
Ontology: we have a reason for every term we use

why is the Web so successful?

Ontology: we have a reason for every term we use

• many reasons..., but one important reason:
• anyone can publish anything, at any time

Ontology: we have a reason for every term we use

• many reasons..., but one important reason:
• anyone can publish anything, at any time

for the Semantic Web idea to be successful, this still must be true:
anyone can publish anything, at any time

Ontology: we have a reason for every term we use

• many reasons..., but one important reason:
• anyone can publish anything, at any time

for the Semantic Web idea to be successful, this still has to be true:
anyone can publish anything, at any time

• on the current Web, you publish HTML blocks
• on the Semantic Web, you publish RDF blocks
• because RDF is for the Semantic Web what HTML has been for the

Web

Ontology: we have a reason for every term we use

• and there is another major difference -
• HTML is for human eyes, and RDF is for machine to read

Ontology: we have a reason for every term we use

• and there is another major difference -
• HTML is for human eyes, and RDF is for machine to read

therefore, RDF needs some common terms so that machine can
share the same understanding

Ontology: we have a reason for every term we use
<?xml version="1.0"?>
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:myCamera="http://www.example.com/camera#">

<rdf:Description
rdf:about="http://www.example.com/camera#Nikon_D300">

<rdf:type
rdf:resource="http://www.example.com/camera#DSLR"/>

<myCamera:manufactured_by
rdf:resource="http://www.dbpedia.org/resource/Nikon"/>

<myCamera:performance rdf:resource=
"http://www.example.com/camera#PictureQuality"/>

</rdf:Description>

<rdf:Description
rdf:about="http://www.example.com/camera#PictureQuality">

<myCamera:evaluate>5 stars</myCamera:evaluate>
</rdf:Description>

</rdf:RDF>

Ontology: we have a reason for every term we use

• why are we using the term myCamera:manufactured_by,
myCamera:performance?

• somewhere, in some document, someone has defined that these are
indeed the predicates one can use when describing a camera

• there are possibly more terms defined, and it is our choice which
predicates to use when publishing our own descriptions

• if someone else is describing another camera, the same set of terms
should be used

• this way, machine can process these RDF documents easily

Ontology: we have a reason for every term we use

• a collection of these terms is called an ontology
• ontology contains class terms (classes, aka concept), and relationships

among these terms
• ontology contains property terms, which describe various features and

attributes of the classes/concepts
• ontology is often domain specific

Ontology: we have a reason for every term we use

example:
a simple ontology

RDFS: a language one can use to create ontologies

• RDFS = RDF Schema
• RDFS is a language one can use to create an ontology
• So, when distributed RDF documents are created, terms from this

ontology can be used
• therefore, everything we say, we have a reason to say it

RDFS: a language one can use to create ontologies

http://www.w3.org/2000/01/rdf-schema#

remember
• this URI prefix string is often associated with namespace

prefix rdfs:

by convention:

• RDFS is a collection of terms one can use to define classes and
properties for a specific domain

• just like RDF terms, all these RDFS terms are identified by pre-defined
URIs and all these URIs share the following leading string:

RDFS: a language one can use to create ontologies

often used terms in rdfs: vocabulary are listed here:
terms used for defining classes:
rdfs:Resource, rdfs:Class, rdfs:Literal, rdfs:Datatype

terms used for defining properties:
rdfs:range, rdfs:domain, rdfs:subClassOf,
rdfs:subPropertyOf, rdfs:label, rdfs:comment

utilities:
rdfs:seeAlso, rdfs:isDefinedBy

so, rdfs:name will be used to indicate a term from the RDFS vocabulary

RDFS: a language one can use to create ontologies

to define a class:
<?xml version="1.0"?>
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:myCamera="http://www.example.com/camera#">

<rdf:Description
rdf:about="http://www.example.com/camera#Camera">

<rdf:type
rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>

</rdf:Description>

</rdf:RDF>

• here we declare: this resource, http://www.example.com/camera#Camera, is a
class

• this is an ontology that contains only one class and nothing else

RDFS: a language one can use to create ontologies

a short form we can use to define a class:

<?xml version="1.0"?>
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:myCamera="http://www.example.com/camera#">

<rdfs:Class rdf:about="http://www.example.com/camera#Camera" />

</rdf:RDF>

this is the form that is often used

RDFS: a language one can use to create ontologies

<?xml version="1.0"?>
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:myCamera="http://www.example.com/camera#">

<rdfs:Class rdf:about="http://www.example.com/camera#Camera" />

<rdfs:Class rdf:about="http://www.example.com/camera#Lens" />

<rdfs:Class rdf:about="http://www.example.com/camera#Body" />

<rdfs:Class rdf:about="http://www.example.com/camera#ValueRange" />

</rdf:RDF>

to define more classes, simply add them:

