Penguin Problem

Consider the KB:

TBox:

Bird \sqsubseteq Flies

Penguin \sqsubseteq Bird

Penguin \sqcap Flies $\sqsubseteq \perp$

Abox:

Penguin(tweety)

QUESTION

Prove that the KB is unsatisfiable

SOLUTION

Let us abbreviate Bird as b, Penguin as p, Flies by f, and tweety as t .

The three TBox axioms, when converted to "single concept" form, gives us the following:
($\neg \mathrm{b} \sqcup \mathrm{f})$
($\neg \mathrm{p} \sqcup \mathrm{b})$
($\neg \mathrm{p} \sqcup \neg \mathrm{f})$

Since there is only one "individual", t, the initial ABOX after pre-processing and instantiating the single concepts is the following:
$\mathrm{A} 0=\{\mathrm{p}(\mathrm{t}),(\neg \mathrm{b} \sqcup \mathrm{f})(\mathrm{t}),(\neg \mathrm{p} \sqcup \mathrm{b})(\mathrm{t}),(\neg \mathrm{p} \sqcup \neg \mathrm{f})(\mathrm{t})\}$
Applying the \sqcup rule three times, we get the following 8 ABoxes:
$\mathrm{A} 1=\{p(t), \neg b(t), \neg p(t)\}$
$\mathrm{A} 2=\{\mathrm{p}(\mathrm{t}), \neg \mathrm{b}(\mathrm{t}), \neg \mathrm{p}(\mathrm{t}), \neg \mathrm{f}(\mathrm{t})\}$

$$
\begin{aligned}
& A 3=\{p(t), \neg b(t), b(t), \neg p(t)\} \\
& A 4=\{p(t), \neg \mathbf{b}(t), b(t), \neg f(t)\} \\
& A 5=\{p(t), f(t), \neg p(t)\} \\
& A 6=\{p(t), f(t), \neg p(t), \neg f(t)\} \\
& \mathrm{A} 7=\{\mathbf{p}(\mathrm{t}), \mathrm{f}(\mathrm{t}), \mathrm{b}(\mathrm{t}), \neg \mathbf{p}(\mathrm{t})\} \\
& A 8=\{p(t), f(t), b(t), \neg f(t)\}
\end{aligned}
$$

We see that there is a clash in each and every one of the 8 ABoxes. So, the KB is unsatisfiable

