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Abstract –  

Twitter is an immensely popular micro-blogging site where people post short messages of 140 characters 

called tweets. It has over 100 million active users who post about 200 million tweets every day. Twitter, the 

most popular micro-blogging service by the end of 2009, has gained much interest as a new social medium 

where tweets can be delivered in real-time, and via multiple access modes including the Web, SMS, and 

mobile device applications. Twitter has become very popular medium in order to share information among 

users.  Many studies have shown that different agencies are primarily using Twitter to disperse information, 

particularly links to news articles, about themselves, and to report on their activities.  In fact, it has been 

even a popular means of providing breaking news than many of the top newspapers. Some users put the 

#symbol in their tweets called a hashtag, in order to mark keywords or to specify a tweet topic. This can be 

used to categorize tweets. In order for users to retrieve a list of recent posts with the particular topic, 

Twitter provides a list of popular topics. However, the users have to read manually through the posts for 

understanding a specific topic because the posts they want to find are sorted by time, not relevancy. Hence, 

in this project, we intend to build an application which can make a summary relevant to the topic the users 

want to find based on the hashtag. Since, the data for the application which are the actual tweets can be of 

considerable amount, we will implement Hadoop/HBase as the application needs to be scalable and also, 

fault-tolerant. 

 

 

Introduction – 

Relational database systems have been hugely successful in storing and processing structured data over 

the years. However, relational database systems mostly deal with structured data. But with the advent of 

applications such as Google, Facebook, Twitter, a huge amount of data is generated which is not 

structured. All these and other companies also wanted to work with different kinds of data, and it was 

often unstructured or semi-structured. Hence, there was a need for systems that could work with different 

kinds of data formats and sources without any data constraint and also could scale greatly. This whole 

new requirement gives rise to Big Data systems and NoSQL.  The publications made by Google on 

Google File System, MapReduce and Bigtable provided insight into a whole new database systems which 

can adhere to any types of data and generally don’t hold ACID guarantees. These technologies as a 

collection have come to be known as NoSQL systems. A NoSQL database provides a mechanism for 

storage and retrieval of data that use looser consistency models than traditional relational databases in 

order to achieve horizontal scaling and higher availability. Hbase is one of the NoSQL systems which has 

gain widespread popularity in the Industry and is used in companies to store huge amount of unstructured 

data such as in Facebook to store facebook messages and in Twitter to store all the tweets. It is developed 

as part of Apache Software Foundation's Apache Hadoop project and runs on top of HDFS (Hadoop 

Distributed Filesystem) and Apache ZooKeeper 

 

 

Hadoop was created by Doug Cutting, the creator of Apache Lucene, the widely used text search library. 

Today, HBase depends on Hadoop for two separate concerns. First, Hadoop MapReduce provides HBase 

a distributed computation framework for high throughput data access and second, the Hadoop Distributed 

File System (HDFS) gives HBase a storage layer providing availability and reliability. Similary, Hbase 

depends on Apache Zookeeper to manage its cluster state. In addition, Hadoop and its components are 

shown in Fig. 1.  

http://en.wikipedia.org/wiki/Relational_database
http://en.wikipedia.org/wiki/Horizontal_scaling#Horizontal_and_vertical_scaling
http://en.wikipedia.org/wiki/Apache_Software_Foundation
http://en.wikipedia.org/wiki/Hadoop
http://en.wikipedia.org/wiki/Hadoop_Distributed_Filesystem
http://en.wikipedia.org/wiki/Hadoop_Distributed_Filesystem
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Figure 1. Hadoop and Its components 

 

 

Hadoop MapReduce -  

A MapReduce job is a unit of work that the client wants to be performed: it consists of the input 

data, the MapReduce program, and configuration information. Hadoop runs the job by dividing it into 

tasks, of which there are two types: map tasks and reduce tasks. There are two types of nodes that control 

the job execution process: a jobtracker and a number of tasktrackers. The jobtracker coordinates all the 

jobs run on the system by scheduling tasks to run on tasktrackers. Tasktrackers run tasks and send 

progress reports to the jobtracker, which keeps a record of the overall progress of each job. If a task fails, 

the jobtracker can reschedule it on a different tasktracker.  

