RAP — Report

RAP is a software package for parsing, querying, manipulating, serializing and serving
RDF models.
RAP - RDF API for PHP, a semantic Web toolkit for PHP developers. It started, at the
Freie Universitit Berlin in 2002, as an open source project and has been extended with
internal and external code contributions since then.
In the latest releases it includes:

+ astatement-centric API for manipulating RDF graphs as a set of statements

» aresource-centric API for manipulating RDF graphs as a set of resources

» integrated RDF/XML, N3 and N-TRIPLE parsers

» integrated RDF/XML, N3 and N-TRIPLE serializers

+ in-memory or database model storage

« support for the RDQL query language

« an inference engine supporting RDF-Schema reasoning and some OWL
entailments

« an RDF server providing similar functionality as the Joseki RDF server
« agraphical user-interface for managing database-backed RDF models
« support for common vocabularies
The terms for using RAP are at GNU LESSER GENERAL PUBLIC LICENSE (

http://www.gnu.org/copyleft/lesser.txt).
It can be downloaded from http://sourceforge.net/projects/rdfapi-php/

RDF graphs can be manipulated in two different programming interfaces, using RAP:
* Model API allows manipulating RDF graph as a set of statements. It supports
adding, deleting, and replacing statements inside a model as well as adding entire

models.

* ResModel API allows manipulating RDF graph as a set of resources.

Model API:
Implemented in four different ways

MemModel - Model storing its RDF graph in memory. MemModel is fast, but
doesn't support inference.

DbModel - Model storing its RDF graph in a relational database. No inference
support.

InfModelF - Forward-chaining inference model storing its base graph and inferred
triples in memory.

InfModelB - Backward-chaining inference model storing its base graph in
memory and creating inferred triples on the fly.

ResModel API:
It is similar to the Jena Model API. It is implemented on top of the Model API and is

only providing a resource-centric view of this model.
Two implementations of the ResModel API:

ResModel - Basic implementaion fo the ResModel API

OntModel - OntModel provides a ResModel implementation extended with RDF-
Schema specific methods like hasSuperProperty(), addDomain() and
listInstances().

Model API:

MemModel

MemModel
-

add(), find()

Statement Index

l\
get from array
d

add to array

ey N\

Statement

Statement

Statement

Statement

Statement

In this implementation, the statements are stored in an array in the system
memory. The array gets appended with the new statements. It’s fastest among
all the Model APl implementations.

The DBModel :

This implementation stores statements in a relational database. The core of
RAP’s database backend is the classes DbStore and DbModel. The former represents
all models stored in a database, whereas the latter provides methods for manipulating
these models.

DbModel
s N
add(), find()

N
V]

insertinto ...

select .. from ..

Relational
Database

<

-

The InfModelF

It uses forward chaining inference algorithm; when a new statement from RDFS
or OWL namespace is added to the model, a corresponding InfRule is added to
the model’s rule-base. Each rule has a trigger and an entailment. The statement
which matches the trigger of an InfRule is added to the model, the entailment
will be recursively computed until no more rule-triggers matches the statement
or statements inferred from it. In this way, the base statement and all inferred
statements are added to the model.

But find operations are very fast, because the find method just looks into the
statement index and return the matching statements, including inferred
statements.

It’s advised to use if your model doesn’t change much and querying model is a
lot.

InfModelF

p
add(), find()

inference rules

add statement

check for
matching rules

entailment process

HERE

add entailed statements

-

find statements

Statement Index

I
A YV VY

Statement

Statement

Statement

InfStatement

InfStatement

o

InfModelB

It uses a backward chaining inference algorithm. No inferences are done when a
new statement is added to the model. During querying, the inferences are done.
Firstly, find-pattern is executed and is checked against inference-rules index. If
any matches are found, the find-pattern is rewritten and new search is done. The
new statements are inferred and added to the result. The iteration process
repeats until there are no rules to produce matching statements.

It is advised to use if model has lots of changes and executing not too many

gueries against the model.

