
RDF: building block for the Semantic Web

how do we code meaning/knowledge?

RDF data model: a summary so far

• RDF offers an abstract model and framework that tells us how to
decompose information/knowledge into small pieces;

• one such small piece of information/knowledge is represented as a
statement which has the form (subject, predicate, object). A
statement is also called a triple;

• a given RDF model can be expressed either as a graph, or as a
collection of statements or triples;

• each statement maps to one edge in the graph. Therefore, the subject
and object of a given statement are also called nodes, and its
predicate is also called edge;

• subjects and objects denote resources in the real world. Predicates
denote the relationship between subjects and objects;

RDF data model: a summary so far

• predicates are also called properties, and objects are also called
property values. Therefore, a statement also has the form (resource,
property, propertyValue);

• URIs are used to name resources and properties. For a given resource
or property, if there is an existing URI to name it, you should re-use it
instead of inventing your own;

• an RDF statement can only model a binary relationship. To model a n-
ary relationship, intermediate resources are introduced, and blank
nodes are quite often used;

• an object can take either a simple literal or another resource as its
value. If a literal is used as its value, the literal can be typed or un-
typed, and can also have an optional language tag.

RDF Serialization: RDF/XML Syntax

• the RDF data model is only an abstract data model, used to
express our idea and view

• we need some serialization syntax for creating and reading
concrete RDF models, so applications can start to write and
share RDF documents

• the W3C specifications define an XML syntax for this purpose. It
is called RDF/XML, and is used to represent an RDF graph as an
XML document

• RDF/XML is not the only serialization syntax that is being used,
e.g., n3

RDF Serialization: RDF Vocabulary

• in the world of RDF, we uses URIs (instead of words) to name resources
and properties

• in general, RDF refers to a set of URIs (often created for a specific purpose) as
a vocabulary
ü all the URIs in such a vocabulary normally share a common leading

string, which is used as the common prefix in these URIs' QNames
ü the URIs in this vocabulary will be formed by appending individual

local names to the end of this common leading string this prefix
(namespace prefix)

RDF Serialization: RDF Vocabulary

• to define RDF/XML serialization syntax, a set of URIs are created
and are given specific meanings by RDF

• this group of URIs becomes RDF's own vocabulary of terms, and it
is called the RDF Vocabulary

• the URIs in this RDF Vocabulary all share the following lead
strings:

http://www.w3.org/1999/02/22-rdf-syntax-ns#

remember • this URI prefix string is often associated with namespace
prefix rdf:

• for this reason, this vocabulary is also referred to as the rdf:
vocabulary

by convention:

RDF Serialization: RDF Vocabulary

often used terms in rdf: vocabulary are listed here:
Syntax names:
rdf:RDF, rdf:Description, rdf:ID, rdf:about,
rdf:parseType, rdf:resource, rdf:li, rdf:nodeID,
rdf:datatype

Class names:
rdf:Seq, rdf:Bag, rdf:Alt, rdf:Statement, rdf:Property,
rdf:XMLLiteral, rdf:List

Property names:
rdf:subject, rdf:predicate, rdf:object, rdf:type,
rdf:value, rdf:first, rdf:rest_n

Resource names:
rdf:nil

so, rdf:name will be used to indicate a term from the RDF vocabulary

RDF Serialization: RDF/XML Syntax

using the terms from rdf vocabulary, the above statement can be
expressed in RDF/XML as follows:

subject predicate object
myCamera:Nikon_D300 myCamera:is_a myCamera:DSLR

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf=http://www.w3.org/1999/02/22-rdf-syntax-ns#

xmlns:myCamera="http://www.example.com/camera#">

<rdf:Description rdf:about="http://www.example.com/camera#Nikon_D300">
<myCamera:is_a rdf:resource="http://www.example.com/camera#DSLR"/>

</rdf:Description>

</rdf:RDF>

http://www.w3.org/1999/02/22-rdf-syntax-ns

RDF Serialization: RDF/XML Syntax

the core is the following statement:

<rdf:Description rdf:about="URI of the statement’s subject">
<predicateURI rdf:resource="URI of the statement’s object"/>

</rdf:Description>

<rdf:Description rdf:about="http://www.example.com/camera#Nikon_D300">
<myCamera:is_a rdf:resource="http://www.example.com/camera#DSLR"/>

</rdf:Description>

it reads as this: This is a description about a resource named
myCamera:Nikon_D300, which is an instance of another resource, namely,
myCamera:DSLR.

here is how the statement is structured:

this is also the so-called "long form" RDF statement.

RDF Serialization: RDF/XML Syntax

• rdf:Description and rdf:about are all terms from rdf-vocabulary
• myCamera:is_a is a term that we invented; it is used to identify the type of

a given resource
• rdf vocabulary provides a term, rdf:type, just for this purpose:

• the subject node here is often called a typed node in a graph, or typed node
element in RDF documents

• assigning a type to a resource has far-reaching implication we will see later

<rdf:Description rdf:about="http://www.example.com/camera#Nikon_D300">
<myCamera:is_a rdf:resource="http://www.example.com/camera#DSLR"/>

</rdf:Description>

<rdf:Description rdf:about="http://www.example.com/camera#Nikon_D300">
<rdf:type rdf:resource="http://www.example.com/camera#DSLR"/>

</rdf:Description>

RDF Serialization: RDF/XML Syntax
• you don't have to use rdf:type much:

• this is the "short-form", and is the same as the previous statement
• "short-form" is more often used, since it is simpler

