Ontology: we have a reason for every term we use

why is the Web so successful?

Ontology: we have a reason for every term we use

®* many reasons..., but one important reason:
e anyone can publish anything, at any time

Ontology: we have a reason for every term we use

®* many reasons..., but one important reason:
e anyone can publish anything, at any time

for the Semantic Web idea to be successful, this still must be true:
anyone can publish anything, at any time

Ontology: we have a reason for every term we use

®* many reasons..., but one important reason:
e anyone can publish anything, at any time

for the Semantic Web idea to be successful, this still has to be true:
anyone can publish anything, at any time

e on the current Web, you publish HTML blocks
e on the Semantic Web, you publish RDF blocks

e because RDF is for the Semantic Web what HTML has been for the
Web

Ontology: we have a reason for every term we use

e and there is another major difference -
e HTML is for human eyes, and RDF is for machine to read

Ontology: we have a reason for every term we use

e and there is another major difference -
e HTML is for human eyes, and RDF is for machine to read

therefore, RDF needs some common terms so that machine can
share the same understanding

Ontology: we have a reason for every term we use

<?xml version="1.0"7?>

<rdf:RDF
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:myCamera="http://www.example.com/camera#">

<rdf:Description
rdf:about="http://www.example.com/camera#Nikon D300">
<rdf:type
rdf:resource="http://www.example.com/camera#DSLR" />
<myCamera:manufactured by
rdf:resource="http://www.dbpedia.org/resource/Nikon"/>
<myCamera:performance rdf:resource=
"http://www.example.com/camera#PictureQuality"/>
</rdf:Description>

<rdf:Description
rdf:about="http://www.example.com/camera#PictureQuality">
<myCamera:evaluate>5 stars</myCamera:evaluate>
</rdf:Description>

</rdf :RDF>

Ontology: we have a reason for every term we use

e why are we using the term myCamera:manufactured by,

myCamera:performance?

e somewhere, in some document, someone has defined that these are
indeed the predicates one can use when describing a camera

e there are possibly more terms defined, and it is our choice which
predicates to use when publishing our own descriptions

e if someone else is describing another camera, the same set of terms
should be used

e this way, machine can process these RDF documents easily

Ontology: we have a reason for every term we use

e a collection of these terms is called an ontology

e ontology contains class terms (classes, aka concept), and relationships
among these terms

e ontology contains property terms, which describe various features and
attributes of the classes/concepts

e ontology is often domain specific

Ontology: we have a reason for every term we use

[model, manufactured_by]

a simple ontology

[effectivePixel]

-

DSLR PointAndShoot

RDFS: a language one can use to create ontologies

e RDFS = RDF Schema
e RDFS is a language one can use to create an ontology

e So, when distributed RDF documents are created, terms from this
ontology can be used

e therefore, everything we say, we have a reason to say it

RDFS: a language one can use to create ontologies

e RDFS is a collection of terms one can use to define classes and
properties for a specific domain

e just like RDF terms, all these RDFS terms are identified by pre-defined
URIs and all these URIs share the following leading string:

http://www.w3.0rg/2000/01/rdf-schema#

remember

by convention:

 this URI prefix string is often associated with namespace
prefix rdfs:

RDFS: a language one can use to create ontologies

often used terms in rdfs: vocabulary are listed here:

terms used for defining classes:
rdfs:Resource, rdfs:Class, rdfs:Literal, rdfs:Datatype

terms used for defining properties:

rdfs:range, rdfs:domain, rdfs:subClassOf,
rdfs:subPropertyOf, rdfs:label, rdfs:comment
utilities:

rdfs:seeAlso, rdfs:1sDefinedBy

so, rdfs: name will be used to indicate a term from the RDFS vocabulary

RDFS: a language one can use to create ontologies

to define a class:

<?xml version="1.0"7?>

<rdf :RDF
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
xmlns:myCamera="http://www.example.com/camera#">

<rdf:Description
rdf:about="http://www.example.com/cameraf#Camera'">
<rdf: type
rdf:resource="http://www.w3.0rg/2000/01/rdf-schema#{Class" />
</rdf:Description>

</rdf :RDF>
* here we declare: this resource, http://www.example.com/camera#Camera, iS a

class
* this is an ontology that contains only one class and nothing else

RDFS: a language one can use to create ontologies

a short form we can use to define a class:

<?xml version="1.0"7?>

<rdf :RDF
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
xmlns:myCamera="http://www.example.com/camera#">

<rdfs:Class rdf:about="http://www.example.com/camera#Camera" />

</rdf :RDF>

this is the form that is often used

RDFS: a language one can use to create ontologies

to define more classes, simply add them:

<?xml version="1.0"7?>
<rdf :RDF
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
xmlns:myCamera="http://www.example.com/camera#">
<rdfs:Class rdf:about="http://www.example.com/cameraf#Camera" />
<rdfs:Class rdf:about="http://www.example.com/camera#fLens" />
<rdfs:Class rdf:about="http://www.example.com/camera#Body" />

