
OWL: Web Ontology Langauge

• OWL = RDF Schema + new constructs for better expressiveness
• OWL documents became a formal W3C recommendation on February

10th of 2004 (also known as OWL 1)
• OWL 2 became a formal W3C standard On October 27th of 2009
• they provide additional primitives for heavyweight ontologies

OWL: Web Ontology Langauge

• like RDFS, OWL can be viewed as a collection of terms we can use to
define classes and properties for a specific application domain

• these predefined OWL terms all have the following URI as their
leading string (applicable to both OWL 1 and OWL 2),

http://www.w3.org/2002/07/owl#

• and by convention, this URI prefix string is associated with namespace
prefix owl:, and is typically used in RDF/XML documents with the
prefix owl

• most of the language constructs in OWL (1/2) are intuitive, yet some
of them do need some explanation

OWL: defining classes

• OWL's view of classes
• owl:Class should be used for defining

classes

<rdf:Description rdf:about="http://www.example.com/camera#Camera">
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#Class"/>

</rdf:Description>

or, in short-form,

<owl:Class rdf:about="http://www.example.com/camera#Camera">
</owl:Class>

OWL: defining classes
• and more examples:
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:myCamera="http://www.example.com/camera#"
xml:base="http://www.example.com/camera#">

<owl:Class rdf:about="http://www.example.com/camera#Camera">
</owl:Class>

<owl:Class rdf:about="http://www.example.com/camera#Lens">
</owl:Class>
...
<owl:Class rdf:about="http://www.example.com/camera#Digital">

<rdfs:subClassOf rdf:resource="#Camera"/>
</owl:Class>

<owl:Class rdf:about="http://www.liyangyu.com/camera#Film">
<rdfs:subClassOf rdf:resource="#Camera"/>

</owl:Class>

OWL: defining classes

• defining classes by localizing global properties

<rdf:Property
rdf:about="http://www.liyangyu.com/camera#owned_by">

<rdfs:domain rdf:resource="#DSLR"/>
<rdfs:range rdf:resource="#Photographer"/>

</rdf:Property>

• rdfs:range imposes a global restriction on owned_by property, i.e.,
the rdfs:range value applies to Photographer class and all sub-
classes of Photographer class

what if we want to express the
following fact: DSLR, especially an
expensive one, is normally used by
professional photographers?

OWL: defining classes

our solution:

DSLR Photographer
owned_by

ExpensiveDSLR Professional Amateur

<owl:Class rdf:about="http://www.example.com/camera#Professional">
<rdfs:subClassOf rdf:resource="#Photographer"/>

</owl:Class>

<owl:Class rdf:about="http://www.example.com/camera#Amateur">
<rdfs:subClassOf rdf:resource="#Photographer"/>

</owl:Class>

<owl:Class rdf:about="http://www.example.com/camera#ExpensiveDSLR">
<rdfs:subClassOf rdf:resource="#DSLR"/>

</owl:Class>

OWL: defining classes

• since owned_by has DSLR as its rdfs:domain and Photographer
as its rdfs:value, and given the fact that ExpensiveDSLR is a sub-
class of DSLR, Professional and Amateur are both sub-classes of
Photographer, these new sub-classes all inherit the owned_by
property

• so, both of the following are correct (which is not what we wanted):

ExpensiveDSLR owned_by Professional
ExpensiveDSLR owned_by Amateur

• we need to modify the definition of ExpensiveDSLR to make sure it
can be owned only by Professional photographers?

OWL: defining classes

here is the new definition:
<owl:Class rdf:about="http://www.example.com/camera#ExpensiveDSLR">

<rdfs:subClassOf rdf:resource="#DSLR"/>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#owned_by"/>
<owl:allValuesFrom rdf:resource="#Professional"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

OWL: defining classes

here is the new definition:
<owl:Class rdf:about="http://www.example.com/camera#ExpensiveDSLR">

<rdfs:subClassOf rdf:resource="#DSLR"/>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#owned_by"/>
<owl:allValuesFrom rdf:resource="#Professional"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

ExpensiveDSLR is an intersection of two different classes

OWL: defining classes

here is the new definition:
<owl:Class rdf:about="http://www.example.com/camera#ExpensiveDSLR">

<rdfs:subClassOf rdf:resource="#DSLR"/>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#owned_by"/>
<owl:allValuesFrom rdf:resource="#Professional"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

• ExpensiveDSLR is an intersection of two different classes
• owl:Restriction is an OWL 1 term used to describe an anonymous

class, which is defined by adding some restriction on some property
• furthermore, all the instances of this anonymous class must satisfy

this restriction, hence the term owl:Restriction

OWL: defining classes

here is the new definition:
<owl:Class rdf:about="http://www.example.com/camera#ExpensiveDSLR">

