
Jason Brelloch and William Gimson

Overview
1. Introduction
2. History
3. Specifications

a. Structure
b. Communication
c. Datatypes

4. Command Overview
5. Advanced Capabilities
6. Advantages
7. Disadvantages
8. Twitter Example using Redis

Introduction
Redis is an open source, BSD licensed, key-
value store. It is often called a data structure
server because it can store data as strings,
lists, sets, sorted sets, and hashes.

Redis uses an "in-memory" dataset to maintain
it's speed, and periodically dumps the dataset
to disk to maintain persistence.

History
Redis was initially developed in 2009 by
Salvatore Sanfilippo to improve the
performance of a web analytics tool created by
his startup company.

In March 2010 VMWare hired Salvatore to work
full time on Redis. Since then, Redis has
grown quite a bit in popularity and is used by
many large tech companies.

Users of Redis

Structure
Server Startup
Sequence

Structure

Query Process

Communication
Basic structure:
*<number of arguments> CR LF

$<number of bytes of argument 1> CR LF

<argument data> CR LF

...

$<number of bytes of argument N> CR LF

<argument data> CR LF

Example:
*3
$3
SET
$5 "*3\r\n$3\r\nSET\r\n$5\r\nmykey\r\n$7\r\nmyvalue\r\n"
mykey
$7
myvalue

Datatypes - Strings
Strings are the most basic type of Redis value, and are binary safe, meaning
that any type of value, such as a JPEG image or serialized object, may be
stored as a String
Strings in Redis are extremely flexible, and allow programmers to...

● Use Strings as atomic counters using commands in the INCR family: INCR, DECR, INCRBY.
● Append to strings with the APPEND command.
● Use Strings as a random access vectors with GETRANGE and SETRANGE.
● Encode a lot of data in little space, or create a Redis backed Bloom Filter using GETBIT and SETBIT.

In our application key/value pairs of Strings are used to register users as well
as maintain data about users..
 // Register the user
 $userid = $r->incr("global:nextUserId");
 $r->set("username:$username:id",$userid);
 $r->set("uid:$userid:username",$username);
 $r->set("uid:$userid:password",$password);

http://redis.io/commands/incr
http://redis.io/commands/incr
http://redis.io/commands/decr
http://redis.io/commands/decr
http://redis.io/commands/incrby
http://redis.io/commands/incrby
http://redis.io/commands/append
http://redis.io/commands/append
http://redis.io/commands/getrange
http://redis.io/commands/getrange
http://redis.io/commands/setrange
http://redis.io/commands/setrange
http://redis.io/commands/getbit
http://redis.io/commands/getbit
http://redis.io/commands/setbit
http://redis.io/commands/setbit

Datatypes - Lists
Redis Lists are simply lists of Strings, sorted into insertion order.
New Strings can be pushed to the head or the tail of a List.

LPUSH mylist a # now the list is "a"
LPUSH mylist b # now the list is "b","a"
RPUSH mylist c # now the list is "b","a","c" (RPUSH was used this time)

Insertion and deletion of elements of a List is O(n) in the middle, but
approaches constant time at either end.
Fine grained control of list subsets is achieved through the LRANGE operator,
as well as trimming with LTRIM
In our application we used Lists to manage user posts.
foreach($followers as $fid) {

$r->lpush("uid:$fid:posts",$postId);
}
Push the post on the timeline, and trim the timeline to the
newest 1000 elements.
$r->lpush("global:timeline",$postId);
$r->ltrim("global:timeline",0,1000);

Datatypes - Lists
LRANGE Example -
redis> RPUSH mylist "one"
(integer) 1
redis> RPUSH mylist "two"
(integer) 2
redis> RPUSH mylist "three"
(integer) 3
redis> LRANGE mylist 0 0
1) "one"
redis> LRANGE mylist -3 2
1) "one"
2) "two"
3) "three"
redis> LRANGE mylist -100 100
1) "one"
2) "two"
3) "three"
redis> LRANGE mylist 5 10
(empty list or set)
redis>

Datatypes - Sets
In Redis Sets are unordered collections of Strings
Addition, removal and testing for member existence are handled in constant
time
Multiples of the same value, as in logical sets, are not allowed. This means that
the check 'add if not already a member' is never required
Union, intersection and difference of sets are supported
In our application we use Sets and Set operations to maintain members and
followers of members. This is the natural datatype for such operations since no
two users may have the same user name.
// Add us to the set of followers for the uid we chose to follow
$r->sadd("uid:".$uid.":followers", $User['id']);
// Add the uid of the person we chose to follow to our set of followers
$r->sadd("uid:".$User['id'].":following", $uid);

// Remove us from the set of followers of this uid
$r->srem("uid:".$uid.":followers", $User['id']);
// Remove this uid from the set of people we follow
$r->srem("uid:".$User['id'].":following", $uid);

Exactly like regular Redis sets, except that
every entry is associated with a 'score'
The set is ordered from smallest to largest
score
While members are unique, set scores are not
and may be repeated
Addition, removal and updating are very fast in
a sorted set

Datatypes - Sorted Sets

Datatypes - Hashes
Redis Hashes are maps between string fields and string
values, so they are the perfect data type to represent
objects.

