NoSqgl Project — DjonDB

Dan Jiang and Mengjuan Liu
Department of Computer Science
Georgia State University
Atlanta, GA 30303
Email: djiangl@student.gsu.edu mliu9@student.gsu.edu

Abstract

A document-oriented database is acomputer program designed for storing,
retrieving, and managing document-oriented information, also known as semi-structured
data. DjonDB is one type of document DB. All the documents in djondb are stored in
files and organized by namespace in the data folder and stored in JSON format. The

project of my shopping receipts is implemented by DjonDB.

Introduction

With massive advent of Internet, storing large amount of documents became a
must. Such documents range from images to more or less structured text, including large
chunks of information encoded in XML. However, relational technology was not natively
prepared to support such kind of data.

What makes document databases really different is the fact that documents are
usually retrieved through dynamic and unpredictable queries. Thus document databases
can usually associate any number of fields of any length to a document. This way we can
store, together with a medical image, patient name and birth data. If you late decide to
add also sex and profession, you can do it even if it wasn't originally conceived.
Therefore, Document databases are usually schema-less; there is no predefined data
model.

A document database is, at its core, a key/value store with one major exception.

mailto:djiang1@student.gsu.edu
mailto:mliu9@student.gsu.edu
http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Semi-structured_model
http://en.wikipedia.org/wiki/Semi-structured_model

The format can be XML, JSON, Binary JSON or just about anything, as long as the
database can understand it. DjonDB is one type of document DB. In this project, the goal

of our work is to implement a application using DjonDB.

Related Works

A.JSON

JSON (JavaScript Object Notation) is a lightweight data-interchange format. It is
easy for humans to read and write. It is easy for machines to parse and generate. JSON is
a text format that is completely language independent but uses conventions that are
familiar to programmers of the C-family of languages, including C, C++, C#, Java,
JavaScript, Perl, Python, and many others. These properties make JSON an ideal data-
interchange language.

JSON is built on two structures: A collection of name/value pairs. In various
languages, this is realized as an object, record, struct, dictionary, hash table, keyed list, or
associative array. An ordered list of values: In most languages, this is realized as an array,
vector, list, or sequence.

JSON object: An object is an unordered set of name/value pairs. An object begins
with { (left brace) and ends with } (right brace). Each name is followed by : (colon) and
the name/value pairs are separated by , (comma).

e

object

I ctrinne |
l—({) | string)

value

i
L

Figure 1: JSON Object

JSON Array: Anarrayis an ordered collection of values. An array begins

with [(left bracket) and ends with] (right bracket). Values are separated by , (comma).

Fod (e Loy

gy
NS

Figure 2: JSON Array

JSON Value: Avaluecan be astringin double quotes, or anumber,

or true or false or null, or an object or an array. These structures can be nested.

value

L I ctring L
I 1 string I

Mumber L

I obloct L
1

Figure 3: JSON Value

JSON string: A string is a sequence of zero or more Unicode characters, wrapped
in double quotes, using backslash escapes. A character is represented as a single character

string. A string is very much like a C or Java string.

string
Any UNICODE character except] =
" or \ or control character
_@ quotation mark

reverse solidus

—~

solidus

~

= backspace

@ formfeed

newline

carriage return

r
h@ horizontal tab
h@-' 4 hexadecimal digits =’

Figure 4: JSON string

JSON number: A number is very much like a C or Java number, except that the

octal and hexadecimal formats are not used.

Figure 5: JSON number

JSON example:
{
“firstName": "John",
"lastName™: "Smith",
"age": 25,
"address": {
"streetAddress™: "21 2nd Street",
"city": "New York",
"state": "NY",
"postalCode™: 10021
b
"phoneNumbers™: [
{
"type": "home",
"number": "212 555-1234"
b
{
"type": "fax",
"number": "646 555-4567"

This example shows the JSON representation of an record that describes a person.
The object has string fields for first name and last name, a number field for age, contains
an object representing the person's address, and contains a list (an array) of phone number

objects.

B. BSON

BSON, “Binary JSON”, is a binary form for representing simple data structures
and associative arrays (often called objects or documents). BSON is a computer date
interchange format used mainly as data storage in the database.