RDFS: a language one can use to create ontologies
sub-classes can also be defined:
<?xml version="1.0"?>
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:myCamera="http://www.example.com/camera#"
xml:base="http://www.example.com/camera#">

<rdfs:Class rdf:about="http://www.example.com/camera#Digital">
<rdfs:subClassOf rdf:resource="#Camera"/>

</rdfs:Class>

<rdfs:Class rdf:about="http://www.example.com/camera#Film">
<rdfs:subClassOf rdf:resource="#Camera"/>

</rdfs:Class>

xml:base together with rdf:resource, specifies the full URI:
http://www.example.com/camera#Camera

RDFS: a language one can use to create ontologies
similarly, we can define more sub-classes:
<rdfs:Class rdf:about="http://www.liyangyu.com/camera#DSLR">

<rdfs:subClassOf rdf:resource="#Digital"/>
</rdfs:Class>

<rdfs:Class rdf:about="http://www.liyangyu.com/camera#PointAndShoot">
<rdfs:subClassOf rdf:resource="#Digital"/>

</rdfs:Class>

<rdfs:Class rdf:about="http://www.liyangyu.com/camera#Photographer">
<rdfs:subClassOf rdf:resource="http://xmlns.com/foaf/0.1/Person"/>

</rdfs:Class>

RDFS: a language one can use to create ontologies

the class definitions so far have defined the following class structure:

RDFS: a language one can use to create ontologies
• one can use rdfs:subClassOf property multiple times when

defining a class
• when doing so, all the base classes introduced by rdfs:subClassOf

will be ANDed together to create the new class

<rdfs:Class
rdf:about="http://www.example.com/camera#Photojournalist">
<rdfs:subClassOf rdf:resource="#Photographer"/>
<rdfs:subClassOf rdf:resource="#Journalist"/>

</rdfs:Class>

this says: class Photojournalist is a sub-class of both Photographer
class and Journalist class, thus, any instance of Photojournalist is
an instance of Photographer and Journalist at the same time

RDFS: a language one can use to create ontologies

• except for the base-class and sub-class relationship, there seems to be
no other bounds among these classes

• in real life, the relationships among these classes do exist
• the bounds, or the relationships among these classes, will be

expressed by properties

RDFS: a language one can use to create ontologies

express relationship "a DSLR can be owned by a photographer" by
defining property owned_by:

we define a property called owned_by. It can only be used to describe
the characteristics of class DSLR, and its possible values can only be
instances of class Photographer.

<rdf:Property
rdf:about="http://www.example.com/camera#owned_by">

<rdfs:domain rdf:resource="#DSLR"/>
<rdfs:range rdf:resource="#Photographer"/>

</rdf:Property>

RDFS: a language one can use to create ontologies

• rdfs:domain and rdfs:range are used to express the relationship
between two classes

• but they are not a must when defining properties

<rdf:Property
rdf:about="http://www.example.com/camera#owned_by">
<rdfs:domain rdf:resource="#DSLR"/>

</rdf:Property>

RDFS: a language one can use to create ontologies

• notice the separation of class definitions and property definitions in
an ontology

• those who are used to the object-oriented world might find this fact
uncomfortably strange

• in OO world, we may define a class called DigitalCamera, and we
will then encapsulate several properties to describe a digital camera

• these properties will be defined at the same time when we define the
class, and they are defined in the class scope as its member variables

• normally, these properties are not directly visible to the outside world

RDFS: a language one can use to create ontologies

• for ontology, it is quite a different story: we define a class, and very
often we also indicate its relationships to other classes

• however, we never declare its member variables, i.e., the properties it
may have

• so, a class is just an entity who may have relationships to other
entities, what are inside this entity, i.e., its member
variables/properties, are simply unknown

• the truth is: we declare properties separately and associate the
properties with classes if we wish to do so, properties are never
owned by any class, they are never local to any class either

• if we do not associate a given property to any class, this property is
simply independent, and it can be used to describe any class

RDFS: a language one can use to create ontologies

• the separation of class-property definition in ontology is an
implementation of the above rule

• it makes large-scale processing of distributed information easy and
manageable

Rule #3:
I can talk about any resource at my will, and if I chose to use an
existing URI to identify the resource I am talking about, then the
following is true:

• the resource I am talking about, and the resource already
identified by this existing URI are the same thing or concept;

• everything I have said about this resource is additional
knowledge about that resource.

