
A Report on Mongo DB

Introduction:

 MongoDB is an open source document-oriented database system. It is part of the

NoSQL family of database systems. It provides high performance, high availability, and easy

scalability.

Features:

● Scalability

● Document based queries

● Map-Reduce

● GridFS
● Indexing

● Geospatial indexing

Data Modelling:

MongoDB server can contain multiple databases. Each database has collections which

are analogous to tables in relational databases. Each of these collections contains documents

that are analogous to rows in relational databases. Each document contains fields that are

relevant and actually resemble the objects of the application. Data in MongoDB is schemaless.

The implications of this is

● documents in the same collection may not necessarily have the same set of fields or

structure, and

● common fields in a collection’s documents may hold different types of data.

 Data modeling decisions involve determining how to structure the documents to model

the data effectively. The primary decision is whether to embed or to use references.

○ Embedding: To de-normalize data, store two related pieces of data in a single

document. For relations such as “contains” relationships between entities, one-

to-many relationships where the “many” objects always appear with or are

viewed in the context of their parent documents.

○ Referencing: To normalize data, store references between two documents to

indicate a relationship between the data represented in each document.

Referencing is appropriate in cases such as, representation of more complex

many-to-many relationships, modelling of large hierarchical data sets.

GridFS:

GridFS is the file system layer built on top of MongoDB. GridFS is the specification for chunking

files. Instead of storing a large file in a single document, it is chunked into smaller files and each

of them are stored as separate documents.

GridFS stores these in two collections. One collection stores the chunks and other stores the

metadata related to the file. Hence the metadata of the file is tightly coupled with the data file.

When a query is made to the GridFS stored file, the driver or client will reassemble the chunks.

The advantages of chunking mechanism are -

● When a part of file is required to be accessed, then the appropriate chunk is loaded into

memory

● Range operation queries can be performed easily

● Arbitrary sections of the files can be accessed

Replication:

 Replication in mongoDB ensures automated failover, redundancy and backup.

It occurs in Replica Set. Replica Set will consists of two or more instances of mongod. One

among them is designated as Primary and others are secondary. Clients direct Writes to

Primary.

In an application that involves intensive Reads from database, one mongod instance

which is primary, holds all the data. Other secondary mongod instances in the Replica Set will

replicate the contents of the primary asynchronously and let more clients read from database.

Failover mechanism is achieved when the primary goes offline and other members of

the Replica Set can connect to each other, a new primary is elected from the secondary

instances based on the pre assigned priority to the secondary instances. If two secondary

servers are assigned same priority then the secondary instance whose dataset is most up to

date is chosen as the primary instance. When the previously designated primary comes back

online, it becomes a secondary instance. Figure below shows the Replication mechanism in

MongoDB.

Figure: Represents the Replication process in MongoDB

Sharding:

Sharding is the MongoDB way of realizing scaling. It distributes a single logical database

across multiple machines.

Sharding occurs in a sharding cluster. The components are -

Shards: A shard holds a subset of the collections data. It is either an instance of mongod(the

MongoDB Server) or Replication Set.

Config Servers: It holds metadata of the cluster. It maps metadata to the chunks that the shard

holds. These could be single or multiple instances of mongod.

mongos instances: It routes the reads and writes to application transparently and to shards. It

does not persist the data by itself.

Consider a database collection that is larger than the existing storage. This single

collection is divided into chunks that are provided with a shard key. A process called balancer

will distribute the chunks among the shards thus balancing the load. The Config servers will hold

the metadata of the shard key and the mapping to the corresponding shard. The monogos will

route the reads and writes to appropriate shards by consulting Config servers.

Advantages of Sharding -

● Automatic failover

● Auto balancing of load

● Facilitates additional write capacity

Figure: Sharding cluster

ACID Properties:

● Atomicity: Ensured at single document level.

● Consistency: Eventually consistent reads, from a replica set are only possible with a
write concern that permits reads from secondary members.

● Isolation: The multi update/write to multiple documents is not atomic and may interleave
with other write operations. The isolation operator isolates the update/write operation
and blocks other write operations during update.

● Durability:

○ MongoDB uses write ahead logging to an on-disk journal to guarantee write
operation, durability and to provide crash resiliency.