 

 
Figure 2. MapReduce 

Hadoop does its best to run the map task on a node where the input data resides in HDFS. This is called 

the data locality optimization. If the node running the map task fails before the map output has been 

consumed by the reduce task, then Hadoop will automatically rerun the map task on another node to 

recreate the map output. Reduce task then aggregates the final output for the client job.  
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Hadoop File System (HDFS) 

    HDFS is a filesystem designed for storing very large files with streaming data access patterns, running 

on clusters on commodity hardware. Streaming data access HDFS is built around the idea that the most 

efficient data processing pattern is a write-once, read-many-times pattern. It’s designed to run on clusters 

of commodity hardware which are commonly available hardware available from multiple vendors. HDFS 

supports a traditional hierarchical file organization.  

The NameNode maintains the file system namespace. Any change to the file system namespace or its 

properties is recorded by the NameNode. An application can specify the number of replicas of a file that 

should be maintained by HDFS. The number of copies of a file is called the replication factor of that file 

which is stored by the NameNode. HDFS is designed to reliably store very large files across machines in 

a large cluster. It stores each file as a sequence of blocks; all blocks in a file except the last block are the 

same size. The blocks of a file are replicated for fault tolerance. The block size and replication factor are 

configurable per file. The NameNode makes all decisions regarding replication of blocks. It periodically 

receives a Heartbeat and a Blockreport from each of the DataNodes in the cluster. Receipt of a Heartbeat 

implies that the DataNode is functioning properly. A Blockreport contains a list of all blocks on a 

DataNode and once the NameNode detects that a block in the DataNode has failed, it will create another 

replica of the block from other replicas. 

 

 
Figure 3. HDFS and data replication among DataNode 

 

Zookeeper 

ZooKeeper is a centralized service for maintaining configuration information, naming, providing 

distributed synchronization, and providing group services. All of these kinds of services are used in some 

form or another by distributed applications. Each time they are implemented there is a lot of work that 

goes into fixing the bugs and race conditions that are inevitable. Because of the difficulty of 

implementing these kinds of services, applications initially usually skimp on them, which make them 

brittle in the presence of change and difficult to manage. Even when done correctly, different 

implementations of these services lead to management complexity when the applications are deployed. 

ZooKeeper aims at distilling the essence of these different services into a very simple interface to a 

centralized coordination service. The service itself is distributed and highly reliable. Consensus, group 

management, and presence protocols will be implemented by the service so that the applications do not 
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need to implement them on their own. Application specific uses of these will consist of a mixture of 

specific components of Zoo Keeper and application specific conventions. ZooKeeper Recipes shows how 

this simple service can be used to build much more powerful abstractions. 

 

 

 

Hbase 

HBase is a database: the Hadoop database. HBase is a distributed column-oriented database built on top 

of HDFS and often described as a sparse, distributed, persistent, multidimensional sorted map, which is 

indexed by rowkey, column key, and timestamp. HBase is designed to run on a cluster of computers 

instead of a single computer. The cluster can be built using commodity hardware; HBase scales 

horizontally as more machines are added to the cluster. Each node in the cluster provides a bit of storage, 

a bit of cache, and a bit of computation as well. This makes HBase incredibly flexible and forgiving. No 

node is unique, so if one of those machines breaks down, one can simply be replaced it with another. This 

adds up to a powerful, scalable approach to data storage. HBase can run in three different modes: 

standalone, pseudo-distributed, and full-distributed. In standalone mode, all of HBase runs in just one 

Java process whereas in pseudo-distributed mode, a single machine runs in many Java processes. In full-

distributed mode, HBase is fully distributed across a cluster of machines. The other modes required 

dependency packages to be installed and HBase to be configured properly.  

 

HBase Table Structure 

Like relational database, applications store data into labeled tables in HBase as well. Like relational 

database, tables are made of rows and columns. However, in HBase, table cells which are the intersection 

of row and column coordinates are versioned. By default, their version is a timestamp auto-assigned by 

HBase at the time of cell insertion. A cell’s content is an uninterpreted array of bytes. Table row keys are 

also byte arrays. Table rows are sorted by row key, the table’s primary key. By default, the sort is byte-

ordered. All table accesses are via the table primary key. Row columns are grouped into column families. 

All column family members have a common prefix, so, for example, the columns name:firstname and 

name:lastname are both members of the name column family. A table’s column families must be 

specified up front as part of the table schema definition, but new column family members can be added on 

demand. For example, a new column name:middlename can be offered by a client as part of an update, 

and its value persisted, as long as the column family name is already in existence on the targeted table. 