<rdfs:Class rdf:about="http://www.example.com/camera#ValueRange" />

</rdf :RDF>

RDFS: a language one can use to create ontologies

sub-classes can also be defined:

<?xml version="1.0"7?>

<rdf:RDF
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
xmlns:myCamera="http://www.example.com/camera#"
xml :base="http://www.example.com/camerat">

<rdfs:Class rdf:about="http://www.example.com/camera#Digital">
<rdfs:subClassOf rdf:resource="#Camera'"/>
</rdfs:Class>

<rdfs:Class rdf:about="http://www.example.com/camera#Film">
<rdfs:subClassOf rdf:resource="#Camera"/>
</rdfs:Class>

xml :base together with rdf: resource, specifies the full URI:

http://www.example.com/camera#Camera

RDFS: a language one can use to create ontologies

similarly, we can define more sub-classes:

<rdfs:Class rdf:about="http://www.liyangyu.com/camera#DSLR">
<rdfs:subClassOf rdf:resource="#Digital"/>
</rdfs:Class>

<rdfs:Class rdf:about="http://www.liyangyu.com/camera#PointAndShoot">
<rdfs:subClassOf rdf:resource="#Digital"/>
</rdfs:Class>

<rdfs:Class rdf:about="http://www.liyangyu.com/camera#Photographer">
<rdfs:subClassOf rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
</rdfs:Class>

RDFS: a language one can use to create ontologies

the class definitions so far have defined the following class structure:

myCamera:ValueRange
‘ Digital ’ ‘ myCamera:Film ’

T

‘ foaf:Person ’
DSLR PointAndShoot T

‘ myCamera:Photographer ’

RDFS: a language one can use to create ontologies

* one can use rdfs:subClassOf property multiple times when
defining a class

* when doing so, all the base classes introduced by rdfs:subClassOf
will be ANDed together to create the new class

<rdfs:Class
rdf:about="http://www.example.com/camera#Photojournalist">

<rdfs:subClassOf rdf:resource="#Photographer"/>
<rdfs:subClassOf rdf:resource="#Journalist"/>
</rdfs:Class>

this says: class Photojournalist is a sub-class of both Photographer
class and Journalist class, thus, any instance of Photojournalist is
an instance of Photographer and Journalist at the same time

RDFS: a language one can use to create ontologies

(my(umeru:(umeru) (myCamera:Lens) (myCamera:Body)
(my(umeru:VulueRunge)

(Digital) (myCamera:Film)
(foaf:Person)
(my(umeru:Photogrupher)

e except for the base-class and sub-class relationship, there seems to be
no other bounds among these classes

e in real life, the relationships among these classes do exist

e the bounds, or the relationships among these classes, will be
expressed by properties

(DSLR) (PointAndShoot)

RDFS: a language one can use to create ontologies

express relationship "a DSLR can be owned by a photographer" by
defining property owned by:

<rdf:Property
rdf:about="http://www.example.com/camera#fowned by">
<rdfs:domain rdf:resource="#DSLR"/>
<rdfs:range rdf:resource="#Photographer"/>
</rdf :Property>

we define a property called owned by. It can only be used to describe
the characteristics of class DSLR, and its possible values can only be
instances of class Photographer.

RDFS: a language one can use to create ontologies

« rdfs:domain and rdfs:range are used to express the relationship
between two classes

e but they are not a must when defining properties

<rdf:Property
rdf:about="http://www.example.com/cameraf#owned by">
<rdfs:domain rdf:resource="#DSLR"/>

</rdf:Property>

RDFS: a language one can use to create ontologies

notice the separation of class definitions and property definitions in
an ontology

those who are used to the object-oriented world might find this fact
uncomfortably strange

in OO world, we may define a class called DigitalCamera, and we
will then encapsulate several properties to describe a digital camera

these properties will be defined at the same time when we define the
class, and they are defined in the class scope as its member variables

normally, these properties are not directly visible to the outside world

RDFS: a language one can use to create ontologies

for ontology, it is quite a different story: we define a class, and very
often we also indicate its relationships to other classes

however, we never declare its member variables, i.e., the properties it
may have

so, a class is just an entity who may have relationships to other
entities, what are inside this entity, i.e., its member
variables/properties, are simply unknown

the truth is: we declare properties separately and associate the
properties with classes if we wish to do so, properties are never
owned by any class, they are never local to any class either

if we do not associate a given property to any class, this property is
simply independent, and it can be used to describe any class

RDFS: a language one can use to create ontologies

Rule #3:

| can talk about any resource at my will, and if | chose to use an
existing URI to identify the resource | am talking about, then the
following is true:

e the resource | am talking about, and the resource already
identified by this existing URI are the same thing or concept;

e everything | have said about this resource is additional
knowledge about that resource.

