
Type system to enforce data constraints.

A way to specify the structure of XML documents.
DTD adds syntactical requirements in addition to the well-formed requirement.
DTDs help in

Eliminating errors when creating or editing XML documents.
Clarifying the intended semantics.
Simplifying the processing of XML documents.

DTDs
Use “regular expression” like syntax to specify a grammar for the XML document.
Have limitations such as weak data types, inability to specify complex constraints, no
support for schema evolution, etc.

Specifying the Structure

Regular expression syntax (inspired from UNIX regular expressions)

XML DTD and Schemas

Document Type Definitions (DTDs)

Example: An Address Book

expression denotes

name a name element

greet? an optional (0 or 1) greet elements

name, greet? a name followed by an optional greet

addr* 0 or more address lines

tel | fax a tel or a fax element

(tel | fax)* 0 or more repeats of tel or fax

email* 0 or more email elements

So the whole structure of a person entry is specified by

name, greet?, addr*, (tel | fax)*, email*

Each element type of the XML document is described by an expression
the leaf level element types are described by the data type (#PCDATA) - parsed character
data
Each attribute of an element type is also described in the DTD by enumerating some of its
properties (OPTIONAL, etc.)

Element Type Definition

For each element type E , a declaration of the form:

<!ELEMENT E content-model>

where the content-model is an expression:

content-model ::=
 EMPTY | ANY | #PCDATA | P1, P2 | P1 | P2 | P1? | P1+ | P1* | (P)

expression denotes

P1 , P2 concatenation

P1 | P2 disjunction

P? optional

P+ one or more occurrences

P* the Kleene closure

(P) grouping

The definition of an element consists of exactly one of the following:

#PCDATA
A regular expression (as defined earlier)
EMPTY: element has no content
ANY: content can be any mixture of PCDATA and elements defined in the DTD

Mixed content is described by a repeatable OR group

 (#PCDATA | element-name | …)*

Inside the group, no regular expressions – just element names; i.e. #PCDATA must be first
followed by 0 or more element names, separated by | ; The group can be repeated 0 or more
times

Address Book Document with an Internal DTD

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE addressbook [
 <!ELEMENT addressbook (person*)>
 <!ELEMENT person (name, greet?, address*, (fax | tel)*, email*)>
 <!ELEMENT name (#PCDATA)>
 <!ELEMENT greet (#PCDATA)>
 <!ELEMENT address (#PCDATA)>
 <!ELEMENT tel (#PCDATA)>
 <!ELEMENT fax (#PCDATA)>
 <!ELEMENT email (#PCDATA)>
]>
<addressbook>
 <person>
 <name>Jeff Cohen</name>
 <greet>Dr. Cohen</greet>
 <email>jc@penny.com</email>
 </person>
</addressbook>

Some Difficult Structures

Each employee element should contain name, age and ssn elements in some order

<!ELEMENT employee
 ((name, age, ssn) |
 (age, ssn, name) |
 (ssn, name, age) |
 ...
 ...
)>

Too many permutations!

Attribute Specification in DTDs

<!ELEMENT height (#PCDATA)>
<!ATTLIST height
 dimension CDATA #REQUIRED
 accuracy CDATA #IMPLIED >

The dimension attribute is required
The accuracy attribute is optional
CDATA is the "type" of the attribute – character data

The format of an Attribute Definition

<!ATTLIST element-name attr-name attr-type attr-default>

The default value is given inside quotes

Attribute types:

CDATA
ID, IDREF, IDREFS

ID, IDREF, IDREFS are used for references

Attribute Default

#REQUIRED: the attribute must be explicitly provided
#IMPLIED: attribute is optional, no default provided
"value": if not explicitly provided, this value inserted by default
#FIXED "value": as above, but only this value is allowed

Recursive DTDs

<DOCTYPE genealogy [
 <!ELEMENT genealogy (person*)>
 <!ELEMENT person (
 name,
 dateOfBirth,
 person, -- mother
 person) > -- father
]>

Problem with this DTD: Parser does not see the recursive structure and looks for “person” sub-
element indefinitely!