Physically, all column family members are stored together on the filesystem. HBase tables are like those 

in an RDBMS, only cells are versioned, rows are sorted, and columns can be added as required by the 

client as long as the column family where they belong already preexists. Regions tables are automatically 

partitioned horizontally by HBase into regions. Each region comprises a subset of a table’s rows. A region 

is defined by its first row, inclusive, and last row, exclusive, plus a randomly generated region identifier. 

Initially a table comprises a single region but as the size of the region grows, after it crosses a 

configurable size threshold, it splits at a row boundary into two new regions of approximately equal size. 

Until this first split happens, all loading will be against the single server hosting the original region. As 

the table grows, the number of its regions grows. Regions are the units that get distributed over an HBase 

cluster. In this way, a table that is too big for any one server can be carried by a cluster of servers with 

each node hosting a subset of the table’s total regions. This is also the means by which the loading on a 

table gets distributed. At any one time, the online set of sorted regions comprises the table’s total content. 

http://hadoop.apache.org/zookeeper/docs/current/recipes.html
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Figure 4. HBase Implementation 

HBase Implementation 

Hadoop ecosystems are built on a master and slave architecture where there are a cluster of slaves and a 

coordinating master—NameNode and DataNodes in HDFS and JobTracker and TaskTrackers in 

MapReduce. Similarly, HBase is characterized with an HBase master node managing a cluster of one or 

more region server slaves as shown in Figure 5. The HBase master is responsible for assigning regions to 

registered region servers, and for recovering region server failures. The master node is lightly loaded. The 

region servers carry zero or more regions and field client read/write requests. They also manage region 

splits informing the HBase master about the new daughter regions for it to manage the offlining of parent 

region and assignment of the replacement daughters. HBase depends on ZooKeeper and by default it 

manages a ZooKeeper instance as the authority on cluster state. Region server slave nodes are listed in the 

HBase conf/regionservers file as DataNodes and TaskTrackers are listed in the Hadoop conf/slaves file. 

Cluster site-specific configuration is made in the HBase conf/hbase-site.xml and conf/hbase-env.sh files.  

 

HBase in operation 

HBase, internally, keeps special catalog tables named -ROOT- and .META within which it maintains the 

current list, state, recent history, and location of all regions afloat on the cluster. The -ROOT- table holds 

the list of .META table regions. The .META table holds the list of all user-space regions. Entries in these 

tables are keyed using the region’s start row. Row keys, as noted previously, are sorted so finding the 

region that hosts a particular row is a matter of a lookup to find the first entry whose key is greater than or 

equal to that of the requested row key. As regions transition—are split, disabled/enabled, deleted, 

redeployed by the region load balancer, or redeployed due to a region server crash—the catalog tables are 

updated so the state of all regions on the cluster is kept current. Fresh clients connect to the ZooKeeper 

cluster first to learn the location of -ROOT-. Clients consult -ROOT- to know the location of the .META. 

region whose scope covers that of the requested row. The client then does a lookup against the found 

.META. region to figure the hosting user-space region and its location. Thereafter the client interacts 

directly with the hosting region server.  To save on having to make three round-trips per row operation, 

clients cache all they learn traversing -ROOT and .META. caching locations as well as user-space region 

start and stop rows so they can figure hosting regions themselves without having to go back to the .META. 

table. Clients continue to use the cached entry as they work until there is a fault. When this happens—the 

region has moved—the client consults the .META. again to learn the new location. If, in turn, the consulted 

.META. region has moved, then -ROOT- is reconsulted. Writes arriving at a region server are first appended 

to a commit log and then are added to an in-memory cache. When this cache fills, its content is flushed to 

the filesystem. The commit log is hosted on HDFS, so it remains available through a region server crash. 
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When the master notices that a region server is no longer reachable, it splits the dead region server’s 

commit log by region. On reassignment, regions that were on the dead region server, before they open for 

business, pick up their just-split file of not yet persisted edits and replay them to bring themselves up-to-

date with the state they had just before the failure. Reading, the region’s memcache is consulted first. If 

sufficient versions are found to satisfy the query, we return. Otherwise, flush files are consulted in order, 

from newest to oldest until sufficient versions are found or until we run out of flush files to consult. A 

background process compacts flush files once their number has broached a threshold, rewriting many files 

as one, because the fewer files a read consults, the more performant it will be. On compaction, versions 

beyond the configured maximum, deletes and expired cells are cleaned out. A separate process running in 

the region server monitors flush file sizes splitting the region when they grow in excess of the configured 

maximum. 

