
XML: A W3C standard to complement HTML
Two facets of XML: document-centric and data-centric
Motivation

HTML describes presentation
XML describes content

User defined tags to markup “content”
Text based format
Ideal as “Data Interchange” format.
Ideal for “distributed” applications (client-server)
All major database products have been retrofitted with facilities to store and construct XML
documents.
XML is closely related to object-oriented and so-called semi-structured data.

An HTML document (student list) to be displayed on the Web

<dl>
		<dt>John	Doe</dt>
		<dd>Id:	s111111111</dd>
		<dd>Address:			
				
							Number:	123
							Street:	Main
					
		</dd>
		...
		...
</dl>

XML Basics

I. Introduction

II. Semistructured Data

To make the previous student list suitable for machine consumption on the Web, it should have
the following characteristics:

Be object-like
Be schemaless (not guaranteed to conform exactly to any schema, but different objects
have some commonality among themselves
Be self-describing (some schema-like information, like attribute names, is part of data
itself)

Data with these characteristics are referred to as semistructured.

Set of label-value pairs.

{	name:	"Alan",	
		tel:	2157786,	
		email:	"a@abc.com"
}

Graph Model:

Nodes represent objects connected by labeled edges to values

The values themselves may be structures.

{	name:	{first:	"Alan",	last:	"Black"	},
		tel:	2157786,
		email:	"a@abc.com"
}

Duplicate labels allowed

{	name:	"Alan",	
		tel:	2157786,	
		tel:	2498762
}

The syntax is easily generalized to describe sets of objects

{	person:	{	name:	"Alan",	tel:	2157786,	email:	"a@abc.com"	},
		person:	{	name:	"Sara",	tel:	2136877,	email:	"sara@abc.com"	},
		person:	{	name:	"Fred",	tel:	7786312,	email:	"fred@abc.com"	}
}

All objects within a set need not have the same structure

{	person:{name:	"Alan",tel:	2157786,email:	"a@abc.com"	},
		person:{name:	{first:	“Sara”,last:	“Black”},email:	“s@abc.com”},
		person:{name:	“Fred”,	tel:	7786312,	height:	168}
}

Relational Data is easily represented

{
		r1:	{	row:	{a:	a1,	b:	b1,	c:	c1},
								row:	{a:	a2,	b:	b2,	c:	c2}
						},
						
		r2:	{	row:	{c:	c2,	d:	d2},
								row:	{c:	c3,	d:	d3},
								row:	{c:	c4,	d:	d4}
						}
}

Object-oriented data is also naturally represented (each node has a unique object id, either
explicitly mentioned or system generated)

Formal syntax for semi-structured data model

				<ssd-expr>					::==	<value>	|	oid	<value>	|	oid
				<value>								::==	atomicvalue	|	<complexvalue>
				<complexvalue>	::==	{	label:<ssd-expr>,	...,	label:<ssd-expr>	}

An oid value is said to be DEFINED if it appears before a value; otherwise it is said to be
USED
An ssd-expression is CONSISTENT if

an oid is defined at most once, and
If an oid is used, it must also be defined.

A flexible and powerful data model that is capable of representing data that does not have to
follow the strict rules of databases.

Non-self-describing (relational, object-oriented):

{	
		person:	&o1{	name:	"Mary",	age:	45,	child:	&o2,	child:	&o3	},													
		person:	&o2{	name:	"John",	age:	17,	relatives:	{	mother:	&o1,	sister:	&o3	}	},								
		person:	&o3{	name:	"Jane",	country:	"Canada",	mother:	&o1	}
}

				Data	part:
									(#12345,		["Students",			{["John	Doe",			s111111111,	[123,	"Main	St"]],
																																			["Joe	Public",	s222222222,	[321,	"Pine	St"]]	}
]
)

			Schema	part:
						PersonList[ListName:	String,
																		Contents:	[Name:	String,
																														Id:	String,
																														Address:	[Number:	Integer,	Street:	String]]
]

Semistructured Data Model

What is Self-describing Data?

Self-describing:

Attribute names embedded in the data itself, but are distinguished from values.

Doesn’t need schema to figure out what is what (but schema might be useful nonetheless)

(#12345,
					[ListName:	"Students",
							Contents:		{	[Name:	"John	Doe",
																						Id:		"s111111111",
																						Address:	[Number:	123,	Street:	"Main	St"]]	,
																				[Name:	"Joe	Public",
																						Id:		"s222222222",
																						Address:	[Number:	321,	Street:	"Pine	St"]]		}
]
)

Suitable for semi-structured data and has become a standard
Used to describe content rather than presentation
Differs from HTML in following ways:

New tags may be defined at will by the author of the document (extensible)
No semantics behind tags. For instance, HTML’s <table>…</table> means:
render contents as a table; in XML: doesn’t mean anything special.
Structures may be nested arbitrarily
XML document may contain an optional schema that describes its structure
Intolerant to bugs; Browsers will render buggy HTML pages but XML processors will
reject ill-formed XML documents.