BSON Data types: string, integer, double, date, binary data, boolean, null, BSON

object and regular expression.

C. DjonDB

All the documents in djondb are stored in files and organized by namespace in the
data folder. Each database may contain one or several namespaces, and these hamespaces
may contain several documents. Usually you would want to organize all the documents of
the same type in the same namespace, for example all the documents that represent
customers will be stored in a namespace named: "Customers".

Database/Namespace/Documents is analog to Databases/Tables/Rows in the
RDBMS.

djonDB Relational DB
database Database
namespace Table
documents rows

How to run djondb server? For windows users there's a convenient shortcut to
boot up the server, which you will find under the menu "djondb/djondbd”. To shutdown
the server, just use ctrl+c command.

Djondb is a document database, these documents are json documents that could
be stored directly to the database, example:

name: "John",

lastName: "Smith"

Figure 6: DjonDB example

These JSON documents may have several "subdocuments” like this:

name: "John™,
lastMame: "Smith",

addresses: [

{ zipcode: "98273", city: "Miami®, phone: "555-1223-123"},
{ ziprode: "95343", city: "New York"™, phone: “555-4444-333"}

Figure 7: DjonDB example

Djondb drivers supports two different ways to create new documents, using the
string representation or using BSONODj objects, these BSONODj classes were created to
handle JSON documents in an easier way.

How to create documents using the shell? Djon-shell is a full javascript console
that it's very useful to learn how to use Djondb and what is capable of, take a look of the

following example:

usergubuntu> djon-shell
djondb shell version ©.2201308106

»|connect ("localhost');
Connected to localhost

O

> insert('testdb’, “testns’, { name: "John", lastMName: “"Smith"1}};

‘ db ‘ ‘ namlespace ‘ ‘ New document

user@ubuntu> djon-shell

djondb shell version ©.220130106
> connect('localhost");
Connected to localhost

> var doc = { name: “John", lastName: “Smith"});
> doc.age = 23;

> doc.phone = "555-2323-232";

> insert('testdb', 'testns’, doc);

Figure 8: DjonDB command

For updating documents, just use the “update” command.

user@ubuntu> djon-shell

djondb shell wver on 8.220130106

Welcome to djondb shell.

Use help(); to get the commands available.

(hint: The first command should be "connect” to start playing with a server)
> connect(‘localhost®);

Connected to localhost

> insert('demodb’, "customer’, { name: "John”, lastMame: "Smith"});

nd(‘'demodb*®, ‘customer');
aefdf775-24a4-47a8-bfbS-Fb43c8120006", “_revision™: “8d26a50c-7277-4ce3-87F9-7ecba3824c62%, "
"lastName" ith”,™ "Joehn”}]
var r = find('demodb', *customer®);
r[el.age = 32;

> update('demodb’, “customer', r[8]);

> print(find(demodb", ’customer’));

defdf775-24a4-47a8-bfbE-Fb43cE120006",
"8d26a50c-7277-4ce3-B87F9-Tecba3B24cb2™,

Figure 9: DjonDB command

For removing documents, just use “remove” command.

user@ubuntu> djon-shell

djondb shell version ©.220130106

Welcome to djondb shell.

Use help(); to get the commands available.

(hint: The first command should be "connect™ to start playing with a server)
> connect('localhost");

Connected to localhost
> insert(‘'demodb’, ‘customer’, { name: hn*, lastName: "Smith™});

> find(*demodb”, “customer®);

[{"_id defdf775-24a4-47a8-bfbB-fb43c81200b6", " _revision™: "8d26a50c-7277-4ce3-87F9-7ecba3824ce2","
status "lastName mith","name"”:"John"}]

> var r = find('demodb"', ‘customer');

* remove(" demodb’, "custom 5 r[@1["_id"]1, r[@]1[_revision’]);

» find(demodb®, 'customer®);

9]

Figure 10: DjonDB command
To retrieve all your documents in a given namespace you just specify the database

and the required namespace as follows:

> connect('localhost');
Connected to localhost

> find('demodb', 'customers');