 

HBase Operations vs SQL Operations 

Just like in SQL where there are queries to create table, add/edit/delete data in the table, in Hbase, there 

are commands that can be used in Hbase shell. HBase shell can be used to interact with HBase from the 

command line. The shell opens a connection to HBase. With the shell prompt, a table named ‘users’ can 

be created by command  
 

create 'users', 'info' 

 

In HBase, the table creation didn’t involve any columns or types. Other than the column family name, 

HBase doesn’t require anything about the data ahead of time. That’s why HBase is often described as a 

schema-less database. Unlike in a relational database, tables in HBase are organized into rows and 

columns. But in Hbase, columns are organized into groups called column families and ‘info’ is a column 

family in the users table. A table in HBase must have at least one column family. After the table creation, 

there is a similar command like in SQL to know the properties of a table 
 

describe 'users' 
 

The shell describes your table as a map with two properties: the table name and a list of column families. 

To add data to the HBase table, there is a command put. The following put command puts the bytes 

‘sshakya1’ to a cell in ‘users’ table in the ‘first’ row at the ‘info’ column while the following get 

command can be used to get all the cells in the first row.  

 
put 'users', 'first', 'info', 'sshakya1' 

get 'users', 'first' 

 

Every row in an HBase table has a unique identifier called its rowkey. Other coordinates are used to 

locate a piece of data in an HBase table, but the rowkey is primary. Just like a primary key in a table in a 

relational database, rowkey values are distinct across all rows in an HBase table. Every interaction with 

data in a table begins with the rowkey. The HBase API is broken into operations called commands. There 

are five primitive commands for interacting with HBase: Get, Put, Delete, Scan, and Increment. Unlike in 

SQL, where there is an insert into command to insert row into the table, in HBase, the command used to 

store data is Put. Creating a Put instance from a rowkey looks like this:  

 
Put p = new Put(Bytes.toBytes("sshakya1")); 

p.add(Bytes.toBytes("info"), 

Bytes.toBytes("name"), 
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Bytes.toBytes("Sunny")); 

p.add(Bytes.toBytes("info"), 

Bytes.toBytes("email"), 

Bytes.toBytes("ss1@gmail.com")); 

p.add(Bytes.toBytes("info"), 

Bytes.toBytes("password"), 

Bytes.toBytes("ss123")); 

 

HBase uses coordinates to locate a piece of data within a table. The rowkey is the first coordinate, 

followed by the column family. When used as a data coordinate, the column family serves to group 

columns. The next coordinate is the column qualifier. The column qualifiers in this example are name, 

email, and password. Because HBase is schema-less, there is no need to predefine the column qualifiers 

or assign them types. These three coordinates define the location of a cell. The cell is where HBase stores 

data as a value. A cell is identified by its [rowkey, column family, column qualifier] coordinate within a 

table. The previous code stores three values in three cells within a single row. The cell storing sshakya1’s 

name has the coordinates [sshakya1, info, name]. All data in HBase is stored as raw data in the form of a 

byte array, and that includes the rowkeys. The Java client library provides a utility class, Bytes, for 

converting various Java data types to and from byte[]. Note that this Put instance has not been inserted 

into the table yet. The last step in writing data to HBase is sending the command to the table using the 

following command. 

 
HTableInterface usersTable = pool.getTable("users"); 

Put p = new Put(Bytes.toBytes("sshakya1")); 

p.add(...); 

usersTable.put(p); 

usersTable.close(); 

 

Reading data back out of HBase can be performed using the following Get command. 

 

Get g = new Get(Bytes.toBytes("sshakya1")); 

Result r = usersTable.get(g); 

 

The table gives you back a Result instance containing your data. This instance contains all the columns 

from all the column families that exist for the row. That’s potentially far more data than you need. Hence, 

the amount of data returned can be limited by placing restrictions on the Get instance.  