e the separation of class-property definition in ontology is an
implementation of the above rule

e it makes large-scale processing of distributed information easy and
manageable

RDFS: a language one can use to create ontologies

e RDFS utility terms: rdfs:seeAlso, rdfs:isDefinedBy,
rdfs:label and rdfs:comment

e the most importantoneis rdfs:seelAlso

<rdf:Description
rdf:about="http://www.liyangyu.com/camera#Nikon D300">
<rdf:type rdf:resource="http://www.liyangyu.com/camera#DSLR" />
<rdfs:seeAlso rdf:resource="http://dbpedia.org/resource/Nikon D300"/>
</rdf:Description>

e compare <href... >tordfs:seeAlso

« rdfs:seelAlso isthe link among RDF documents on the Semantic
Web

RDFS: a language one can use to create ontologies

so, what is the benefit of having an ontology?

it provides a common and shared understanding/definition
about certain key concepts in the domain

it offers the terms one can use when creating RDF documents in
the domain

it provides a way to re-use domain knowledge
it makes the domain assumptions explicit

it provides a way to encode knowledge and semantics such that
machine can understand, and

it makes automatic large-scale machine processing become
possible

RDFS: a language one can use to create ontologies

another benefit is ontology make inferencing/reasoning become
possible

* understand a resource’s class type by reading the property’s
rdfs:domain tag

* understand a resource’s class type by reading the property’s
rdfs:range tag

<rdf:Property rdf:about="http://www.example.com/cameraifhasLens">
<rdfs:domain rdf:resource="#Camera"/>
<rdfs:range rdf:resource="#Lens"/>

</rdf:Property>

this says: when we describe a camera, we can use hasIlens to describe it — this
property can only be used on a Camera instance, and its value has to be a Len
instance.

RDFS: a language one can use to create ontologies

another benefit is ontology make inferencing/reasoning become
possible

* understand a resource’s class type by reading the property’s
rdfs:domain tag

* understand a resource’s class type by reading the property’s
rdfs:range tag

<rdf:Description
rdf:about="http://www.example.com/camera#Nikon D300">
<myCamera:hasLens rdf:resource=
"http://dbpedia.org/resource/Nikon 17-35mm £/2.8D ED-
IF AF-S Zoom-Nikkor"/>
</rdf:Description>

what can be inferred from this?

RDFS: a language one can use to create ontologies

e understand a resource’s class type by reading the property’s
rdfs:domain tag

e understand a resource’s class type by reading the property’s
rdfs:range tag

<rdf:Description
rdf:about="http://www.example.com/camera#Nikon D300">
<myCamera:hasLens rdf:resource=
"http://dbpedia.org/resource/Nikon 17-35mm f/2.8D ED-
IF AF-S Zoom-Nikkor"/>
</rdf:Description>

* http://www.example.com/camera#Nikon D300 is an instance of class

myCamera:Camera
* http://dbpedia.org/resource/Nikon 17-35mm £/2.8D ED-
IF AF-S Zoom-Nikkor is an instance of class myCamera:Lens

RDFS: a language one can use to create ontologies

understand a resource’s super class type by following the class hierarchy
described in the ontology

* imagine myCamera:Camera and myCamera:Lens both have a super class
called myCamera:0OpticalInstrument
* thenhttp://www.example.com/camera#Nikon D300 is also an instance

of myCamera:0OpticalInstrument, and
* http://dbpedia.org/resource/Nikon 17-35mm £/2.8D ED-IF AF-
S Zoom-Nikkor is also aninstance of class myCamera:OpticalInstrument

RDFS: a language one can use to create ontologies

e understand more about the resource by using rdfs:subPropertyOf

<rdf:Property rdf:ID="parent">
<rdfs:domain rdf:resource="#Person"/>
<rdfs:range rdf:resource="#Person"/>
</rdf:Property>

<rdf:Property rdf:ID="mother">
<rdfs:subPropertyOf rdf:resouce="#parent"/>
</rdf:Property>

<Person rdf:ID="Tim">
<mother>
<Person rdf:resource="#Mary"/>
</mother>
</Person>

RDFS: a language one can use to create ontologies

e understand more about the resource by using rdfs:subPropertyOf

<Person rdf:ID="Tim">
<mother>
<Person rdf:resource="#Mary"/>
</mother>
</Person>

since mother is a sub-property of parent, machine can add the following
statement automatically:

<Person rdf:ID="Tim">
<parent>
<Person rdf:resource="#Mary"/>
</parent>
</Person>

RDFS: so, where is the semantics?

so, where is the semantics? the meaning of a term is defined by specifying

o wWhat properties can be used to describe it, and
o what kinds of objects can be the values of these properties

RDFS: what is missing?

RDFS can be used to create light-weighted ontologies, it is not rich enough
for many real-life situations:

e a person can have at most one SS number

e a person can have exactly 2 arms and 2 legs

e one class is the union of the other two classes

e two classes can be equivalent (DSLR vs. DigitalSLR)

o two classes can be totally disjoint

e Many more...

