
XML Technologies and Applications

Rajshekhar Sunderraman

Department of Computer Science
Georgia State University

Atlanta, GA 30302
raj@cs.gsu.edu

I: Introduction and XML Basics

December 2005December 2005

mailto:raj@cs.gsu.edu

Outline

Introduction
XML Basics
XML Structural Constraint Specification

Document Type Definitions (DTDs)
XML Schema

XML/Database Mappings
XML Parsing APIs

Simple API for XML (SAX)
Document Object Model (DOM)

XML Querying and Transformation
XPath
XQuery
XSLT

XML Applications

Introduction

XML: A W3C standard to complement HTML
Two facets of XML: document-centric and data-centric
Motivation

HTML describes presentation
XML describes content

User defined tags to markup “content”
Text based format.
Ideal as “Data Interchange” format.
Key technology for “distributed” applications.
All major database products have been retrofitted with facilities to
store and construct XML documents.
XML is closely related to object-oriented and so-called semi-
structured data.

Semistructured Data

An HTML document (student list) to be displayed on the Web

<dt>Name: John Doe
<dd>Id: s111111111
<dd>Address:

Number: 123
Street: Main

</dt>
<dt>Name: Joe Public

<dd>Id: s222222222
… … … …

</dt>

HTML does not distinguish

between attributes and values

Semistructured Data (cont’d.)

To make the previous student list suitable for machine
consumption on the Web, it should have the following
characteristics

Be object-like
Be schemalessschemaless (not guaranteed to conform exactly to any
schema, but different objects have some commonality among
themselves.
Be selfself--describingdescribing (some schema-like information, like attribute
names, is part of data itself)

Data with these characteristics are referred to as
semistructured.

Semi-structured Data Model

Set of label-value pairs.

{name: "Alan",
tel: 2157786,
email: “a@abc.com”
}

The values themselves may be structures

{name: {first: “Alan”, last: “Black”},
tel: 2157786,
email: “a@abc.com”
}

name tel email

“Alan” 2157786 “a@abc.com”

Graph Model: Nodes represent
objects connected by labeled edges

to values

name tel email

2157786 “a@abc.com”
lastfirst

“Alan” “Black”

Semi-structured Data Model

Duplicate labels allowed
{name: "Alan", tel: 2157786, tel: 2498762"}

The syntax is easily generalized to describe sets of objects

{person: {name: “Alan”,tel: 2157786,email: “a@abc.com”}

person: {name: “Sara”,tel: 2136877,email: “sara@abc.com”}
person: {name: “Fred”,tel: 7786312,email: “fred@abc.com”}
}

All objects within a set need not have the same structure
{person:{name: “Alan”,tel: 2157786,email: “a@abc.com”},
person:{name: {first: “Sara”,last: “Black”},email: “s@abc.com”},
person:{name: “Fred”, tel: 7786312, height: 168}
}

Semi-structured Data Model

Relational Data is easily represented
{r1: {row: {a: a1, b: b1, c: c1},

{row: {a: a2, b: b2, c: c2}},
r2: {row: {c: c2, d: d2},

row: {c: c3, d: d3},
row: {c: c4, d: d4}}

}

Object-oriented data is also naturally represented (each node has a
unique object id, either explicitly mentioned or system generated)
{person: &o1{name: “Mary”, age: 45,

child: &o2, child: &o3},
person: &o2{name: “John”, age: 17,

relatives: {mother: &o1, sister: &o3}},
person: &o3{name: “Jane”, country: “Canada”, mother: &o1}
}

Semi-structured Data Model

Formal syntax for semi-structured data model
<ssd-expr> ::== <value> | oid <value> | oid
<value> ::== atomicvalue | <complexvalue>
<complexvalue> ::==

{ label:<ssd-expr>, ..., label:<ssd-expr> }

An oid value is said to be DEFINED if it appears before a value;
otherwise it is said to be USED
An ssd-expression is CONSISTENT if

An oid is defined at most once and
If an oid is used, it must also be defined.

A flexible and powerful data model that is capable of representing data
that does not have to follow the strict rules of databases.

What is Self-describing Data?

Non-self-describing (relational, object-oriented):

Data part:
(#12345, [“Students”, {[“John”, s111111111, [123,”Main St”]],

[“Joe”, s222222222, [321, “Pine St”]] }
])

Schema part:
PersonListPersonList[ListName: String,

Contents: [Name: String,
Id: String,
Address: [Number: Integer, Street: String]]

]

What is Self-Describing Data? (contd.)

Self-describing:
Attribute names embedded in the data itself, but are distinguished
from values
Doesn’t need schema to figure out what is what (but schema
might be useful nonetheless)

(#12345,
[ListName: “Students”,
Contents: { [Name: “John Doe”,

Id: “s111111111”,
Address: [Number: 123, Street: “Main St.”]] ,

[Name: “Joe Public”,
Id: “s222222222”,
Address: [Number: 321, Street: “Pine St.”]] }

])

XML – The De Facto Standard for Semi-structured Data

XML: eXXtensible MMarkup LLanguage
Suitable for semi-structured data and has become a standard
Used to describe content rather than presentation
Differs from HTML in following ways

New tags may be defined at will by the author of the document
(extensible)
No semantics behind tags. For instance, HTML’s
<table><table>……</table></table> means: render contents as a table; in XML:
doesn’t mean anything special.
Structures may be nested arbitrarily
XML document may contain an optional schema that describes
its structure
Intolerant to bugs; Browsers will render buggy HTML pages but
XML processors will reject ill-formed XML documents.

