
A Graph Database Intro

Team members: Jiepeng Zhang, Zhenhua Li & Sha Liu

 1. Introduction to Neo4j
 What is Graph Database?

 What is Neo4j?

 Why Neo4j?

 How to use Neo4j?

 2. Proposed Application

 3. Application Example

Graphs Everywhere…

 A graph database?

 No: not for storing charts & graphs, or vector
artwork

 Yes: for storing data that is structured as a graph

 remember linked lists, tree?

 graphs are the generalized connected data structure

 You know relational

 Now consider relationships…

 A (Graph) – records data in- (Nodes)

 A (Graph) – records data in – (Relationships)

 (Nodes) are – organized by – (Relationships)

 (Nodes & Relationships) – have – (Properties)

G = (V, E)

 A (Traversal) – navigates – a (Graph)

 A (Traversal) – identifies – (Paths)

 (Paths) – order – (Nodes)

 An (Index) is a –special- (Traversal)

 An (Index) – maps from properties –to
either – (Nodes or Relationships)

 We’re talking about a Property Graph

Properties (each a key + value)

 Optimized for the connections between
records

 Really, really fast at querying across records

 A database: transactional with the usual
operations

 “ A relational database may tell you the average age of
everyone in this session,

 but a graph database will tell you who is most likely to buy
you a beer.”

◦ A robust and high-performance graph database

◦ Full enterprise deployment or lightweight projects

 True ACID transactions (Atomicity,
Consistency, Isolation, Durability)

 High availability

 Scales to billions of nodes and relationships

 High speed querying through traversals

Q: What are graphs good for?

A: highly – connected data

 Recommendations

 Business intelligence

 Social computing

 Web analytics

 Geospatial

 And much more!

 A sample social graph with 1000 persons

 Average 50 friends per person

 pathExists(a, b) limited to depth 4

 Caches warmed up to eliminate disk I/O

persons Query time

Relational database 1,000 2000ms

Neo4j 1,000

Neo4j 1,000,000

2ms
 2ms

 Nodes

 Relationships

 Properties

 Paths

 Traversal

 Server

 Language

 The fundamental units that form a graph are nodes and
relationships.

 Nodes are often used to represent entities.

Eg. A single node with
one property

 A relationship connects two nodes, and is always directed,
can be viewed as outgoing or incoming relative to a node.

 Relationships allow for finding

related data.

 Both nodes and relationships can have properties.

 Properties are key-value pairs where the key is a
string. Property values can be either a primitive or
an array of one primitive type.

 A path is one or more nodes with connecting
relationships, typically retrieved as a query or
traversal result. Eg. A path of length one

 Visiting its nodes, following relationships according to
some rules.
◦ Depth First / Breadth First

Name:
Steve Vinoski

Name:
Michael Hunger

PRESENTED_WITH

date: today

 Gremlin – graph scripting
◦ Groovy based Graph Traversal Language

◦ Send Gremlin scripts to the Neo4j Server

◦ Scripts are executed on the server database

◦ Results are returned as Neo4j Node and Relationship
representations.

Try it out:
 g- the graph itself

 g.v(0) – node 0
 g.v(0).in – nodes connected to Node 0
 g.v(0).in.name – the names of those Nodes
 g.v(I).outE{it.lable == “KNOWS”} – the outgoing “KNOWS”
 g.v(I).outE{it.label == “KNOWS”}.inV.name – knows who?

Details:
https://github.com/tinkerpop/gremlin/

 Cypher – SQL-like querying
◦ WHERE and ORDER BY

 Pattern-matching

 Focuse on the clarity of expressing what to retrieve
from a graph, not how to do it

 Clauses
◦ START: Starting points in the graph, obtained via index

lookups or by element IDs.
◦ MATCH: The graph pattern to match, bound to the

starting points in START.
◦ WHERE: Filtering criteria.
◦ RETURN: What to return.
◦ CREATE: Creates nodes and relationships.
◦ DELETE: Removes nodes, relationships and properties.
◦ SET: Set values to properties.
◦ FOREACH: Performs updating actions once per element

in a list.
◦ WITH: Divides a query into multiple, distinct parts.