Redis hashes can store 232-1 pairs and are extremely data
efficient. This means a relatively small Redis database
could potentially contain millions of individual objects.

Datatypes - Hashes
Benefits as reported by Instagram:
● Initially used basic key-value pair to store a media ID

and a user ID (1 million pairs took about 70 MB)
● In order to convert to hashes the developers decided to

make "buckets" of ID's. Each bucket or hash contained
1000 ID's. (1 million pairs was now contained in about
16 MB)

● Even with this reduction in size, search time maintained
constant O(1)

http://instagram-engineering.tumblr.com/post/12202313862/storing-hundreds-of-millions-of-simple-key-value-pairs

http://instagram-engineering.tumblr.com/post/12202313862/storing-hundreds-of-millions-of-simple-key-value-pairs
http://instagram-engineering.tumblr.com/post/12202313862/storing-hundreds-of-millions-of-simple-key-value-pairs

Command Reference
Keys Strings Hashes

DEL key [key ...]
DUMP key
EXISTS key
EXPIRE key seconds
EXPIREAT key timestamp
KEYS pattern
MIGRATE host port key destination-db
MOVE key db
OBJECT subcommand [arguments]
PERSIST key
PEXPIRE key milliseconds
PEXPIREAT key milliseconds-
timestamp
PTTL key
RANDOMKEY
RENAME key newkey
RENAMENX key newkey
RESTORE key ttl serialized-value
SORT key [BY pattern]
TTL key
TYPE key

APPEND key value
BITCOUNT key [start] [end]
BITOP operation destkey key [key
...]
DECR key
DECRBY key decrement
GET key
GETBIT key offset
GETRANGE key start end
GETSET key value
INCR key
INCRBY key increment
INCRBYFLOAT key increment
MGET key [key ...]
MSET key value [key value ...]
MSETNX key value [key value ...]
PSETEX key milliseconds value
SET key value [EX seconds]
SETBIT key offset value
SETEX key seconds value
SETNX key value
SETRANGE key offset value
STRLEN key

HDEL key field [field ...]
HEXISTS key field
HGET key field
HGETALL key
HINCRBY key field increment
HINCRBYFLOAT key field increment
HKEYS key
HLEN key
HMGET key field [field ...]
HMSET key field value [field value ...]
HSET key field value
HSETNX key field value
HVALS key

Command Reference
Lists Sets Sorted Sets

BLPOP key [key ...]
BRPOP key [key ...]
BRPOPLPUSH source
destination timeout
LINDEX key index
LINSERT key BEFORE|AFTER
pivot value
LLEN key
LPOP key
LPUSH key value [value ...]
LPUSHX key value
LRANGE key start stop
LREM key count value
LSET key index value
LTRIM key start stop
RPOP key
RPOPLPUSH source destination
RPUSH key value [value ...]
RPUSHX key value

SADD key member [member ...]
SCARD key
SDIFF key [key ...]
SDIFFSTORE destination key [key ...]
SINTER key [key ...]
SINTERSTORE destination key [key ...]
SISMEMBER key member
SMEMBERS key
SMOVE source destination member
SPOP key
SRANDMEMBER key [count]
SREM key member [member ...]
SUNION key [key ...]
SUNIONSTORE destination key [key
...]

ZADD key score member [score member
...]
ZCARD key
ZCOUNT key min max
ZINCRBY key increment member
ZINTERSTORE destination numkeys key
[key ...] [WEIGHTS weight [weight ...]]
ZRANGE key start stop [WITHSCORES]
ZRANGEBYSCORE key min max
[WITHSCORES] [LIMIT offset count]
ZRANK key member
ZREM key member [member ...]
ZREMRANGEBYRANK key start stop
ZREMRANGEBYSCORE key min max
ZREVRANGE key start stop
[WITHSCORES]
ZREVRANGEBYSCORE key max min
[WITHSCORES] [LIMIT offset count]
ZREVRANK key member
ZSCORE key member
ZUNIONSTORE destination numkeys key
[key ...]

