
XML Technologies and Applications

Rajshekhar Sunderraman

Department of Computer Science
Georgia State University

Atlanta, GA 30302
raj@cs.gsu.edu

V (a). XML Querying: XPath

December 2005December 2005

mailto:raj@cs.gsu.edu

Outline

Introduction
XML Basics
XML Structural Constraint Specification

Document Type Definitions (DTDs)
XML Schema

XML/Database Mappings
XML Parsing APIs

Simple API for XML (SAX)
Document Object Model (DOM)

XML Querying and Transformation
XPath
XSLT
XQuery

XML Applications

XML Query Languages

• XPath – core query language. Very limited, a glorified selection
operator. Very useful, though: used in XML Schema, XSLT, XQuery,
many other XML standards

• XSLT – a functional style document transformation language. Very
powerful, very complicated

• XQuery – W3C standard. Very powerful, fairly intuitive, SQL-style

• SQL/XML – attempt to marry SQL and XML, part of SQL:2003

Why Query XML?

• Need to extract parts of XML documents

• Need to transform documents into different forms
– Another XML form
– HTML (to display on a Web browser)
– Other (e.g. bibtex)

• Need to relate – join – parts of the same or different documents

XPath

• Analogous to path expressions in object-oriented languages (e.g.,
OQL) or file specification in UNIX

• Extends path expressions with query facility

• XPath views an XML document as a tree
– Root of the tree is a new node, which doesn’t correspond to

anything in the document
– Internal nodes are elements
– Leaves are either

• Attributes
• Text nodes
• Comments

XPath Document Tree
Root of XML documentRoot of XML tree

Sample Document Corresponding to the Tree

<?xml version=“1.0” ?>
<!-- Some comment -->
<Students>
<Student StudId=“111111111” >
<Name><First>John</First><Last>Doe</Last></Name>
<Status>U2</Status>
<CrsTaken CrsCode=“CS308” Semester=“F1997” />
<CrsTaken CrsCode=“MAT123” Semester=“F1997” />

</Student>
<Student StudId=“987654321” >

<Name><First>Bart</First><Last>Simpson</Last></Name>
<Status>U4</Status>
<CrsTaken CrsCode=“CS308” Semester=“F1994” />

</Student>
...

</Students>
<!-- Some other comment -->

Terminology

• Parent/child nodes, as usual

• Child nodes (that are of interest to us) are of types text,
element, attribute
– We call them t-children, e-children, a-children
– Also, et-children are child-nodes that are either elements or

text, ea-children are child nodes that are either elements or
attributes, etc.

• Ancestor/descendant nodes – as usual in trees

XPath Basics

• An XPath expression takes a document tree as input and returns a set
of nodes of the tree

• Expressions that start with / are absolute path expressionsabsolute path expressions

– Expression / – returns root node of XPath tree

–– //StudentsStudents//StudentStudent – returns all StudentStudent-elements that are
children of StudentsStudents elements, which in turn must be children of the
root

–– //StudentStudent – returns empty set (no such children at root)

XPath Basics (cont’d)

•• CurrentCurrent (or contextcontext node) – exists during the evaluation of XPath
expressions (and in other XML query languages)

• . – denotes the current node; .. – denotes the parent
• foo/barfoo/bar – returns all barbar-elements that are children of foofoo

nodes, which in turn are children of the current node
•• ../foo/bar/foo/bar – same
••/abc/cde/abc/cde – all cdecde e-children of abcabc e-children of the

parent of the current node

• Expressions that don’t start with / are relativerelative (to the current node)

Attributes, Text, etc.

•• //Students/Student/Students/Student/@@StudentIdStudentId – returns all StudentIdStudentId
a-children of StudentStudent, which are e-children of StudentsStudents, which are
children of the root

•• /Students/Student/Name/Last//Students/Student/Name/Last/text(text()) – returns all t-children of Last e-
children of …

•• //comment()comment() –– returns comment nodes under root

• XPath provides means to select other document components as well

Denotes an
attribute

Overall Idea and Semantics

• An XPath expression is:
locationStep1/locationStep2/locationStep1/locationStep2/……

•• Location stepLocation step:
Axis::nodeSelector[predicate]Axis::nodeSelector[predicate]

• Navigation axisaxis:
• child, parent – have seen
• ancestor, descendant, ancestor-or-self, descendant-or-self ,

right-sibling,left-sibling etc.
• some other

•• Node selectorNode selector: node name or wildcard; e.g.,
– ./child::Student (we used ./Student, which is an abbreviation)
– ./child::* – any e-child (abbreviation: ./*)

•• PredicatePredicate: a selection condition; e.g.,
Students/Student[CourseTaken/@CrsCode = “CS532”]

This is called fullfull syntax.
We used abbreviatedabbreviated syntax before.
Full syntax is better for describing

meaning. Abbreviated syntax is
better for programming.

