- 1. Using the individuals john and cnets, concepts Course, Lecturer, MSc and BSc, and roles teaches and hasDegree, represent the following knowledge base as an ALC knowledge base K:
 - Everybody who teaches a course must either have an MSc degree or be a lecturer.
 - Every lecturer teaches some course.
 - Every lecturer has a BSc degree.
 - Everybody with an MSc degree has a BSc degree as well.
 - John teaches the Computer Networks course.
 - (a) Is the statement "John has an MSc degree" a logical consequence of the knowledge base K? Explain your answer (you do not have to use the tableaux method).
 - (b) Is the statement "Everybody who teaches a course must have a BSc degree" a logical consequence of the knowledge base K? Explain your answer (you do not have to use the tableaux method).
- 2. Consider the TBox T with the following axioms:

$$\forall R. \neg B \sqsubseteq B \\ \exists R. (\exists R. C) \sqsubseteq \neg A \sqcup \neg B$$

and the interpretation I over domain $\Delta^{I} = \{a, b, c, d, e, f\}$:

$$\begin{split} A^I &= \{a,c,e\} \\ B^I &= \{c,d,e,f\} \\ C^I &= \{e\} \\ R^I &= \{< a,f>, < a,c>, < b,d>, < d,c>, < c,e>, < f,a>\} \end{split}$$

Is I a model for T?

- 3. For each of the axioms given below, determine which of the three interpretations $(I_1, I_2, \text{ and } I_3)$ in the subsequent table satisfy it. Assume A, B, C, and D are atomic concepts and P is a role.
 - (a) $B \sqsubseteq D$
 - (b) $A \sqsubseteq B \sqcap \forall P.C$
 - (c) $D \sqsubseteq B \sqcup \exists P.C$

Candidate Interpretations ($\Delta^{I} = \{a, b, c, d\}$)

Classes/Roles	I_1	I_2	I_3
A^I	{}	$\{a\}$	$\{b,c\}$
B^{I}	$\{a,b\}$	$\{a\}$	$\{b,c,d\}$
C^{I}	{ <i>b</i> }	$\{b,d\}$	$\{a,b\}$
D^I	{}	$\{a,b\}$	$\{a,b,c,d\}$
P^{I}	{}	$\{ \langle a, b \rangle, \langle a, c \rangle, \langle b, d \rangle \}$	$\{ < b, a >, < b, b >, < d, a > \}$

4. Consider the following knowledge base K:

$\frac{\text{TBox}}{Human} \sqsubseteq \exists hasParent.Human$ $Orphan \sqsubseteq Human \sqcap \forall hasParent.\neg Alive$ $\frac{ABox}{Orphan(harrypotter)}$ hasParent(harrypotter, jamespotter)

Using the tableaux method show that $\neg Alive(jamespotter)$ is a logical consequence of K.

5. Show using the tableaux method that $(\exists r.E)(a)$ is a logical consequence of the knowledge base

$$K = \{C(a), C \sqsubseteq \exists r.D, D \sqsubseteq E \sqcup F, F \sqsubseteq E\}.$$

6. Show using the tableaux that the following knowledge base is unsatisfiable:

 $\frac{\operatorname{TBox}}{Bird \sqsubseteq Flies}$ $Penguin \sqsubseteq Bird$ $Penguin \sqcap Flies \sqsubseteq \bot$ $\frac{\operatorname{ABox}}{Penguin(tweety)}$

- 7. SPARQL Queries on PeriodicTable KB (http://www.daml.org/2003/01/periodictable/PeriodicTable.owl): Write SPARQL queries to answer the following and make sure they are tested on the system:
 - (a) Find element name, element symbol, atomic weight and color of all elements from the group with group name "Halogen".
 - (b) Find element name, element symbol, atomic number and color of all elements with standardState "gas" and having an atomic number less than 10; Result should be sorted by atomic number (increasing).
 - (c) List all the possible individuals of the StandardState class.
 - (d) Find element name, element symbol, atomic number and color of all elements in period number 3 and group number 14 (ordered by atomic number).
 - (e) For each group, list the group name and count of elements in it.

On the next page is a run of the 5 queries - you should duplicate the results shown.