[{"_id":"aa4a3b3b-1339-473d-8810-61feb57cd@dc","_revision":"38b67638-6cdb-4dad-bc3b-05bBc8FI26a2" "
statu age":31,"1astName":"Johnson", “name": "Mary"},{"_id":"0@76deec-b12f-4149-b5a8- 1c4adfb35bff"
,"_revision":"56f1a5f3-626¢-4a47-b48f-09eBcd2ff781"," _status":1,"age":23,"1astName":"Swall", "name":"
Peter"},{"_id":"bc4aaaaf-13f9-40be-a923-f622b4df4f55", " _revision”:"13d6a524-81e9-4200-8d4e-65¢fI47af

e80","_status":1,"age":48,"1astName": "Mars", “name": "David"}]
>

Figure 11: DjonDB command

Filtering your results, use “find” command.

» connect('localhost');
Connected to localhost

> find('demodb', 'customers’, '$"lastName" == "Johnson"');
[{"_1d":"aada3b3b-1339-473d-881@-61feb57cd@dc","_revision":"38b67638-6cdb-4dad-bc3b-B5bRcEFI26a2","
status":1,"age":31,"1astName":“Johnson", “name": “"Mary"}]

>

Figure 12: DjonDB command

DjonDB can limit the results to avoid retrieving all the database in a single find,
the default limit is 30 documents, but you can change this using the parameter

max_results in the /etc/djondb.conf like this:

max_results=100;

Figure 13: DjonDB command

Using “print” command can read files in Djondb shell. This shell command
allows you to read a file from this into a variable; it will be readed as text. This command
can also show a message into the console, which has a nice feature.

user@ubuntu> djon-shell
djondb shell version @.220130106

> var text = read('file.txt");

> print(text);
Helle world!

Figure 14: DjonDB command

Overall Design of My Shopping Receipts System

A. System structure and development tool
Based on B/S (Browsers/Servers) structure, which is a technology that no needs to

install any program on terminals. User can do inquiring, viewing and other kinds of

operations about their business only through a browser. It is easy to maintain and update
the system since it only has to do with the server. It also suffices the expansibility of
users’ needs, the system can communicate with other systems by merging JSP network
programming with java technology; especially realize connection with database. The

entire project is designed using MVC framework, which includes model, view and

controller.
MVC
‘ Model View
Controller
Web Server
Browser
B. Functions

The goal of our project is to save our shopping receipts. The whole system
includes the following functions: adding receipts, adding merchant information, adding
item information, displaying the receipts and displaying the charts. Each part’s function
module serves as the business logic layer in MVC, presenting different operations based
on different information input. Among them, the access control module is the key of
system security, any access and operation from users except the administrator should
under its permission.

C. Development Platform

We choose J2EE architecture as system platform, such as Windows, Tomcat,

DjonDB, JSP and Java. They are all open-source software and with advantages such as

less storage room, cross platforms, high performance, low cost, secure and stable.

Design and Implement

A. Function Implement of Modules

The main function is using JSP to implement the user interface and using Java to

implement all the functions interacted to the database. We embedded the Java code into

the JSP pages and servlets, which can deal with data from DjonDB. Here, we use the

MVC framework to deal with these functions. The JSP files are responsible for the view

part, all the data in the DjonDB are the module part in the project.

The following figure is the login menu of this system. After input the username

and password, we can access to the main Ul of the system.

USERNAME

PASSWORD

FORGOT PASSWORD

The main Ul shows in the following figure, which includes the merchant name,

total price for each receipts, card number and date.

MerchantName Total/s

+ Publix 17.36
+ Target 77.55
-+ RegaiCinema 10.7
+ 8P 35.2
+ Publix 55.29
+ Target 41.72
+ RegaiCinema 10.7
+ Costco 35.2
+ Pubtix 17.36
+ Target 11.79

+
r

Card

20001001001
20001001001
20001001002
20001001001
20001001002
20001001001
20001001002
20001001001

20001001002

w[¥]

Date

2012-01-21

2012-01-25

2012-02-23
2012-02-27

Expand each merchant name, the item information displayed, which includes the

item name, unit price, quantity, tax rate and sub total of each item. We can also add the

merchant information and item information into this system.