 
Get g = new Get(Bytes.toBytes("sshakya1")); 

g.addColumn( 

Bytes.toBytes("info"), 

Bytes.toBytes("password")); 

Result r = usersTable.get(g); 

 

Deleting data from HBase works just like storing it. You make an instance of the Delete command, 

constructed with a rowkey: 

 
Delete d = new Delete(Bytes.toBytes("sshakya1")); 

usersTable.delete(d); 

 

Part of a row can be deleted by specifying additional coordinates as follows: 

 
Delete d = new Delete(Bytes.toBytes("sshakya1")); 

d.deleteColumns( 

Bytes.toBytes("info"), 
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Bytes.toBytes("email")); 

usersTable.delete(d); 

 

Changing data in HBase is done the same way you store new data: create a Put object and give it some 

data at the the appropriate coordinates, and send it to the table. 

 
Put p = new Put(Bytes.toBytes("sshakya1")); 

p.add(Bytes.toBytes("info"), 

Bytes.toBytes("password"), 

Bytes.toBytes("abc123")); 

usersTable.put(p); 

 

Every time an operation is performed on a cell, HBase implicitly stores a new version.  Creating, 

modifying, and deleting a cell are all treated identically; they’re all new versions. Get requests reconcile 

which version to return based on provided parameters. The version is used as the final coordinate when 

accessing a specific cell value. HBase uses the current time in milliseconds when a version isn’t specified, 

so the version number is represented as a long. By default, HBase stores only the last three versions; this 

is configurable per column family. When a cell exceeds the maximum number of versions, the extra 

records are dropped during the next major compaction. 

 
Figure 5. Hbase Table Structure 

Querying Hbase 

The only way to access records containing a specific value in HBase is by using the Scan command to 

read across some portion of the table, applying a filter to retrieve only the relevant records. The records 

returned while scanning are presented in sorted order. HBase is designed to support this kind of behavior 

so it’s fast. To scan the entire contents of a table, use the bare Scan constructor: 

 
Scan s = new Scan(); 

 

To retrieve users with IDs starting with the letter T, Provide the Scan constructor with start and end rows: 

 
Scan s = new Scan( 

Bytes.toBytes("T"), 

Bytes.toBytes("U")); 

 

 

 

 



9 | P a g e  
 

Application: Real Time Micro-Blog Summarization based on Hadoop/HBase 

For the implementation of Hadoop/HBase, we designed and implemented an application which provides a 

summary of the tweets that are posted on Twitter. Twitter is an immensely popular micro-blogging site 

where people post short messages of 140 characters called tweets. It has over 100 million active users 

who post about 200 million tweets every day. Twitter, the most popular micro-blogging service by the 

end of 2009, has gained much interest as a new social medium where tweets can be delivered in real-time, 

and via multiple access modes including the Web, SMS, and mobile device applications. Twitter has 

become very popular medium in order to share information among users. The analysis shows that 

agencies are primarily using Twitter to disperse information, particularly links to news articles about 

themselves, and to report on their activities.  In fact, it has been even a popular means of providing 

breaking news than the most of the top newspapers. In order for users to retrieve a list of recent posts with 

the topic phrase, Twitter provides a list of popular topics. Some trends have pound # sign named hashtag 

before the words or phrase. The hashtag is included particularly in Tweets to explain its relevance to a 

topic. However, the users have to read manually through the posts for understanding a specific topic 

because the posts they want to find are sorted by time, not relevancy. For this reason, we tried to make a 

summary relevant to the topic the users want to find based on the hashtag. The data that is needed for our 

application are tweets. 1% of the tweets are available for free by Twitter whereas 10% of the tweets can 

be purchased from twitter. Twitter provides an API in order to get tweets. Since, the size of tweets can be 

of considerable amount, we are using HBase to store the tweets. 

 

Twitter APIs have two different APIs: REST APIs and Streaming APIs. Figure 6 shows the REST APIs’ 

data flow and Streaming APIs’ data flow. In the REST API, when a web application accepts users’ 

request, the application makes requests to Twitter’s API and receives the result. Then, the application 

sends the result to the user as a response to the user’s request. On the other hand, Streaming APIs’ 

connection is executed in a process separate from the HTTP requests. In the streaming process, the server 

gets the data from Twitter APIs and performs any filtering before sending the data to a data store.  

 

 
Figure 6. Twitter API 

 

For implementing real time summarization of tweets, we used the Twitter’s Streaming API as an initial 

source. Figure 7 shows different types of streams that are available for streaming in Twitter. Twitter 

offers three kinds of streams for the Streaming API – Public Streams, User Streams and Site Streams. 

Public Streams are the public data flowing and suitable for following users and can be used for data 
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mining. As a single-user streams, User Streams contain all of data corresponding with a single user’s view 

of Twitter. For the multi-version of user streams, Twitter provides Site Streams for many users. 