○ Before applying a change to the data files, MongoDB writes the change operation
to the journal.

○ there is an up-to 100 millisecond window between journal commits where the
write operation is not fully durable.

○ Requiring journaled write concern in a replica set only requires a journal commit
of the write operation to the primary of the set regardless of the level of replica
acknowledged write concern.

Aggregation:

 Aggregation Framework provides a means to calculate the aggregated values. Using

aggregation, we can add computed fields, create new virtual sub-objects, and extract sub-fields

into the top-level of results. Aggregation is provided by following two methods -

● Pipelines: Documents from a collection pass through an aggregation pipeline, the output

of one process is provided as input to the next process.

● Expressions: produce output documents based on calculations performed on input

documents.

 Complex aggregation tasks are handled by a method called Map-Reduce.

Programing in Mongo DB:

Insert, delete and update operations in Mongo DB.

Insert

Primary method to insert a document or documents into a Mongo DB collection

Syntax: db.collection.insert(<document>)

Corresponding Operation in SQL: The insert() method is analogous to the INSERT statement.

Example:

If the collection ‘bios’ does not exist, then the insert operation will create this collection:

db.bios.insert(

 {

 _id: 1,

 name: { first: 'John', last: 'Backus' },

 birth: new Date('Dec 03, 1924'),

 death: new Date('Mar 17, 2007'),

 contribs: ['Fortran', 'ALGOL', 'Backus-Naur Form', 'FP'],

 awards: [

 {

 award: 'W.W. McDowell Award',

 year: 1967,

 by: 'IEEE Computer Society'

 },

 {

 award: 'National Medal of Science',

 year: 1975,

 by: 'National Science Foundation'

 },

 {

 award: 'Turing Award',

 year: 1977,

 by: 'ACM'

 },

 {

 award: 'Draper Prize',

 year: 1993,

 by: 'National Academy of Engineering'

 }

]

 }

)

To confirm the insert query the bios collection: db.bios.find(). It will return the content of the

collection.

If the document does not contain an id, we can find doing

db.bios.find({ name: { first: 'John', last: 'McCarthy' } })

The returned value document contains an _id field with the generated ObjectId value:

{

"_id" : ObjectId("50a1880488d113a4ae94a94a"),

"name" : { "first" : "John", "last" : "McCarthy" },

"birth" : ISODate("1927-09-04T04:00:00Z"),

"death" : ISODate("2011-12-24T05:00:00Z"),

"contribs" : ["Lisp", "Artificial Intelligence", "ALGOL"],

"awards" : [

 {

 "award" : "Turing Award",

 "year" : 1971,

 "by" : "ACM"

 },

 {

 "award" : "Kyoto Prize",

 "year" :1988,

 "by" : "Inamori Foundation"

 },

 {

 "award" : "National Medal of Science",

 "year" : 1990,

 "by" : "National Science Foundation"

 }

]

}

We can also pass an array of documents to the insert() method, the insert() performs a bulk

insert into a collection.

Inserting using save()

The save() method performs an insert if the document to save does not contain the _id field.

db.bios.save(

 {

 name: { first: 'Guido', last: 'van Rossum'},

 birth: new Date('Jan 31, 1956'),

 contribs: ['Python'],

 awards: [

 {

 award: 'Award for the Advancement of Free Software',

 year: 2001,

 by: 'Free Software Foundation'

 },

 {

 award: 'NLUUG Award',

 year: 2003,

 by: 'NLUUG'

 }

]

 }

)

Delete

The remove() method has the following syntax:

db.collection.remove(<query>, <justOne>)

Corresponding operation in SQL:

The remove() method is analogous to the DELETE statement, and:

the <query> argument corresponds to the WHERE statement, and

the <justOne> argument takes a Boolean and has the same effect as LIMIT 1.

remove() deletes documents from the collection. If you do not specify a query, remove()

removes all documents from a collection, but does not remove the indexes. [1]

For large deletion operations, it may be more efficient to copy the documents that you want to

keep to a new collection and then use drop() on the original collection.