<rdfs:subClassOf rdf:resource="#DSLR"/>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#owned_by"/>
<owl:allValuesFrom rdf:resource="#Professional"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

• the restriction itself has two parts
• the first part is about to which property this restriction is applied to, and this

is specified by using owl:onProperty property
• the second part is about the property constraint itself, or, exactly what is the

constraint
• owl:allValuesFrom: when this property is used, the value of the

restricted property must all come from the specified class or data range

OWL: defining classes

here is the new definition:
<owl:Class rdf:about="http://www.example.com/camera#ExpensiveDSLR">

<rdfs:subClassOf rdf:resource="#DSLR"/>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#owned_by"/>
<owl:allValuesFrom rdf:resource="#Professional"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

we can now read this definition like this:
Here is a definition of class ExpensiveDSLR, it is a sub-class of DSLR,
and a sub-class of an anonymous class which has a property owned_by
and all values for this property must be instances of Professional.

OWL: defining classes

what if we allow both amateur and professional photographers to own
expensive DSLRs, however, we still require that at least one of the owners
must be a Professional?

<owl:Class rdf:about="http://www.example.com/camera#ExpensiveDSLR">
<rdfs:subClassOf rdf:resource="#DSLR"/>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#owned_by"/>
<owl:someValuesFrom rdf:resource="#Professional"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

A class called ExpensiveDSLR is defined. It is a sub-class of DSLR, and
it has a property called owned_by. Furthermore, at least one value of
owned_by property is an instance of Professional.

OWL: defining classes

• another way to define class by adding restrictions on properties is to
constrain the cardinality of a property based on the class on which it
is intended to use

• class Digital represents a digital camera, and property
effectivePixel represents the picture resolution of a given
digital camera

• it would be useful to indicate that there can be only one
effectivePixel value for any given digital camera

• also think about the case where one person can have only one SSN

OWL: defining classes

• Can also have min/max cardinalities to express a range:
owl:minCardinality, owl:maxCardinality

<owl:Class rdf:about="http://www.example.com/camera#Digital">
<rdfs:subClassOf rdf:resource="#Camera"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#effectivePixel"/>
<owl:cardinality rdf:datatype=
"http://www.w3.org/2001/XMLSchema#nonNegativeInteger">
1

</owl:cardinality>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>

OWL: defining classes

• OWL also gives us the ability to construct classes by using set
operators: owl:intersectionOf, owl:unionOf,
owl:complementOf

• we can also construct classes by using Enumeration, Equivalent and
Disjoint: owl:oneOf, owl:equivalentClass, owl:disjointWith

OWL: defining properties

• using RDFS, we have the following terms to use: rdfs:domain,
rdfs:range and rdfs:subPropertyOf

• using these RDFS terms, the general procedure is to define the property
first and then use it to connect two things together: connect one
resource to another resource, or connect one resource to a typed or
un-typed value

<rdf:Property rdf:about="http://www.example.com/camera#owned_by">
<rdfs:domain rdf:resource="#DSLR"/>
<rdfs:range rdf:resource="#Photographer"/>

</rdf:Property>

<rdf:Property rdf:about="http://www.example.com/camera#model">
<rdfs:domain rdf:resource="#Camera"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</rdf:Property>

<rdfs:Datatype rdf:about="http://www.w3.org/2001/XMLSchema#string"/>

OWL: defining properties

In the world of OWL 1/2, two different classes are used to implement
these two different connections:
• owl:ObjectProperty is used to connect a resource to another

resource
• owl:DatatypePropery is used to connect a resource to a
rdfs:Literal (un-typed) or an XML schema built-in datatype (typed)
value

• in addition, owl:ObjectProperty and owl:DatatypeProperty
are both sub-classes of rdf:Property

<owl:ObjectProperty rdf:about="http://www.example.com/camera#owned_by">
<rdfs:domain rdf:resource="#DSLR"/>
<rdfs:range rdf:resource="#Photographer"/>

</owl:ObjectProperty>

<owl:DatatypeProperty rdf:about="http://www.example.com/camera#model">
<rdfs:domain rdf:resource="#Camera"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

<rdfs:Datatype rdf:about="http://www.w3.org/2001/XMLSchema#string"/>

OWL: defining properties

OWL 1/2 provides much richer features when it comes to property
definitions:

• property can be symmetric
• property can be transitive
• property can be functional
• property can be inverse functional
• property can be the inverse of another property

OWL: defining properties

symmetric property example:
<owl:ObjectProperty

rdf:about="http://www.example.com/camera#friend_with">
<rdf:type rdf:resource=

"http://www.w3.org/2002/07/owl#SymmetricProperty"/>
<rdfs:domain rdf:resource="#Photographer"/>
<rdfs:range rdf:resource="#Photographer"/>