 

 

  

 
 

Figure 7. API used in the application 

 

Figure 7 shows the application data flow. First of all, the application starts with receiving the data from 

Twitter Streaming API. The data contain the username, id, location, hashtags, and posts. In every 1 

minute, the application calculates the number of hashtags used in the tweets and produces the top 10 

hashtags. These hashtags are used to select the posts or tweets that contain each hashtag. Then, the posts 

are summarized and the summaries are updated to HBase. Finally, a user can see the summarized posts in 

the web page. For the summarization, every post containing top 10 hashtags is preprocessed first. The 

preprocessing step includes tokenizing, stopword removing and stemming. After preprocessing, the posts 

are vectorized and computed by TF-IDF (Term frequency-Inverses document frequency). At this time, 

only first two posts which are top ranked by computing the TF-IDF are considered as a summary because 

we did not complete the experiment yet for the question how many sentences are good for the users. 

When the process for the summaries is complete, the summaries are updated to HBase in every one 

minute.  

 

Summarization is the creation of a concise document that represents a meaningful content of a given set 

of documents. As the tremendous increase in information on the internet is overwhelming manual 

processing, it is necessary to employ computers to automate the process of summarizing documents. 

Summarization produces condensed information that maintains document coherence and avoids 

redundancy. Generally, two approaches in the automatic text summarization have been studied: extractive 

summary and abstractive summary. The first one is a summary which generates a summary taken exactly 

as they appear in the documents whereas the abstractive summary generates paraphrased sentences in the 

input documents. In this project, our approach is relevant to the extractive summary. When the streaming 

data from Twitter are updated to HBase, we determine the ranking of the hashtags according to the 

number of hashtags. The hashtags are used to search the raw posts in HBase. Then, the raw posts stored in 

HBase are extracted by the top 10 ranked hashtags among them. Finally, the selected raw posts are used 

as the input data for summarization. In general, the input data are preprocessed for automatic text 
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summarization. The preprocessing steps include tokenizing, stopword removing, stemming. Tokenization 

is the process of replacing a stream of text into words. For this, we firstly tokenized all selected raw posts. 

In order to compare the weights between words, we need to remove the stop words which are generally 

filtered out prior to, or after, processing natural language data. We used the most common stop words list 

that includes words such as a and the. The stop words are removed from the source documents to increase 

search performance. Stemming is a process for reducing inflected words to their stem, base or root form. 

We used Porter Stemmer [1], a very widely used algorithm which became the standard algorithm used for 

English word stemming. After preprocessing, the raw posts are computed by TF-IPF (Term frequency-

Inverses post frequency). TF is the frequency of term with a post and the IPF is a well-known measure of 

a word’s importance. We defined the TF-IPF score as below: 
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Where 

 TF(t, p) is the number of term t in the post 

 IPF (t) is the inverse post frequency of the term t.  

 totalPost is the total number of posts. 

 numPost is the number of posts that the term t occurs.  

 

When the TF-IPF is computed by the equation above, the top two posts are considered as a summary. 

When the process for the summaries is finished, the summaries are updated to HBase.  

 

There are various ways to access and interact with Apache HBase. The Java API provides the most 

functionality, but many people want to use HBase without Java. There are two main approaches for doing 

that: One is the Thrift interface, which is the faster and more lightweight of the two options. The other 

way to access HBase is using the REST interface, which uses HTTP verbs to perform an action, giving 

developers a wide choice of languages and programs to use.  For the real time application, we used the 

HBase REST API. For REST API to work, another HBase daemon needs to be running to handle these 

requests. These daemons can be installed in the HBase-rest packages. The diagram below illustrates 

where REST API is placed in the cluster. 

 

http://archive.cloudera.com/cdh4/cdh/4/hbase-0.92.1-cdh4.1.2/apidocs/index.html
http://wiki.apache.org/hadoop/Hbase/ThriftApi
http://wiki.apache.org/hadoop/Hbase/Stargate
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Representational State Transfer (REST) is a kind of software architecture for distributed systems. The 

REST has emerged as a predominant web API. HBase provides REST API. HBase REST is a REST 

gateway to HBase. REST supports XML or JSON serialization and retrieves a list of all the tables in 

HBase and returns XML entity body that contains a list of the tables. A user cannot see the summaries on 

the web through the HBase REST gateway directly. So, we made a servlet to connect the user with the 

REST gateway. Finally, the user can see the summary. For more details, we will describe whole 

procedures in the next section. 