Deletes all documents from the bios collection where the subdocument name contains a field

first whose value starts with G:

db.bios.remove({ 'name.first' : /^G/ })

The following operation deletes a single document from the bios collection where the turing field

equals true: db.bios.remove({ turing: true }, 1)

Delete all documents from the bios collection:

db.bios.remove()

Update

Syntax: db.collection.update(<query>, <update>, <options>)

Corresponding operation in SQL The update() method corresponds to the UPDATE operation in

SQL, and:

<query> argument corresponds to the WHERE statement, and

<update> corresponds to the SET ... statement.

The default behavior of the update() method updates a single document and would correspond

to the SQL UPDATE statement with the LIMIT 1.

With the multi option, update() method would correspond to the SQL UPDATE statement

without the LIMIT clause.

Modify

Use $set to update a value of a field.

The following operation queries the bios collection for the first document that has an _id field

equal to 1 and sets the value of the field middle, in the subdocument name, to Warner:

db.bios.update(

 { _id: 1 },

 {

 $set: { 'name.middle': 'Warner' },

 }

)

Add new field

If the <update> argument contains fields not currently in the document, the update() method

adds the new fields to the document.

The following operation queries the bios collection for the first document that has an _id field

equal to 3 and adds to that document a new mbranch field and a new aka field in the

subdocument name:

db.bios.update(

 { _id: 3 },

 { $set: {

 mbranch: 'Navy',

 'name.aka': 'Amazing Grace'

 }

 }

)

Remove field

If the <update> argument contains $unset operator, the update() method removes the field from

the document.

The following operation queries the bios collection for the first document that has an _id field

equal to 3 and removes the birth field from the document:

db.bios.update(

 { _id: 3 },

 { $unset: { birth: 1 } }

)

Upsert flag

The update() operation accepts an “upsert” flag that modifies the behavior of update() from

updating existing documents, to inserting data.

These update() operations with the upsert flag eliminate the need to perform an additional

operation to check for existence of a record before performing either an update or an insert

operation. These update operations have the use <query> argument to determine the write

operation:

If the query matches an existing document(s), the operation is an update.

If the query matches no document in the collection, the operation is an insert.

An upsert operation has the following syntax:

db.collection.update(<query>,

 <update>,

 { upsert: true })

If no document matches the <query> argument, the upsert performs an insert.

If the <update> argument includes only field and value pairs, the new document contains the

fields and values specified in the <update> argument.

If query does not include an _id field, the operation adds the _id field and generates a unique

ObjectId for its value.

db.bios.update(

 { name: { first: 'Dennis', last: 'Ritchie'} },

 {

 name: { first: 'Dennis', last: 'Ritchie'},

 birth: new Date('Sep 09, 1941'),

 death: new Date('Oct 12, 2011'),

 contribs: ['UNIX', 'C'],

 awards: [

 {

 award: 'Turing Award',

 year: 1983,

 by: 'ACM'

 },

 {

 award: 'National Medal of Technology',

 year: 1998,

 by: 'United States'

 },

 {

 award: 'Japan Prize',

 year: 2011,

 by: 'The Japan Prize Foundation'

 }

]

 },

 { upsert: true }

)

Insert a document that contains update operator expressions

If no document matches the <query> argument, the update operation inserts a new document.

If the <update> argument includes only update operators, the new document contains the fields

and values from <query> argument with the operations from the <update> argument applied.

The following operation inserts a new document into the bios collection:

db.bios.update(

 {

 _id: 7,

 name: { first: 'Ken', last: 'Thompson' }

 },

 {

 $set: {

 birth: new Date('Feb 04, 1943'),

 contribs: ['UNIX', 'C', 'B', 'UTF-8'],

 awards: [

 {

 award: 'Turing Award',

 year: 1983,

 by: 'ACM'

 },

 {

 award: 'IEEE Richard W. Hamming Medal',

 year: 1990,

 by: 'IEEE'

 },

 {

 award: 'National Medal of Technology',

 year: 1998,

 by: 'United States'

 },

 {

 award: 'Tsutomu Kanai Award',

 year: 1999,

 by: 'IEEE'

 },

 {

 award: 'Japan Prize',

 year: 2011,

 by: 'The Japan Prize Foundation'

 }

]

 }

 },

 { upsert: true }

)

Update operations with save()

The save() method is identical to an update operation with the upsert flag performs an upsert if

the document to save contains the _id field. To determine whether to perform an insert or an

update, save() method queries documents on the _id field.