XPath Semantics

The meaning of the expression locationStep1/locationStep2/locationStep1/locationStep2/…… is the
set of all document nodes obtained as follows:

• Find all nodes reachable by locationStep1 locationStep1 from the current node

• For each node N in the result, find all nodes reachable from N by
locationStep2; locationStep2; take the union of all these nodes

• For each node in the result, find all nodes reachable by
locationStep3locationStep3, etc.

• The value of the path expression on a document is the set of all
document nodes found after processing the last location step in the
expression

Overall Idea of the Semantics (Cont’d)

•• locationStep1/locationStep2/locationStep1/locationStep2/…… means:
– Find all nodes specified by locationStep1locationStep1
– For each such node N:

• Find all nodes specified by locationStep2locationStep2 using N as the
current node

• Take union
– For each node returned by locationStep2locationStep2 do the same

•• locationSteplocationStep = axis::node[predicate]axis::node[predicate]
– Find all nodes specified by axis::nodeaxis::node
– Select only those that satisfy predicatepredicate

More on Navigation Primitives

• 2nd CrsTakenCrsTaken child of 1st StudentStudent child of StudentsStudents:

/StudentsStudents/StudentStudent[1]/CrsTakenCrsTaken[2]

• All last CourseTakenCourseTaken elements within each Student element:

/Students/Student/CrsTaken[/Students/Student/CrsTaken[last()last()]]

Wildcards

• Wildcards are useful when the exact structure of document is not
known

•• DescendantDescendant--oror--selfself axis, // : allows to descend down any number of
levels (including 0)

• //CrsTakenCrsTaken – all CrsTakenCrsTaken nodes under the root
• StudentsStudents////@Name@Name – all NameName attribute nodes under the

elements Students, who are children of the current node
• Note:

– ./LastLast and Last Last are same
– .//LastLast and //LastLast are different

• The * wildcard:
• * – any element: Student/*/text()Student/*/text()
• @* – any attribute: Students//@*Students//@*

XPath Queries (selection predicates)

• Recall: Location step = Axis::nodeSelector[Axis::nodeSelector[predicatepredicate]]
• Predicate:

– XPath expression = const | built-in function | XPath expression
– XPath expression
– built-in predicate
– a Boolean combination thereof

•• Axis::nodeSelector[Axis::nodeSelector[predicatepredicate]] ⊆ Axis::nodeSelector Axis::nodeSelector but contains only
the nodes that satisfy predicatepredicate

• Built-in predicate: special predicates for string matching, set
manipulation, etc.

• Built-in function: large assortment of functions for string manipulation,
aggregation, etc.

XPath Queries – Examples

• Students who have taken CS532:
//Student[CrsTaken/@CrsCode=“CS532”]

True if : “CS532” ∈ //Student/CrsTaken/@CrsCode

• Complex example:
//Student[Status=“U3” and starts-with(.//Last, “A”)

and contains(concat(.//@CrsCode), “ESE”)
and not(.//Last = .//First)]

• Aggregation: sum(), count()
//Student[sum(.//@Grade) div count(.//@Grade) > 3.5]

Xpath Queries (cont’d)

• Testing whether a subnode exists:
• //Student[CrsTaken/@Grade] – students who have a

grade (for some course)
• //Student[Name/First or CrsTaken/@Semester

or Status/text() = “U4”] – students who
have either a first name or have taken a course in some
semester or have status U4

• Union operator, | :
//CrsTaken[@Semester=“F2001”] ||

//Class[Semester=“F1990”]

– union lets us define heterogeneous collections of nodes

XPointer

• XPointer = URL + XPath

• Syntax:
url # xpointer (XPathExpr1) xpointer (XPathExpr2) …
• Follow url
• Compute XPathExpr1

– Result non-empty? – return result
– Else: compute XPathExpr2; and so on

• Example: you might click on a link and run a query against your
Registrar’s database

http://yours.edu/Report.xml#xpointer(
//Student[CrsTaken/@CrsCode=“CS532”

and CrsTaken/@Semester=“S2002”])

	XML Technologies and Applications
	Outline
	XML Query Languages
	Why Query XML?
	XPath
	XPath Document Tree
	Sample Document Corresponding to the Tree
	Terminology
	XPath Basics
	XPath Basics (cont’d)
	Attributes, Text, etc.
	Overall Idea and Semantics
	XPath Semantics
	Overall Idea of the Semantics (Cont’d)
	More on Navigation Primitives
	Wildcards
	XPath Queries (selection predicates)
	XPath Queries – Examples
	Xpath Queries (cont’d)
	XPointer