RDFS: a language one can use to create ontologies

• RDFS utility terms: rdfs:seeAlso, rdfs:isDefinedBy,
rdfs:label and rdfs:comment

• the most important one is rdfs:seeAlso

• compare <href... > to rdfs:seeAlso
• rdfs:seeAlso is the link among RDF documents on the Semantic

Web

<rdf:Description
rdf:about="http://www.liyangyu.com/camera#Nikon_D300">

<rdf:type rdf:resource="http://www.liyangyu.com/camera#DSLR"/>
<rdfs:seeAlso rdf:resource="http://dbpedia.org/resource/Nikon_D300"/>

</rdf:Description>

RDFS: a language one can use to create ontologies

• it provides a common and shared understanding/definition
about certain key concepts in the domain

• it offers the terms one can use when creating RDF documents in
the domain

• it provides a way to re-use domain knowledge
• it makes the domain assumptions explicit
• it provides a way to encode knowledge and semantics such that

machine can understand, and
• it makes automatic large-scale machine processing become

possible

so, what is the benefit of having an ontology?

RDFS: a language one can use to create ontologies

another benefit is ontology make inferencing/reasoning become
possible
• understand a resource’s class type by reading the property’s
rdfs:domain tag

• understand a resource’s class type by reading the property’s
rdfs:range tag

<rdf:Property rdf:about="http://www.example.com/camera#hasLens">
<rdfs:domain rdf:resource="#Camera"/>
<rdfs:range rdf:resource="#Lens"/>

</rdf:Property>

this says: when we describe a camera, we can use hasLens to describe it – this
property can only be used on a Camera instance, and its value has to be a Len
instance.

RDFS: a language one can use to create ontologies

another benefit is ontology make inferencing/reasoning become
possible
• understand a resource’s class type by reading the property’s
rdfs:domain tag

• understand a resource’s class type by reading the property’s
rdfs:range tag

<rdf:Description
rdf:about="http://www.example.com/camera#Nikon_D300">

<myCamera:hasLens rdf:resource=
"http://dbpedia.org/resource/Nikon_17-35mm_f/2.8D_ED-
IF_AF-S_Zoom-Nikkor"/>

</rdf:Description>

what can be inferred from this?

RDFS: a language one can use to create ontologies

• understand a resource’s class type by reading the property’s
rdfs:domain tag

• understand a resource’s class type by reading the property’s
rdfs:range tag

<rdf:Description
rdf:about="http://www.example.com/camera#Nikon_D300">

<myCamera:hasLens rdf:resource=
"http://dbpedia.org/resource/Nikon_17-35mm_f/2.8D_ED-
IF_AF-S_Zoom-Nikkor"/>

</rdf:Description>

• http://www.example.com/camera#Nikon_D300 is an instance of class
myCamera:Camera

• http://dbpedia.org/resource/Nikon_17-35mm_f/2.8D_ED-
IF_AF-S_Zoom-Nikkor is an instance of class myCamera:Lens

RDFS: a language one can use to create ontologies

understand a resource’s super class type by following the class hierarchy
described in the ontology

• imagine myCamera:Camera and myCamera:Lens both have a super class
called myCamera:OpticalInstrument

• then http://www.example.com/camera#Nikon_D300 is also an instance
of myCamera:OpticalInstrument, and

• http://dbpedia.org/resource/Nikon_17-35mm_f/2.8D_ED-IF_AF-
S_Zoom-Nikkor is also an instance of class myCamera:OpticalInstrument

RDFS: a language one can use to create ontologies

• understand more about the resource by using rdfs:subPropertyOf

<rdf:Property rdf:ID="parent">
<rdfs:domain rdf:resource="#Person"/>
<rdfs:range rdf:resource="#Person"/>

</rdf:Property>

<rdf:Property rdf:ID="mother">
<rdfs:subPropertyOf rdf:resouce="#parent"/>

</rdf:Property>

<Person rdf:ID="Tim">
<mother>

<Person rdf:resource="#Mary"/>
</mother>

</Person>

RDFS: a language one can use to create ontologies

• understand more about the resource by using rdfs:subPropertyOf

<Person rdf:ID="Tim">
<mother>

<Person rdf:resource="#Mary"/>
</mother>

</Person>

since mother is a sub-property of parent, machine can add the following
statement automatically:

<Person rdf:ID="Tim">
<parent>

<Person rdf:resource="#Mary"/>
</parent>

</Person>

RDFS: so, where is the semantics?

so, where is the semantics? the meaning of a term is defined by specifying

l what properties can be used to describe it, and
l what kinds of objects can be the values of these properties

RDFS: what is missing?

RDFS can be used to create light-weighted ontologies, it is not rich enough
for many real-life situations:

l a person can have at most one SS number
l a person can have exactly 2 arms and 2 legs
l one class is the union of the other two classes
l two classes can be equivalent (DSLR vs. DigitalSLR)
l two classes can be totally disjoint
l many more…