 Create Graph with Cypher

http://console.neo4j.org/ Demo:

http://console.neo4j.org/
http://console.neo4j.org/

 Server
◦ http://localhost:7474/webadmin

•Embedded in application
•REST API

•HTTP protocol and JSON
•Insert, delete and access data easily from any
programming language

•Ex. Create the nodes
•Send a HTTP request containing a JSON
payload to the server
•The server will have created a new node in
the database
•Responded with a 201 Created response and
a Location header with the URI of the newly
created node

Java, JavaScript, Node.js, Pythoh, Rails, PHP,
.NET

•Embedded in application
•REST API

 Documentation
 docs.neo4j.org-tutorials + reference

 Neo4j in Action

 Good Relationships

 Get Neo4j

 http://www.neo4j.org/download

 https://addons.heroku.com/neo4j

http://www.neo4j.org/download
https://addons.heroku.com/neo4j

 A Movie Recommendation System

 Dataset

 The graph database ---Neo4j

 The graph traversal language --- Gremlin

http://www.grouplens.org/node/73

 Parse the raw MovieLens data according to
the graph schema.

 Recommendation Algorithms

 Collaborative filtering

 --- The rating/liking/preference behavior of users
is correlated in order to recommend the favorites of
one user to another , similar user.

 Content-based recommendation

 --- If a particular item is liked, then its features are
analyzed in order to find other items with
analogous features.

 I like the movies you like, what other movies
do you like that I haven’t seen?

 Let start from Toy Story.

 Which users have Toy Story more than 3
stars?

 The traversal doesn’t yield useful
information. However, when it is used within
a larger path expression, collaborative
filtering is effected.

 1. Start form Toy Story

 2. Get the incoming rated edges

 3. Filter out those edges whose star
property is less than 4.

 4. Get the tail user vertices of the remaining
edges.

 5. Get the rating edges of those user
vertices

 6. Filter out those edges whose star
property is less than 4.

 7. Get the head movie vertices of the
remaining edges

 8. Get the string title property of those
movie vertices

 Example: Which users gave Toy Story more than 3 stars and what
other movies did they give more than 3 stars to?

v.inE('rated').filter{it.getProperty('stars') > 3}.outV.outE('rated').filter{it.getProperty('stars')
> 3}.inV.title

highly co-rated

 These atomic-steps together can be bundled
into a user defined step. --- “corated”

 Will return only 5 results.

 Given that there are 268,493 highly rated paths
from Toy Story to other movies and only 3,353 of
those movies are unique, it is possible to use these
duplicates as a ranking mechanism–ultimately, a
recommendation.

 Which movies are most highly co-rated with Toy
Story?

gremlin>m=[:]
gremlin> v.corated(3).title.groupCount(m) >> -1
gremlin> m.sort{a,b -> b.value <=> a.value}[0..9]

 Mixing in Content- based Recommendation

 A traversal that yields Toy Story good movies
of the same genre.

 Which movies are most highly co-rated with
Toy Story that share a genre/all genres with
Toy Story?

gremlin> m = [:]
gremlin> x = [] as Set
gremlin> v.out('hasGenera').aggregate(x).back(2).corated(3).filter{it !=
v}.filter{it.out('hasGenera')>>[] as Set == x}.title.groupCount(m) >> -1
==>null
gremlin> m.sort{a,b -> b.value <=> a.value}[0..9]

Yeah! Got Movies Recommendations!

http://neoflix.herokuapp.com/

 Neo4j is a robust transactional property graph
database. Due to its graph data model, Neo4j is
highly agile and blazing fast. For connected data
operations, Neo4j runs a thousand times faster than
relational databases.

 More than 20 of the Global 2000, hundreds of
startups and thousands of community members use
Neo4j in a wide variety of use cases such as social
applications, recommendation engines, fraud
detection, resource authorization, network & data
center management and much more.

