
A Graph Database Intro

Team members: Jiepeng Zhang, Zhenhua Li & Sha Liu

 1. Introduction to Neo4j
 What is Graph Database?

 What is Neo4j?

 Why Neo4j?

 How to use Neo4j?

 2. Proposed Application

 3. Application Example

Graphs Everywhere…

 A graph database?

 No: not for storing charts & graphs, or vector
artwork

 Yes: for storing data that is structured as a graph

 remember linked lists, tree?

 graphs are the generalized connected data structure

 You know relational

 Now consider relationships…

 A (Graph) – records data in- (Nodes)

 A (Graph) – records data in – (Relationships)

 (Nodes) are – organized by – (Relationships)

 (Nodes & Relationships) – have – (Properties)

G = (V, E)

 A (Traversal) – navigates – a (Graph)

 A (Traversal) – identifies – (Paths)

 (Paths) – order – (Nodes)

 An (Index) is a –special- (Traversal)

 An (Index) – maps from properties –to
either – (Nodes or Relationships)

 We’re talking about a Property Graph

Properties (each a key + value)

 Optimized for the connections between
records

 Really, really fast at querying across records

 A database: transactional with the usual
operations

 “ A relational database may tell you the average age of
everyone in this session,

 but a graph database will tell you who is most likely to buy
you a beer.”

◦ A robust and high-performance graph database

◦ Full enterprise deployment or lightweight projects

 True ACID transactions (Atomicity,
Consistency, Isolation, Durability)

 High availability

 Scales to billions of nodes and relationships

 High speed querying through traversals

Q: What are graphs good for?

A: highly – connected data

 Recommendations

 Business intelligence

 Social computing

 Web analytics

 Geospatial

 And much more!

 A sample social graph with 1000 persons

 Average 50 friends per person

 pathExists(a, b) limited to depth 4

 Caches warmed up to eliminate disk I/O

persons Query time

Relational database 1,000 2000ms

Neo4j 1,000

Neo4j 1,000,000

2ms
 2ms

 Nodes

 Relationships

 Properties

 Paths

 Traversal

 Server

 Language

 The fundamental units that form a graph are nodes and
relationships.

 Nodes are often used to represent entities.

Eg. A single node with
one property

 A relationship connects two nodes, and is always directed,
can be viewed as outgoing or incoming relative to a node.

 Relationships allow for finding

related data.

 Both nodes and relationships can have properties.

 Properties are key-value pairs where the key is a
string. Property values can be either a primitive or
an array of one primitive type.

 A path is one or more nodes with connecting
relationships, typically retrieved as a query or
traversal result. Eg. A path of length one

 Visiting its nodes, following relationships according to
some rules.
◦ Depth First / Breadth First

Name:
Steve Vinoski

Name:
Michael Hunger

PRESENTED_WITH

date: today

 Gremlin – graph scripting
◦ Groovy based Graph Traversal Language

◦ Send Gremlin scripts to the Neo4j Server

◦ Scripts are executed on the server database

◦ Results are returned as Neo4j Node and Relationship
representations.

Try it out:
 g- the graph itself

 g.v(0) – node 0
 g.v(0).in – nodes connected to Node 0
 g.v(0).in.name – the names of those Nodes
 g.v(I).outE{it.lable == “KNOWS”} – the outgoing “KNOWS”
 g.v(I).outE{it.label == “KNOWS”}.inV.name – knows who?

Details:
https://github.com/tinkerpop/gremlin/

 Cypher – SQL-like querying
◦ WHERE and ORDER BY

 Pattern-matching

 Focuse on the clarity of expressing what to retrieve
from a graph, not how to do it

 Clauses
◦ START: Starting points in the graph, obtained via index

lookups or by element IDs.
◦ MATCH: The graph pattern to match, bound to the

starting points in START.
◦ WHERE: Filtering criteria.
◦ RETURN: What to return.
◦ CREATE: Creates nodes and relationships.
◦ DELETE: Removes nodes, relationships and properties.
◦ SET: Set values to properties.
◦ FOREACH: Performs updating actions once per element

in a list.
◦ WITH: Divides a query into multiple, distinct parts.