The following operation performs an upsert that inserts a document into the bios collection since

no documents in the collection contains an _id field with the value 10:

db.bios.save(

 {

 _id: 10,

 name: { first: 'Yukihiro', aka: 'Matz', last: 'Matsumoto'},

 birth: new Date('Apr 14, 1965'),

 contribs: ['Ruby'],

 awards: [

 {

 award: 'Award for the Advancement of Free Software',

 year: '2011',

 by: 'Free Software Foundation'

 }

]

 }

)

Java example

import com.mongodb.*;
import java.util.ArrayList;
public class MongoExample {
 // in the URI. Ex: "mongodb://username:password@localhost:27017/mongoquest"
 private static String uriString = "mongodb://localhost:27017/mongoquest";
public static void main(String[] args){
 // We opt to use the MongoURI class to access MongoDB connection methods.
 MongoURI uri = new MongoURI(uriString);
 DB database = null;
 DBCollection locations = null;
 try {
 // The MongoURI class can connect and return a database given the URI above.
 database = uri.connectDB();
 // If running in auth mode and have provided user info in your URI, you can use

this line.
 // database.authenticate(uri.getUsername(), uri.getPassword());
 } catch(UnknownHostException uhe) { System.out.println("UnknownHostException:

" + uhe);}
catch(MongoException me) { System.out.println("MongoException: " + me);}

if (database != null) {
 locations = database.getCollection("locations"); // Retrieve the collection we'll be working

with.
 // In this example, we build BasicDBObjects describing two locations, Arganis and

Kent.
 // {'name': 'Arganis',
 // 'weather': 'temperate',
 // 'terrain': ['forests', 'plains'],
 // 'benefits': ['lodging', 'trade', 'justice'],
 // 'dangers': ['bandits', 'rebels', 'goblins', 'ghosts']}
 BasicDBObject arganis = new BasicDBObject();
 ArrayList<String> arganisTerrain = new ArrayList<String>();
 ArrayList<String> arganisBenefits = new ArrayList<String>();
 ArrayList<String> arganisDangers = new ArrayList<String>();
 arganis.put("name", "Arganis"); arganis.put("weather", "temperate");
 arganisTerrain.add("forests"); arganisTerrain.add("plains");
 arganis.put("terrain", arganisTerrain);
 arganisBenefits.add("lodging"); arganisBenefits.add("trade");

arganisBenefits.add("justice");
 arganis.put("benefits", arganisBenefits);
 arganisDangers.add("bandits"); arganisDangers.add("rebels");

arganisDangers.add("ghosts");
 arganis.put("dangers", arganisDangers);
. // {'name': 'Kent',
 // 'weather': 'temperate',
 // 'terrain': ['hills', 'plains'],
 // 'benefits': ['lodging', 'trade']
 // 'dangers': ['bandits', 'rebels', 'famine', 'goblins']}
 BasicDBObject kent = new BasicDBObject();

 ArrayList<String> kentTerrain = new ArrayList<String>();
 ArrayList<String> kentBenefits = new ArrayList<String>();
 ArrayList<String> kentDangers = new ArrayList<String>();
 kent.put("name", "Kent"); kent.put("weather", "temperate");
 kentTerrain.add("hills");kentTerrain.add("plains");
 kent.put("terrain", kentTerrain);
 kentBenefits.add("lodging"); kentBenefits.add("trade");
 kent.put("benefits", kentBenefits);
 kentDangers.add("bandits"); kentDangers.add("rebels");

kentDangers.add("famine");kentDangers.add("goblins");
 kent.put("dangers", kentDangers);
 // Pass the BasicDBObjects to the .insert() function in our collection object.
 locations.insert(arganis);
 locations.insert(kent);

locations.update(new BasicDBObject("name", "Arganis"),
 new BasicDBObject("$set",
 new BasicDBObject("leader",
 "King Argan III")));
 // Query for locations with forests.
 System.out.println("Total number of locations " + locations.count());