 

 
 

Figure 8. Application Data Flow 

 

Procedure 
First of all, we need to run several daemons: Namenode, Secondarynamenode, DataNode, JobTracker, 

TaskTracker, and Hmaster. The following table shows the daemons name and their corresponding tasks. 

 

Daemons Tasks Performed 

NameNode Keeps the directory tree of all files in the file system. When clients want to 

locate a file, NameNode responds the requests returning DataNode 

DataNode Stores data in the file system. 

 

SecondaryNameNode Performs periodic checkpoints. This periodically downloads current 

NameNode image and edits log files. Even though NameNode can fail, we do 

not need to shutdown DataNode. Only Namenode needs to be restarted. 

 

Jobtracker This is a service within Hadoop. Clients submit jobs to JobTracker and the 

JobTrackers communicate with the NameNode to determine the location of 

the data. 

Tasktracker Accepts tasks and tracks the progress of the task. 

HMaster Master-server for HBase. 
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Once all daemons run correctly, we can see web pages of specific ports. Figures below show each web 

page with ports. 

 
 

 
 

Figure 9. Localhost:50060 TaskTracker 

 

 

 
 

Figure 10. Localhost:50030 JobTracker 
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Figure 11. Localhost:50070 Namenode 

 

 

 
 

Figure 12. Localhost:60010 Master 

 

 
 

Figure 13. Localhost:60030 RegionServer 
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When all ports for Hadoop and HBase run properly, we can start REST and Oracle Web Logic Server. 

Now, we build the java scourcs to recevie the streamming data from Twitter. The streamming data are 

analyzed in order to put it in HBase. In this step, we count the number of hashtags and extract top 10 

hashtags from HBase. We searched all posts having the hashtags and computed TF-IDF for extracting 

summaries. The summareis and hashtags are stored in HBase. Meanwhile, we can use a web page to 

extract summaries with top 10 hashtags. Every minute we can extract the summaries. In order for client to 

get the data from Hbase. we need use the Servlet which returns REST URI. Figure 14 shows RESTful 

web page which represents the summary results.  
 

 

 
 

Figure 14. Summary Page 

 

Finally, we can use the web page for displaying the extracted summaries with top 10 hashtags as shown in 

Figure 15. Once we click the Search button, the summaries are displayed in the same page. In every 

minute, we can see the results on the page. 

 

 
 

Figure 15. The result page 
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Conclusion and Future Work 

In this project, we studied about HBase/Hadoop and implemented a real-time summarization application 

that can summarized posts or tweets in Twitter on the basis of hashtags. Since, the data source for this 

application is real-time posts on Twitter and the amount of such data could be very enormous, we have 

implemented Hadoop/HBase as the data store since HBase is very suitable for storing enormous amount 

of data. In addition, using Hadoop/HBase also makes this application very scalable and fault tolerant. In 

fact, twitter also use Hadoop/HBase to store the tweets/posts. In this application, summaries are 

generated. However, Summaries need to be evaluated but, the experiments for evaluating the summaries 

are not performed yet. So, in the future, we will evaluate the summaries comparing with other types of 

summaries, such as human summary. Also, the implementation of this project is based on pseudo-

distributed mode where each Hadoop daemon runs on a single host. In the future, we have a plan to run 

Hadoop/Hbase on a fully-distributed operation mode where the daemons are spread across all nodes in the 

cluster. The work for running on a fully-distributed mode would be better than one single node.  
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Appendix 
 

Environment 

We used lots of libraries for the CSc8711 project. In this part, we will explain our system environment for 

the application.  

 

Hardware: 

OS: UBUNTU 12.04 

OS type: 64-bit 

Memory: 3.6GB 

Processor: Intel core i3-2310M CPU@2.10GHz x4 

 

Software:  
Eclipse-Java EE-JUNO-SR2 

Oracle WebLogic Server 12c (12.1.1) : A commercial JAVA EE application server that implements the 

whole Java EE specification.  

 

OpenSSH_5.9  
SSH should be installed and SSHD should be running to use the Hadoop scripts managing remote 

Hadoop daemons. 