XML Elements

element: piece of text bounded by user-defined matching tags:

		<person>
				<name>Alan</name>
				<age>42</age>
				<email>agb@abc.com</email>
		</person>

Note:

III. XML: eXtensible Markup Language

Element includes the start and end tag
No quotation marks around strings; XML treats all data as text. This is referred to as
PCDATA (Parsed Character Data).
Empty elements: <married></married> can be abbreviated to <married/>

Collections are expressed using repeated structures.

Ex. The collection of all persons on the 4th floor:

<table>	
		<description>People	on	the	4th	floor</description>
		<people>
				<person>
						<name>Alan</name><age>42</age<<email>agb@abc.com</email>
				</person>
				<person>
						<name>Patsy</name><age>36</age><email>ptn@abc.com</email>
				</person>
				<person>
						<name>Ryan</name><age>58</age><email>rgz@abc.com</email>
				</person>
		</people>
</table>

XML Attributes

Attributes define some properties of elements

Expressed as a name-value pairs

<product>
		<name	language="French">trompette	six	trous</name>
		<price	currency="Euro">420.12</price>
		<address	format="XLB56"	language="French">
				<street>31	rue	Croix-Bosset</street>
				<zip>92310</zip>
				<city>Sevres</city>
				<country>France</country>
		</address>
</product>

As with tags, user may define any number of attributes

Attribute values must be enclosed within quotation marks.

Attributes vs Elements

A given attribute can occur only once within a tag; Its value is always a string
On the other hand, tags defining elements/sub-elements can repeat any number of times
and their values may be string data or sub-elements
Same data may be encoded using attributes or elements or a combination of the two

<person	name="Alan"	age="42">
		<email>agb@abc.com</email>
</person>

or

<person	name="Alan">
		<age>42</age>
		<email>agb@abc.com</email>
</person>

XML References

Use id attribute to define a reference (similar to oids)

Use idref attribute (possibly within an empty element) to refer to a previously defined
reference.

Use idrefs attribute to refer to a set of references

	<state	id="s2">										--	defines	an	id	or	a	reference
				<scode>NE</scode>
				<sname>Nevada</sname>
		</state>

	<city	id="c2">
			<ccode>CCN</ccode>
			<cname>Carson	City</cname>
			<state-of	idref="s2"/>				--	refers	to	object	called	s2;
	</city>

Mixing Elements and Text

XML allows us to mix PCDATA and sub-elements within an element.

<person>
		This	is	my	best	friend
		<name>Alan</name>
		<age>42</age>
		I	am	not	sure	of	the	following	email	address
		<email>agb@abc.com</email>
</person>

This seems un-natural from a database perspective, but from a document perspective, this is
quite natural!

Order

The semi-structured data model is based on unordered collections, whereas XML is ordered.
The following two pieces of semi-structured data are equivalent:

				person:	{fname:	"John",	lname:	"Smith:}	
				person:	{lname:	"Smith",	fname:	"John"}

but the following two XML data are not:

				<person><fname>John</fname><lname>Smith</lname></person>
				<person><lname>Smith></lname><fname>John</fname></person>

To make matters worse (-:, attributes are NOT ordered in XML; Following two are equivalent:

				<person	fname="John"	lname="Smith"/>
				<person	lname="Smith"	fname="John"/>

Other XML Constructs

Comments:

				<!--	this	is	a	comment	-->

Processing Instruction (PI):

<?xml	version="1.0"?>
<?xml-stylesheet	type="text/xsl"	href="classes.xsl"?>

Such instructions are passed on to applications that process XML files.

CDATA (Character Data):

used to write escape blocks containing text that otherwise would be considered markup:

<![CDATA[<start>this	is	not	an	element</start>]]>

Entities:

< stands for <

Well-Formed XML Documents

An XML document is well-formed if

Tags are syntactically correct
Every tag has an end tag
Tags are properly nested
There is a root tag
A start tag does not have two occurrences of the same attribute

An XML document must be well-formed before it can be processed.

A well-formed XML document will parse into a node-labeled tree

Terminology

Elements are nested
Root element contains all others

XML Data Model (DOM Tree)

Document Object Model (DOM) – DOM Tree
Leaves are either empty or contain PCDATA
Unlike ssd tree model, nodes are labeled with tags.