Advanced Capabilities
● Transactions

○ Redis transactions are groups of command that are batched together
to be executed together (MULTI ... EXEC)

○ They have two very important guarantees.
i. The commands will be executed in order and no other client will

be able to execute commands in between
ii. Either all commands will execute successfully or none at all will

○ There is also a WATCH command that will watch a variable and
ensure that it remains unchanged until all operations have been
successfully executed
i. WATCH key1

myVal = GET key1
myVal = myVal + 1
MULTI
SET key1 myVal
EXEC

Advanced Capabilities
● Pub/Sub

○ A built in messaging system for Redis
○ Users can subscribe to a "channel" to retrieve data

that is published to that channel by other users
○ SUBSCRIBE channelName

PUBLISH channelName thingToPublish
● Scripting

○ Redis supports execution of stored Lua scripts

Advantages
● Performance
● Atomicity
● Advanced Datatypes
● Support (documentation/clients)

Performance
● Redis can handle a large number of

requests very quickly
● Benchmarks were performed using one

Redis server and 50 simulated clients
● Results:

○ >100k successful sets/second
○ >80k successful gets/second

Atomicity
Redis' backend is designed using mostly single
threaded programming. As a result all primitive
commands are atomic in nature.

This make's application level code much easier to
program because there is no need to worry about
command order when it hits the server.

This also makes Redis' internals are much simpler and
since it is open source, much easier to modify for
individual situations.

Datatypes
Strings, Lists, and Sets are fundamental data
types that can be used to store a wide variety
of data models.

Also all strings in Redis are binary safe,
meaning objects can be serialized and stored
directly in the database.

Support
● Redis has clients in 28 different languages
● Due to Redis being both open-source and

supported by VMWare, the documentation is
quite extensive

● All primitive commands also have the time
complexity in big O notation written in the
documentation, which can be very helpful
when planning algorithms and figuring out
query performance

Disadvantages
● Memory

○ Partitioning
○ Hashes
○ Bit/Byte Operations

● Persistence
○ Replication

● Security

Memory
Redis is an "in-memory" dataset. This means
that as the dataset expands it will take up more
and more memory. Problems:
● Memory on servers is expensive
● 32 bit Redis implementations are limited to 4GB of total

memory
● 64 bit Redis implementations have larger data sets

because each key and value have to take up at least 64
bits - more wasted space

How do we solve these problems?

Partitioning
Partitioning splits the dataset across multiple Redis instances
allowing the dataset to utilize the sum total of the memory,
processing power, and network connections. The data can be
split in several different ways.
● range partitioning - each key is mapped to a specific Redis instance
● hash partitioning - a hash function is used to generate a number for

each key
It can also be accessed in several different ways.
● client side - the client determines where to send the data
● proxy assisted - a proxy server determines where to send the data
● query routing - each Redis instance takes any data and routes it to

the correct instance

Other Optimizations
● Hashes

○ Data in hashes is stored much more efficiently than
in regular groups of keys and values

○ Example - If there are several users, each with
names/addresses/emails/etc., each user can be a
hash containing all that data

● Bit/Byte level operations
○ Redis has support for querying individual bits and

bytes of at a specific key
○ GETRANGE/SETRANGE can be used manipulate

bytes of data, GETBIT/SETBIT are for bits
○ 100 million users gender data can be stored in 12MB

of memory using this approach

Persistence
Reddis maintains persistence in two possible
ways.
1. RDB persistence - Every so often Redis will spawn

another process that will begin writing the database to
disc. Once that write is complete, the newly written
database will replace the old one on the disc.

2. AOF persistence - Redis logs every command that is
done to the server, and then after a server restart it
replays them to get to the same point

It is also possible to do a combination of the
two.

1. RDB persistence - Any operations done in between a
write to disc and a crash/restart will be lost. Write
operations can also be cpu intensive if there is a big
dataset and the cpu power is lacking. The write
operations also take up memory which can be a
problem

2. AOF persistence - the AOF files tend to get pretty large,
and can also slow down redis because the writing is not
passed off to a new thread

There are some projects to combine the two into one
unified persistence plan, but this is not supported by core
Redis.

How do we solve these problems?

Persistence - Problems

Replication is done by duplicating the database across
multiple Redis instances. The instances are set up with a
1 Master, n Slaves relationship.
Advantages:
● A lot less memory and cpu required
● Data requests can be distributed to slaves (Read-only)
● If the Master instance goes down, a slave can

automatically become the new Master
Disadvantages:
● Cost

Replication

Redis is designed to be accessed by trusted clients in a
trusted environment.
● generally not a good idea to expose it directly to the

internet
● no SSL support
● no encryption
● only very basic authentication support (default turned

off)

Security

Redis Clients
Redis has clients for the following languages:

Most languages have several clients. We will
show you an example Redis project using the
PHP client called Predis.

ActionScript C C# C++ Clojure Common Lisp D

Dart emacs lisp Erlang Fancy Go Haskell haXe

Io Java Lua Node.js Objective-C Perl PHP

Pure Data Python Ruby Scala Scheme Smalltalk Tcl

A Word About Predis
Predis is a popular PHP library for Redis, which
makes development using these technologies
together easier by providing 'syntactic sugar' for
most Redis operations. An Example...

foreach($followers as $fid) {
 $r->lpush("uid:$fid:posts",$postId);
}

Twitter Example
We created an application inspired by twitter in
which users can post and view messages, as
well as follow other members, viewing their
posts

The End
Questions?

