Structure

Regular expression syntax (inspired from UNIX regular expressions)

expression
name
greet?
name, greet?
addr*
tel | fax
(tel | fax)*

email*

denotes
a name element
an optional (0 or 1) greet elements
a name followed by an optional greet
0 or more address lines
a tel or a fax element
0 or more repeats of tel or fax

0 or more email elements

So the whole structure of a person entry is specified by

name, greet?, addr*, (tel | fax)*, email*

e Each element type of the XML document is described by an expression
o the leaf level element types are described by the data type (#PCDATA) - parsed character

data

e Each attribute of an element type is also described in the DTD by enumerating some of its
properties (OPTIONAL, etc.)

Element Type Definition

For each element type E , a declaration of the form:

<!ELEMENT E

content-model>

where the content-model is an expression:

content-model ::

EMPTY | ANY | #PCDATA | P1l, P2 | P1 | P2 |

P12

| P1+ | P1* | (P)

expression denotes

Pl , P2 concatenation

Pl | P2 disjunction

P? optional

P+ one or more occurrences
pP* the Kleene closure

(P) grouping

The definition of an element consists of exactly one of the following:

o #PCDATA

e Aregular expression (as defined earlier)

e EMPTY: element has no content

e ANY: content can be any mixture of PCDATA and elements defined in the DTD

Mixed content is described by a repeatable OR group
(#PCDATA | element-name | ..)*

Inside the group, no regular expressions — just element names; i.e. #PCDATA must be first
followed by 0 or more element names, separated by | ; The group can be repeated 0 or more
times

Address Book Document with an Internal DTD

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE addressbook [
<!ELEMENT addressbook (person*)>
<!ELEMENT person (name, greet?, address*, (fax | tel)*, email¥*)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT greet (#PCDATA)>
<!ELEMENT address (#PCDATA)>

<!ELEMENT tel (#PCDATA)>
<!ELEMENT fax (#PCDATA)>
<!ELEMENT email (#PCDATA) >
1>
<addressbook>
<person>
<name>Jeff Cohen</name>
<greet>Dr. Cohen</greet>
<email>jc@penny.com</email>
</person>
</addressbook>

Some Difficult Structures

Each employee element should contain name, age and ssn elements in some order

<!ELEMENT employee
((name, age, ssn) |
(age, ssn, name) |

(ssn, name, age) |

)>

Too many permutations!

Attribute Specification in DTDs

<!ELEMENT height (#PCDATA)>
<!ATTLIST height
dimension CDATA #REQUIRED
accuracy CDATA #IMPLIED >

¢ The dimension attribute is required
e The accuracy attribute is optional
o CDATA s the "type" of the attribute — character data

The format of an Attribute Definition

<!ATTLIST element-name attr-name attr-type attr-default>

The default value is given inside quotes
Attribute types:

o CDATA
e ID, IDREF, IDREFS

ID, IDREF, IDREFS are used for references
Attribute Default

o #REQUIRED: the attribute must be explicitly provided

e #IMPLIED: attribute is optional, no default provided

e "value": if not explicitly provided, this value inserted by default
o #FIXED "value": as above, but only this value is allowed

Recursive DTDs

<DOCTYPE genealogy [
<!ELEMENT genealogy (person*)>
<!ELEMENT person (

name,

dateOfBirth,

person, -- mother
person) > -- father

1>

Problem with this DTD: Parser does not see the recursive structure and looks for “person” sub-
element indefinitely!

<DOCTYPE genealogy [
<!ELEMENT genealogy (person*)>
<!ELEMENT person (

name,

dateOfBirth,

person?, -- mother
person?) > -- father

1>

The problem with this DTD is if only one “person” sub-element is present, we would not know if
that person is the father or the mother.

Using ID and IDREF Attributes

<IDOCTYPE family [
<!ELEMENT family (person)* >
<!ELEMENT person (name) >
<!ELEMENT name (#PCDATA) >
<!ATTLIST person
id ID #REQUIRED
mother IDREF #IMPLIED
father IDREF #IMPLIED
children IDREFS #IMPLIED >
1>

IDs and IDREFs

o |D attribute: unique within the entire document.
o An element can have at most one ID attribute.
o No default (fixed default) value is allowed.
= #required: a value must be provided
= #implied: a value is optional

¢ IDREF attribute: its value must be some other element’s ID value in the document.
e |IDREFS attribute: its value is a set, each element of the set is the ID value of some other

element in the document.

<person id="898" father="332" mother="336" children="982 984 986">

Some Conforming Data

<family>

<person id="lisa" mother="marge" father="homer">
<name> Lisa Simpson </name>
</person>
<person id="bart" mother="marge" father="homer">
<name> Bart Simpson </name>
</person>
<person id="marge" children="bart lisa">
<name> Marge Simpson </name>
</person>
<person id="homer" children="bart lisa">
<name> Homer Simpson </name>

</person>

</family>

Limitations of ID References

¢ The attributes mother and father are references to |Ds of other elements.

e However, those are not necessarily person elements!

¢ The mother attribute is not necessarily a reference to a female person.

An Alternative Specification

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE family [

1>

<!ELEMENT family (person)* >
<!ELEMENT person (name, mother?, father?, children?) >
<!ATTLIST person id ID #REQUIRED >
<!ELEMENT name (#PCDATA) >
<!ELEMENT mother EMPTY >
<!ATTLIST mother idref IDREF #REQUIRED >
<!ELEMENT father EMPTY >
<!ATTLIST father idref IDREF #REQUIRED >
<!ELEMENT children EMPTY >
<!ATTLIST children idrefs IDREFS #REQUIRED >

Empty sub-elements instead of attributes

The Revised Data

<family>
<person id="marge">
<name>Marge Simpson</name>
<children idrefs="bart lisa"/>
</person>
<person id="homer">
<name>Homer Simpson</name>
<children idrefs="bart lisa" />
</person>
<person id="bart">
<name>Bart Simpson</name>
<mother idref="marge"/>
<father idref="homer"/>
</person>
<person id="lisa">
<name>Lisa Simpson</name>
<mother idref="marge"/>
<father idref="homer"/>
</person>
</family>

Consistency of ID and IDREF Attribute Values

¢ If an attribute is declared as ID
o The associated value must be distinct, i.e., different elements (in the given document)
must have different values for the ID attribute.
o Even if the two elements have different element names

¢ [f an attribute is declared as IDREF
o The associated value must exist as the value of some ID attribute (no dangling
“pointers”)

e Similarly for all the values of an IDREFS attribute
e ID, IDREF and IDREFS attributes are not typed

Adding a DTD to the Document
ADTD can be

e internal: The DTD is part of the document file
e external: The DTD and the document are on separate files
e An external DTD may reside

o In the local file system (where the document is)

o In a remote file system
Connecting a Document with its DTD

An internal DTD

<?xml version="1.0"?>
<!DOCTYPE db [<!ELEMENT ...> ..]>
<db> ... </db>

A DTD from the local file system:

<!DOCTYPE db SYSTEM "schema.dtd">

A DTD from a remote file system:

<!DOCTYPE db SYSTEM "http://www.schemaauthority.com/schema.dtd">

Well-Formed XML Documents

An XML document (with or without a DTD) is well-formed if

e Tags are syntactically correct

e Every tag has an end tag

e Tags are properly nested

e There is a root tag

e A start tag does not have two occurrences of the same attribute

Valid Documents

A well-formed XML document is valid if it conforms to its DTD, that is,

¢ The document conforms to the regular-expression grammar
e The attributes types are correct, and
e The constraints on references are satisfied