MerchantName Totaus Cara Oate
= Pubtix 7.3 20001001001 20120121
toms Price | @y | Taxate ~ Sub Total
sopte 299 2 0.03 616
Banana 0 3 0.03 1.85
(v Celery 299 ' 0.07 32
Rice 1.99 3 00 615
Op » Pages Jof1 [v[=]
+ Target 7.5 20001001002 20120125
¥ RegaiCinems 107 20001001001 2012-02:02
+ w 3.2 20001001002 2012-02:06
+ Pubtix 55,29 20001001001 2012:02:09
+ Target an 20001001002 20120213
+ RegalCinens 10.7 20001001001 2012:02-16
+ Costeo ®.2 20001001002 2012:02.20
+ Publix 1.3 20001001001 2012:02:23
7 Target 1179 20001001002 0120227

pagelt Jor11 e i [10[] View 1 - 10£ 107

The function “upload image” is used to upload the receipts image, which can help

us to save the receipts.

Receipt Image

Publix

PIEDMINT POINT PUBLIX 256-850-2390
Store Managar: LASRY KILL

PUB FF LGT STRAMBY
1 5

4 3FR .00 167 TF

T0TINGS 3 NT PIZZA

8 2FR 3.00 1.50TF
287TF

Ad Spec Savings 0,45
POTATOES I

)
1.48/ b STF
v peen Aem v

From the main Ul, the chart displayed when you click the “spending curve” and

“spending pie” tab. You can select the year to change the charts.

Spending Shares By Category

Monthly Spendings
200 i4 9 vk Commute 19.12%
Crocery 30038
- Coscery
- Ohers
o - Fainon
8 108 - 5818
- - Commte
! - Tow
i
a2
—
Fashion 2266%
- Lo M Mg S OO0 M D

Others 22357%

The whole project implemented using the Model-View-Controller framework. All
the data in the model part are stored in DjonDB. For the view part, all the data are
displayed in the web page using JSP. For the controller part, we use some java files to
handle them. All functions have the same way to be implemented. For example, for the
adding receipts function, we use java bean, java DAO and handler to implement the
operations. In java bean file, we give the get() and set() methods for getting and setting
value of each field in the tables. In the java handler, all the operations, including add
receipts, add item, get cards, get history, get items, get merchants, get receipts image, get
record years, get spending curve, get state pie, upload file, are implemented. In the java
DAO file, all the methods are used to connect the database tables with the user interfaces
(JSP files).

B. Deploy the Modules in the Web Server

In this project, we use the tomcat as the web server, which is used to display all
the functions in the browser. Using xml file to configure the index file and set path to
some files if needed. The url for the project is http://localhost:8080.

Testing

After the requirements have been defined and the coding process has been
completed, the testing process starts. The primary purpose of testing is to detect software
failure so that defects may be discovered and corrected. Basically we want to test if the
application does what it is supposed to do and does what it needs to do. We used both
static testing and dynamic testing including reviews, walkthroughs, inspection and a
given set of cases testing. In the static testing process we cross review the code and
walkthrough each functional module to inspect the functionality. In the dynamic testing
process we tried different users’ requirement as input and evaluate the output results. For
instance, as an administrator we are supposed to create a new user account. If the user
record is already in the database we should see an error message to alert us the user exists.
If not we should go back to check the related function module to make some

modifications. Also the relationship of data needs to be kept during the manipulation of

the database. For instance, if we modify a record under one user account we may not
want it affecting other records. By giving different set of inputs and checking the related
records we can assess the results as what we expected. In order to check the robotics of
the database application the large data input has been tested. The entire performance to
process the large input is acceptable. The waterfall testing model was utilized and the

logs of testing were kept for future project.

Conclusion

My shopping receipts system is well developed to simulate the database
management system (DBMS). We implement all the required function modules such as
adding receipts, adding items, displaying receipts and displaying charts. The testing was
conducted in multi rounds with both static and dynamic testing methods. Also as a team
we cross test the function models to make sure all functions behavior in the right way as
what they are supposed to do. The demonstration of the project was shown all the
functions of the application. Various design issues were solved during the process of the
implementation. With the Array, Array List and Collection data structures we implement
the application with optimized algorithm. The demonstration is presented in the class

with highly rewarded feedback.