// Assign the results of a find operation to a DBCursor object.
 // Cursors can be iterated through using familiar next/hasNext logic.
 DBCursor results = locations.find(new BasicDBObject("terrain", "forests"));
 while(results.hasNext()){
 DBObject result = results.next();
 System.out.println((String) result.get("name") + " has forests.");
 System.out.println("Leader (optional) " + (String) result.get("leader"));
 }
 // Clean up after ourselves.
 locations.drop();
 }}}
 // end

PHP example

<?php
$m = new Mongo('mongodb://localhost:27017');
$db = $m->mongoquest;
/*First we get our desired collection.*/
$collection = $db->Spells;
/*$collection = $db->createCollection("Collection_Name", true, 10*1024, 10);*/
/* We insert by first creating an array, and passing that array to the collection's insert

function.
We use arrays to construct JSON-like objects.*/
$obj = array('name' => 'Poke', 'level' => 1);
$collection->insert($obj);
$obj2 = array('name' => 'Zap', 'level' => 1);
$collection->insert($obj2);
$obj3 = array('name' => 'Blast', 'level' => 2);
$collection->insert($obj3);
/* At level 1, we only know level 1 spells.*/
echo 'Level 1 spell list:
';
$query = array('level' => 1);
$cursor = $collection->find($query);
foreach($cursor as $obj) {
 echo 'Spell name: ' .$obj['name'] .'
';
}

/*We can use array syntax in-line to create JSON-like queries.*/
$collection->update(array('name' => 'Poke'), array('$set' => array('flavor' => 'Snick

snick!')));
$collection->update(array('name' => 'Zap'), array('$set' => array('flavor' => 'Bzazt!')));
$collection->update(array('name' => 'Blast'), array('$set' => array('flavor' =>

'FWOOM!')));

/*query again with flavor!*/
echo '
Level 1 spell list, with flavor:
';
$query2 = array('level' => 1);
$cursor2 = $collection->find($query2);
foreach($cursor2 as $obj2) {
 echo 'Spell name: ' .$obj2['name'];
 echo ' Flavortext: ' .$obj2['flavor'] .'
';
}

/*clean up after ourselves.*/
$collection->drop();

?>

Use Cases:

 MongoDB, with its flexible schema, distributed deployment, aggregation and low latency

is typically suited for the following kind of applications:

 Content Management

 Inventory Management

 Game Development

 Social Media Storage

 Database for sensor streams

A Few MongoDB Users

 MongoDB is widely used by many enterprises. To name a few:

 Craigslist

 Disney

 MTV

 EA Sports

Our Application – Forum Archives

We used MongoDB to create an archive for a collection of massive forums. We

downloaded the entire content of seven different forums, each with about 16,000 threads and

each thread containing about 100 messages on an average. The detailed statistics of the

forums we archived is given below:

Number of forums: 7

Average size of each forum 280 MB

Average of threads in each forum: 25716

Average number of message in each thread: 110

Rationale for choosing MongoDB

 The reason we chose MongoDB for our application is because of the nature of content

stored in the forums. The structure of a forum is not always constant. A few posts can

contain additional information like Images or Videos. A traditional relational database

that operates on a fixed schema is not suitable for storing such varied content. Hence,

MongoDB with its schema-less architecture suited our purposes.

 The other factor was the absence of complex processing or transactions. Since

concurrency was not our priority, MongoDB, with its incomplete implementation of the

ACID properties did not pose any restrictions.

 Since we are dealing with a massive amount of data, MongoDB, with its low latency

helped us efficiently implement in-memory operations like caching and pagination.

Schema Design

 We used three collections – users, forums and threads. The “users” collection stored the

login information for the users. The “forums” collection is used to store the general details of the

forum statistics and the “threads” collection stores all the threads from all the forums with a

reference to the forum id. The schema we used is as follows:

 Users

o _id

o Password

 Forum

o _id

o title

o website

o description

o startdate

o endDate

o numOfMembers

o numOfThreads

o numOfMsgs

 Threads

o _id

o forum

o title

o numOfMsgs

o tags

o [Comments[

 _id

 author

 date

 post

A few screen shots:

Figure 1 Login Screen

Figure 2 Forum Dashboard Screen

Figure 3 Forum Threads Screen

Figure 4 Forum Messages Screen