</owl:ObjectProperty>

of course, here is the short form:
<owl:SymmetricProperty

rdf:about="http://www.example.com/camera#friend_with">
<rdfs:domain rdf:resource="#Photographer"/>
<rdfs:range rdf:resource="#Photographer"/>

</owl:SymmetricProperty>

OWL: defining properties

transitive property: if a resource R1 is connected to resource R2 by
property P, and resource R2 is connected to resource R3 by the same
property, then resource R1 is also connected to resource R3 by
property P

<owl:ObjectProperty
rdf:about="http://www.example.com/camera#betterQPRatio">

<rdf:type rdf:resource=
"http://www.w3.org/2002/07/owl#TransitiveProperty"/>

<rdfs:domain rdf:resource="#Camera"/>
<rdfs:range rdf:resource="#Camera"/>

</owl:ObjectProperty>

OWL: defining properties

functional property:

<owl:ObjectProperty
rdf:about="http://www.example.com/camera#manufactured_by">
<rdf:type rdf:resource=

"http://www.w3.org/2002/07/owl#FunctionalProperty"/>
<rdfs:domain rdf:resource="#Camera"/>
<rdfs:range rdf:resource="#Manufacturer"/>

</owl:ObjectProperty>

• describes the situation where for any given instance there is at most one
value for that property

• a many-to-one relation: there is at most one unique rdfs:range value for
each rdfs:domain instance

• example: each person has only one birthday, each camera has only one
manufacturer...

OWL: defining properties

functional property:

<myCamera:DSLR
rdf:about="http://www.example.com/camera#Nikon_D300">

<myCamera:manufactured_by
rdf:resource="http://dbpedia.org/resource/Nikon"/>

</myCamera:DSLR>

<DSLR rdf:about="http://www.example.com/camera#Nikon_D300"
xmlns="http://www.example.com/camera#">

<manufactured_by rdf:resource=
"http://www.freebase.com/view/en/nikon"/>

</DSLR>

your application will claim this (reasoner can infer this):

<http://dbpedia.org/resource/Nikon> owl:sameAs
<http://www.freebase.com/view/en/nikon>.

OWL: defining properties

inverse functional property:

<owl:DatatypeProperty
rdf:about="http://www.example.com/camera#reviewerID">

<rdf:type rdf:resource=
http://www.w3.org/2002/07/owl#InverseFunctionalProperty"/>
<rdfs:domain rdf:resource="#Photographer"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

• for a given rdfs:range value, the value of the rdfs:domain property
must be unique

• recall functional property: for a given rdfs:domain value, there a unique
rdfs:range value

• example: email address, driver's license...
camera review example: let us assume the reviewers themselves are often
photographers and let us assign a unique reviewer ID to each photographer -
if two photographers have the same reviewerID, these two photographers
should be the same person.

OWL: defining properties
• an even stronger statement about photographers and their reviewer IDs: not

only one reviewer ID is used to identify just one photographer, but each
photographer has also only one reviewer ID

• we need to define reviewerID property as both functional and inverse
functional property

<owl:DatatypeProperty
rdf:about="http://www.example.com/camera#reviewerID">

<rdf:type rdf:resource=
"http://www.w3.org/2002/07/owl#FunctionalProperty"/>

<rdf:type rdf:resource=
"http://www.w3.org/2002/07/owl#InverseFunctionalProperty"/>
<rdfs:domain rdf:resource="#Photographer"/>
<rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
</owl:DatatypeProperty>

<rdfs:Datatype
rdf:about="http://www.w3.org/2001/XMLSchema#string"/>

OWL: defining properties

understand the difference between functional and inverse functional
property:

• birthday is a functional property, it cannot be inverse functional property
• e-mail is an inverse functional property; it cannot be a functional property
• SSN, passport number (ID-like numbers) are often modeled as functional

properties and inverse functional properties at the same time

OWL: a summary so far

• in RDFS, you can subclass existing classes… that is all
• in OWL, you can construct classes from existing ones:

ü through intersection, union, complement
ü enumerate its members
ü in OWL, you can define equivalent classes, or two classes without any

common individuals
• in OWL, you can define classes by restricting the property values on

another class
ü allValuesFrom, someValuesFrom
ü etc.

examples:
– Carnivore class represents those animals who eat only meat – all the values of

it’s eat property must come from Meat class
– Driver class represents those who at least drive a car – some of the values of

its drive property should take the value of Car class

OWL: a summary so far

• OWL allows us to characterize the behavior of properties: symmetric,
transitive, functional, inverse functional, …
ü if two resources have the same driver’s license number, these two individuals

are same
ü if individual A is friend with individual B, then B is friend with A
ü if A costs more than B, B costs more than C, then A costs more then C
ü and more …

• OWL also separates data and object properties; datatype property
means that its range are typed literals

OWL: a summary so far

the Semantic Web is about coding meanings by using RDF
statements and shared ontology terms and adding these
meanings back to the current Web.