XML Syntax
XML Elements

element: piece of text bounded by user-defined matching tags:

<person>
<name>Alan</name>
<age>42</age>
<email>agb@abc.com</email>

</person>

Note:
Element includes the start and end tag
No quotation marks around strings; XML treats all data as text. This is
referred to as PCDATA (Parsed Character Data).
Empty elements:

<married></married> can be abbreviated to <married/>

XML Syntax - Continued

Collections are expressed using repeated structures.

Ex. The collection of all persons on the 4th floor:

<table>
<description>People on the 4th floor</description>
<people>

<person>
<name>Alan</name><age>42</age<<email>agb@abc.com</email>

</person>
<person>

<name>Patsy</name><age>36</age><email>ptn@abc.com</email>
</person>
<person>

<name>Ryan</name><age>58</age><email>rgz@abc.com</email>
</person>

</people>
</table>

XML Syntax - Continued

XML Attributes

• Attributes define some properties of elements
• Expressed as a name-value pairs

<product>
<name language="French">trompette six trous</name>
<price currency="Euro">420.12</price>
<address format="XLB56" language="French">
<street>31 rue Croix-Bosset</street>
<zip>92310</zip>
<city>Sevres</city>
<country>France</country>

</address>
</product>

• As with tags, user may define any number of attributes
• Attribute values must be enclosed within quotation marks.

XML Syntax - Continued
Attributes vs Elements

A given attribute can occur only once within a tag; Its value is always a
string
On the other hand tags defining elements/sub-elements can repeat any
number of times and their values may be string data or sub-elements
Same data may be encoded using attributes or elements or a combination
of the two

<person name="Alan" age="42">
<email>agb@abc.com</email>

</person>

or

<person name="Alan">
<age>42</age>
<email>agb@abc.com</email>
</person>

XML Syntax - Continued
XML References

Use id attribute to define a reference (similar to oids)
Use idref attribute (in an empty element) to refer to a previously defined
reference.

<state id="s2"> -- defines an id or a reference
<scode>NE</scode>
<sname>Nevada</sname>

</state>

<city id="c2">
<ccode>CCN</ccode>
<cname>Carson City</cname>
<state-of idref="s2"/> -- refers to object called s2;

-- this is an empty element
</city>

XML Syntax - Continued

Mixing Elements and Text

XML allows us to mix PCDATA and sub-elements within an element.

<person>
This is my best friend
<name>Alan</name>
<age>42</age>
I am not sure of the following email
<email>agb@abc.com</email>

</person>

This seems un-natural from a database perspective, but from a
document perspective, this is quite natural!

XML Syntax - Continued
Order

• The semi-structured data model is based on unordered collections,
whereas XML is ordered. The following two pieces of semi-structured
data are equivalent:

person: {fname: "John", lname: "Smith:}
person: {lname: "Smith", fname: "John"}

but the following two XML data are not:

<person><fname>John</fname><lname>Smith</lname></person>
<person><lname>Smith></lname><fname>John</fname></person>

• To make matters worse, attributes are NOT ordered in XML; Following
two are equivalent:

<person fname="John" lname="Smith"/>
<person lname="Smith" fname="John"/>

XML Syntax - Continued
Other XML Constructs

Comments:
<!-- this is a comment -->

Processing Instruction (PI):
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="classes.xsl"?>

Such instructions are passed on to applications that process XML files.

CDATA (Character Data): used to write escape blocks containing
text that otherwise would be considered markup:

<![CDATA[<start>this is not an element</start>]]>

Entities: < stands for <

Well-Formed XML Documents

An XML document is well-formed if

Tags are syntactically correct

Every tag has an end tag

Tags are properly nested

There is a root tag

A start tag does not have two occurrences of the same
attribute

An XML document must be well-formed before it can be
processed.

A well-formed XML document will parse into a node-labeled tree

Terminology

<?xml version=“1.0” ?>

<PersonList Type=“Student” Date=“2002-02-02” >
<Title Value=“Student List” />
<Person>
… … …
</Person>
<Person>
… … …
</Person>

</PersonList>

• Elements are nested
• Root element contains all others

Element (or tag)
names

elem
ents

Root
Rootelem

entEmpty
element

attributes

More Terminology

<Person Name = “John” Id = “s111111111”>

John is a nice fellow

<Address>
<Number>21</Number>
<Street>Main St.</Street>

</Address>
… … …

</Person>

Opening tag

Closing tag:
What is open must be closed

Nested element,
child of PersonPerson

Parent of AddressAddress,
Ancestor of numbernumber

“standalone” text, not
very useful as data,

non-uniform

Child of AddressAddress,
Descendant of PersonPerson

C
on

te
nt

 o
f

 P
er

so
n

Pe
rs

on

XML Data Model

person

name emailtel tel

Bart Simpson
bart@tau.ac.il

051–011022
02–4447777

Document Object Model (DOM) – DOM Tree

Leaves are either empty or contain PCDATA

Unlike ssd tree model, nodes are labeled with tags.

	XML Technologies and Applications
	Outline
	Introduction
	Semistructured Data
	Semistructured Data (cont’d.)
	Semi-structured Data Model
	Semi-structured Data Model
	Semi-structured Data Model
	Semi-structured Data Model
	What is Self-describing Data?
	What is Self-Describing Data? (contd.)
	XML – The De Facto Standard for Semi-structured Data
	XML Syntax
	XML Syntax - Continued
	XML Syntax - Continued
	XML Syntax - Continued
	XML Syntax - Continued
	XML Syntax - Continued
	XML Syntax - Continued
	XML Syntax - Continued
	Well-Formed XML Documents
	Terminology
	More Terminology
	XML Data Model