 Create Graph with Cypher

http://console.neo4j.org/ Demo:

http://console.neo4j.org/
http://console.neo4j.org/

 Server
◦ http://localhost:7474/webadmin

•Embedded in application
•REST API

•HTTP protocol and JSON
•Insert, delete and access data easily from any
programming language

•Ex. Create the nodes
•Send a HTTP request containing a JSON
payload to the server
•The server will have created a new node in
the database
•Responded with a 201 Created response and
a Location header with the URI of the newly
created node

Java, JavaScript, Node.js, Pythoh, Rails, PHP,
.NET

•Embedded in application
•REST API

 Documentation
 docs.neo4j.org-tutorials + reference

 Neo4j in Action

 Good Relationships

 Get Neo4j

 http://www.neo4j.org/download

 https://addons.heroku.com/neo4j

http://www.neo4j.org/download
https://addons.heroku.com/neo4j

 A Movie Recommendation System

 Dataset

 The graph database ---Neo4j

 The graph traversal language --- Gremlin

http://www.grouplens.org/node/73

 Parse the raw MovieLens data according to
the graph schema.

 Recommendation Algorithms

 Collaborative filtering

 --- The rating/liking/preference behavior of users
is correlated in order to recommend the favorites of
one user to another , similar user.

 Content-based recommendation

 --- If a particular item is liked, then its features are
analyzed in order to find other items with
analogous features.

 I like the movies you like, what other movies
do you like that I haven’t seen?

 Let start from Toy Story.

 Which users have Toy Story more than 3
stars?

 The traversal doesn’t yield useful
information. However, when it is used within
a larger path expression, collaborative
filtering is effected.

 1. Start form Toy Story

 2. Get the incoming rated edges

 3. Filter out those edges whose star
property is less than 4.

 4. Get the tail user vertices of the remaining
edges.

 5. Get the rating edges of those user
vertices

 6. Filter out those edges whose star
property is less than 4.

 7. Get the head movie vertices of the
remaining edges

 8. Get the string title property of those
movie vertices

 Example: Which users gave Toy Story more than 3 stars and what
other movies did they give more than 3 stars to?

v.inE('rated').filter{it.getProperty('stars') > 3}.outV.outE('rated').filter{it.getProperty('stars')
> 3}.inV.title

highly co-rated

 These atomic-steps together can be bundled
into a user defined step. --- “corated”

 Will return only 5 results.

 Given that there are 268,493 highly rated paths
from Toy Story to other movies and only 3,353 of
those movies are unique, it is possible to use these
duplicates as a ranking mechanism–ultimately, a
recommendation.

 Which movies are most highly co-rated with Toy
Story?

gremlin>m=[:]
gremlin> v.corated(3).title.groupCount(m) >> -1
gremlin> m.sort{a,b -> b.value <=> a.value}[0..9]

 Mixing in Content- based Recommendation

 A traversal that yields Toy Story good movies
of the same genre.

 Which movies are most highly co-rated with
Toy Story that share a genre/all genres with
Toy Story?

gremlin> m = [:]
gremlin> x = [] as Set
gremlin> v.out('hasGenera').aggregate(x).back(2).corated(3).filter{it !=
v}.filter{it.out('hasGenera')>>[] as Set == x}.title.groupCount(m) >> -1
==>null
gremlin> m.sort{a,b -> b.value <=> a.value}[0..9]

Yeah! Got Movies Recommendations!

http://neoflix.herokuapp.com/

 Neo4j is a robust transactional property graph
database. Due to its graph data model, Neo4j is
highly agile and blazing fast. For connected data
operations, Neo4j runs a thousand times faster than
relational databases.

 More than 20 of the Global 2000, hundreds of
startups and thousands of community members use
Neo4j in a wide variety of use cases such as social
applications, recommendation engines, fraud
detection, resource authorization, network & data
center management and much more.