 

 

Libraries: 
We used following apache commons libraries which enable our Java application to read configuration 

data from various sources. 

 
commons-configuration-1.6.jar 

commons-lang-2.5.jar 

commons-logging-1.1.1jar 

 

Since the task attempt contains the job-id in its name we can find out what logs where create by a specific 

job. For example, task logs are from Job-Tracker. We changed the version of slf4j.xx to slf4j-1.7.5. 

 
log4j-1.2.16.jar 

slf4j-api-1.7.5.jar 

slf4j-log4j12-1.7.5.jar 

 

Twitter4J is an unofficial Java library for the Twitter API so that we can integrate our Java application 

with the Twitter service. 

 
twitter4j-async-3.0.3.jar 

twitter4j-core-3.0.3.jar 

twitter4j-stream-3.0.3.jar 

 

Following is the Hadoop and HBase library that we used. 

 
hadoop-core-1.0.4.jar: Hadoop library 

hbase-0.94.6.1.jar: Hbase library 

 

snappy-1.1.0 

Snappy is a compression/decompression library and is widely used in everything from BigTable and 

MapReduce to internal RPC system. For the CSc8711 project, we add it to the native Hadoop library 

/usr/local/hadoop/lib/native/Linux-amd64-64 

mailto:CPU@2.10GHz
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Hadoop Configuration 
We run the Hadoop on a single-node in pseudo-distributed mode where each Hadoop daemon runs in a 

separate Java process. 

 

Project Table 
We designed an HBase table for the application. The information of the table below: 

 
Hbase Table name: twitterTable 

 

RowKey: username/time 

ColumnFamily: UserInfo(column,timestamp, value) 

Columns: name, profilelocation, tweetId, content, hashtag 

 

RowKey: hashtag(column,timestamp, value) 

ColumnFamily: HashTag 

Columns: count 

 

RowKey: hashtag/time (column,timestamp, value) 

ColumnFamily: Top10Summary 

Columns: summary 

 

Sources 
In this part, we will explain our source code. We built our application using several Java codes, Servlet, 

and Javascript.  

 
src/servlet/RestfulService.java 

 

We made a restful servlet java source. Hbase REST support XML or JSON serialization. For example, we 

can retrieve a list of tables in Hbase and create, update, and delete a table using the REST api. For the 

CSc8711 project, we added a httpGet() script to get a URI information on Server. Because a Client could 

not extract the information of the URI which includes the information of all tables in Hbase, we made a 

servlet to connect the Client to Server. 

  
src/getSummary/getTwitterData.java 

 

getTwitterData receives the streaming data from the Twitter and updates information to Hbase. 

Because we don't have a permission to access the Twitter, we need an authorization for the data. 

 
ConfigurationBuilder cb = new ConfigurationBuilder(); 

        cb.setDebugEnabled(true) 

          .setOAuthConsumerKey("xxxxxxxxxxxxxxxxxxxx") 

         .setOAuthConsumerSecret("xxxxxxxxxxxxxxxxxxxx") 

          .setOAuthAccessToken("xxxxxxxxxxxxxxxxxxxx") 

          .setOAuthAccessTokenSecret("xxxxxxxxxxxxxxxxxxxx");  

 

The configuration above allows us to acces to the streaming data. A class "myStatusListener" provides the 

streaming data, such as user name, user id, user location, hashtags, and contents. The streaming data we 

collected is updated to Hbase.  

 

When we update the streaming data to Hbase, top 10 hashtags are computed by counting the number of 

hashtags. Then, the hashtags are used to search posts which has the hashtags in Twitter. Finally, the posts 

are summarized new summary from Hbase.    
  
src/getSummary/getOriginalPost.java 

src/getSummary/SentenceFeatures.java 

src/getSummary/Tokenization.java 
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In order to make a summary, we used all post having same hashtag performing a preprocessing step. The 

step is performed by tokenizing the post, filtering stopwords, and stemming the post. The stemmed post is 

computed by TF-IDF (Term frequency-Inverse document frequency) and the final score is calculated by 

normalizing each score.    

 
WebContent 

SummaryView.css 

Cascading style sheets for html. 

 

SummaryView.html 

SummaryView retrieves the RowKey in Hbase and display current top 10 summaries.  

 

Web-INF/lib/jersey-archive-1.17 

Web-INF/web.xml Jersey REST Service 

Jersey is an open source library for building RESTful web serivce. We added the Jersey 

library to our directory WEB-INF/lib 

Web-INF/weblogic.xml 

We used WebLogic Server. 
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