<myCamera:DSLR rdf:about=http://www.liyangyu.com/camera#Nikon_D300/>

http://www.liyangyu.com/camera

RDF Serialization: RDF/XML Syntax
similarly, we can add more statements:

1: <?xml version="1.0"?>
2: <rdf:RDF
2a: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3: xmlns:myCamera="http://www.example.com/camera#">
4:
5: <rdf:Description
5a: rdf:about="http://www.example.com/camera#Nikon_D300">
6: <rdf:type
6a: rdf:resource="http://www.example.com/camera#DSLR"/>
7: <myCamera:manufactured_by
7a: rdf:resource="http://www.dbpedia.org/resource/Nikon"/>
8: <myCamera:performance rdf:resource=
8a: "http://www.example.com/camera#PictureQuality"/>
9: </rdf:Description>
10:
11: <rdf:Description
11a: rdf:about="http://www.example.com/camera#PictureQuality">
12: <myCamera:evaluate>5 stars</myCamera:evaluate>
13: </rdf:Description>
14:
15: </rdf:RDF>

RDF Serialization: RDF/XML Syntax
• quite long and quite ugly
• you could use rdf:ID and xml:base to make RDF/XML simpler

<?xml version="1.0"?>
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:myCamera="http://www.liyangyu.com/camera#">

<rdf:Description rdf:ID="Nikon_D300">
<rdf:type

rdf:resource="http://www.liyangyu.com/camera#DSLR"/>
<myCamera:manufactured_by

rdf:resource="http://www.dbpedia.org/resource/Nikon"/>
</rdf:Description>

</rdf:RDF>

• rdf:ID only specifies a fragment identifier; the complete URI of the
subject is obtained by concatenating the following 3 pieces together:
in-scope base URI + “#” + rdf:ID value

RDF Serialization: RDF/XML Syntax

• in-scope base URI is not explicitly stated in the RDF document, it is
often provided by the RDF parser based on the location of the file

• clearly, the URI changes if the location of the RDF document changes

solution: explicitly state the in-scope base URI by using xml:base
attribute, an RDF parser generates the full URI by using the following
mechanism:

xml:base + "#" + rdf:ID value
<?xml version="1.0"?>
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:myCamera="http://www.liyangyu.com/camera#"
xml:base="http://www.liyangyu.com/camera">

<myCamera:DSLR rdf:ID="Nikon_D300">
<myCamera:manufactured_by

rdf:resource="http://www.dbpedia.org/resource/Nikon"/>
</myCamera:DSLR>

......

Re-thinking RDF: what is missing?

• RDF data model provides a simple and elegant way to present
facts – with well-defined structure that machine can
understand

• RDF triples are created in a distributed fashion – you can say
anything about anything

• RDF data model allows distributed information to be related in
a meaningful way – use URI to represent resource/predicate

• if you are talking about Washington as a state (not George Washington,

or Washington DC, or …), then use the URI that represents Washington
as a state – semantic disambiguation

these are the good things about RDF ...
but do you see anything is missing?

Re-thinking RDF: what is missing?

it might be easier to understand this by using one example

• let us use RDF statements to describe GSU, and the city GSU
locates in

• use RDF graph only since RDF/XML is too ugly

Re-thinking RDF: what is missing?

Universityrdf:type

hasURL "www.gsu.edu"

location

rdf:type
City

hasLocation
URL

http://dbpedia.org/gsu

http://dbpedia.org/atlanta

http://dbpedia.org/Georgia

"www.georgia.gov"

Re-thinking RDF: what is missing?

different terms?
different understanding?

Universityrdf:type

hasURL "www.gsu.edu"

location

rdf:type
City

hasLocation
URL

http://dbpedia.org/gsu

http://dbpedia.org/atlanta

http://dbpedia.org/Georgia

"www.georgia.gov"

Re-thinking RDF: what is missing?

different terms?
different understanding?

Universityrdf:type

hasURL "www.gsu.edu"

location

rdf:type
City

hasLocation
URL

http://dbpedia.org/gsu

http://dbpedia.org/atlanta

http://dbpedia.org/Georgia

"www.georgia.gov"

Re-thinking RDF: what is missing?

different terms?
different understanding?

Universityrdf:type

hasURL "www.gsu.edu"

location

rdf:type
City

hasLocation
URL

http://dbpedia.org/gsu

http://dbpedia.org/atlanta

http://dbpedia.org/Georgia

"www.georgia.gov"

Re-thinking RDF: what is missing?

different terms?
different understanding?

Universityrdf:type

hasURL "www.gsu.edu"

location

rdf:type
City

hasLocation
URL

http://dbpedia.org/gsu

http://dbpedia.org/atlanta

http://dbpedia.org/Georgia

"www.georgia.gov"

Re-thinking RDF: what is missing?

different terms?
different understanding?

Universityrdf:type

URL "www.gsu.edu"

hasLocation

rdf:type
City

hasLocation
URL

http://dbpedia.org/gsu

http://dbpedia.org/atlanta

http://dbpedia.org/Georgia

"www.georgia.gov"

Re-thinking RDF: what is missing?

• we need a way to specify what terms we can use when describing
resources, because "common terms = shared understanding"

• in addition, who define the terms such as University, City? do we
define them before we can use them?

• remember rdf:type which actually "means" is_a relationship?
terms like that would be great

• but rdf vocabulary only exists to help machines operate on RDF
statements, it is not there to provide the common terms we need

Re-thinking RDF: what is missing?

we need a dictionary, so
everyone can share the
same understanding
when we say things

Re-thinking RDF: what is missing?

dictionary ≅ ontology
(we used to call them ontologies …
until we found it scared people away)