<DOCTYPE genealogy [
 <!ELEMENT genealogy (person*)>
 <!ELEMENT person (
 name,
 dateOfBirth,
 person?, -- mother
 person?) > -- father
 ...
]>

The problem with this DTD is if only one “person” sub-element is present, we would not know if
that person is the father or the mother.

Using ID and IDREF Attributes

 <!DOCTYPE family [
 <!ELEMENT family (person)* >
 <!ELEMENT person (name) >
 <!ELEMENT name (#PCDATA) >
 <!ATTLIST person
 id ID #REQUIRED
 mother IDREF #IMPLIED
 father IDREF #IMPLIED
 children IDREFS #IMPLIED >
]>

IDs and IDREFs

ID attribute: unique within the entire document.
An element can have at most one ID attribute.
No default (fixed default) value is allowed.

#required: a value must be provided
#implied: a value is optional

IDREF attribute: its value must be some other element’s ID value in the document.
IDREFS attribute: its value is a set, each element of the set is the ID value of some other
element in the document.

<person id="898" father="332" mother="336" children="982 984 986">

Some Conforming Data

<family>
 <person id="lisa" mother="marge" father="homer">
 <name> Lisa Simpson </name>
 </person>
 <person id="bart" mother="marge" father="homer">
 <name> Bart Simpson </name>
 </person>
 <person id="marge" children="bart lisa">
 <name> Marge Simpson </name>
 </person>
 <person id="homer" children="bart lisa">
 <name> Homer Simpson </name>
 </person>
</family>

Limitations of ID References

The attributes mother and father are references to IDs of other elements.
However, those are not necessarily person elements!
The mother attribute is not necessarily a reference to a female person.

An Alternative Specification

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE family [
 <!ELEMENT family (person)* >
 <!ELEMENT person (name, mother?, father?, children?) >
 <!ATTLIST person id ID #REQUIRED >
 <!ELEMENT name (#PCDATA) >
 <!ELEMENT mother EMPTY >
 <!ATTLIST mother idref IDREF #REQUIRED >
 <!ELEMENT father EMPTY >
 <!ATTLIST father idref IDREF #REQUIRED >
 <!ELEMENT children EMPTY >
 <!ATTLIST children idrefs IDREFS #REQUIRED >
]>

Empty sub-elements instead of attributes

The Revised Data

<family>
 <person id="marge">
 <name>Marge Simpson</name>
 <children idrefs="bart lisa"/>
 </person>
 <person id="homer">
 <name>Homer Simpson</name>
 <children idrefs="bart lisa" />
 </person>
 <person id="bart">
 <name>Bart Simpson</name>
 <mother idref="marge"/>
 <father idref="homer"/>
 </person>
 <person id="lisa">
 <name>Lisa Simpson</name>
 <mother idref="marge"/>
 <father idref="homer"/>
 </person>
</family>

Consistency of ID and IDREF Attribute Values

If an attribute is declared as ID
The associated value must be distinct, i.e., different elements (in the given document)
must have different values for the ID attribute.
Even if the two elements have different element names

If an attribute is declared as IDREF
The associated value must exist as the value of some ID attribute (no dangling
“pointers”)

Similarly for all the values of an IDREFS attribute
ID, IDREF and IDREFS attributes are not typed

Adding a DTD to the Document

A DTD can be

internal: The DTD is part of the document file
external: The DTD and the document are on separate files
An external DTD may reside

In the local file system (where the document is)

In a remote file system

Connecting a Document with its DTD

An internal DTD

<?xml version="1.0"?>
<!DOCTYPE db [<!ELEMENT ...> …]>
<db> ... </db>

A DTD from the local file system:

 <!DOCTYPE db SYSTEM "schema.dtd">

A DTD from a remote file system:

<!DOCTYPE db SYSTEM "http://www.schemaauthority.com/schema.dtd">

An XML document (with or without a DTD) is well-formed if

Tags are syntactically correct
Every tag has an end tag
Tags are properly nested
There is a root tag
A start tag does not have two occurrences of the same attribute

A well-formed XML document is valid if it conforms to its DTD, that is,

The document conforms to the regular-expression grammar
The attributes types are correct, and
The constraints on references are satisfied

Well-Formed XML Documents

Valid Documents