InfModelB

(] N
add(), find()

>

o
-
-

T

°
©

inference Rules

add statement

find statements

check for
matching rules
entailment process

Tyyy

Query Rewriting
I I |

| Statement Index

puray ¥ HEEE

Statement

Statement

Statement

ResModel API:
ResModel

It provides a resource centric view on an underlying Model. It represents and
RDF graphs as a set of resources having properties, similar to the Jena Model
API. It is implemented on top of the Model API. Each ResModel method call is
translated into a find()-, add()-, or remove()- call to the underlying model
directly. ResModel API also supports for special resources like rdf:containers and
rdf:collections.

ResModel

~
addPropery(), listProperties()
: |
E find (SResource, $Property, NULL)
add (=
new Statement(SResource, o
$Property, §
$Value [
) =3
) 2
Model +
MemMoadel
OR
DbMaodel
OR
InfModelF / InfModelB
- J

e OntModel

OntModel API provides a ResModel implementation extended with RDF-Schema
specific methods like addSubClass(), listSubClasses(),hadSuperProperty(),
addDomain(), and listInstances().

OntModel just provides a more convenient API for working with RDF-S models,
but doesn’t do any inference by itself. It is achieved by combining OntModel with
underlying InfModelF or InfModelB.

OntModel
a addSchemaPropery(),)
listSchemaProperties()

addSchemaProperty()
listSchemaProperties()

(Schema Vocabulary)

addProperty($Property, $Value) listProperties($Property)

ResMcdel +

(addProperty(), listProperties()]
| A
add(SStatement) find($Resource, SProperty, Null)

v
(— MemModel, DbModel, InfModelF or InfMlodelB)
- J

Example of ModelAPI:

Download the most recent version of RDF APl for PHP from
http://sourceforge.net/projects/rdfapi-php/ and unzip the package.

define ("RDFAPI INCLUDE DIR", "C:/Apache/htdocs/rdf api/api/");
include(RDFAPI_INCLUDE_DIR . "RAfAPI.php");

Place this in the php script to include all RAP classes.

Consider the following statement written in N-Triple notation:
<http://www.example.org/someDocument.htm|>
<http://www.purl.org/dc/elements/1.1/creator> "Radoslaw Oldakowski"

In order to represent this statement in RAP we first create its components (subject and
predicate - both are resources indicated by URIs)

SsomeDoc = new Resource ("http://www.example.org/someDocument.html");
Screator = new Resource ("http://www.purl.org/dc/elements/1.1/creator");

and then pass them together with the third component (object Literal) to the
constructor function:

Sstatement1 = new Statement (SsomeDoc, Screator, new Literal ("Radoslaw
Oldakowski"));

To generate MemModel :

Smodell = ModelFactory::getDefaultModel();

Add statement to the model:

Smodell->add ($statementl) ;

More models can be added while generating a model like:

Smodel2 = ModelFactory::getDefaultModel()

Smodel2->add(new Statement(SsomeDoc, new
Resource("http://www.example.org/myVocabulary/title"), new Literal("RAP tutorial")));
Smodel2->add(new Statement(SsomeDoc, new
Resource("http://www.example.org/myVocabulary/language"), new Literal("English")));

And add second model to the first model
Smodell->addModel(Smodel2);

The size of the model gives 3 statements that is both modell and model2
echo "\Smodell contains " .Smodell->size() ." statements";

Printing the model to output

// Output Smodell as HTML table
echo "0utput the MemModel as HTML table: <p>";
Smodel1->writeAsHtmITable(); //Method prints the model as HTML table

// Output the string serialization of Smodell

echo "0utput the plain text serialization of the MemModel: <p>";

echo Smodel1->toStringIncludingTriples(); //creates a plain text serialization of the
model

// Output the RDF/XML serialization of Smodel1
echo "0utput the RDF/XML serialization of the MemModel: <p>";
echo Smodel1->writeAsHtml(); //Serialize the model to RDF/XML

Saving - model Serialization to File using saveAs function.

Smodell->saveAs("modell.rdf", "rdf");
SmOdel1'>SaveAs("mode|1.n3", ||n3||);

Similarly loading RDF model from a file we us load()

The literal "Radoslaw Oldakowski" is replaced, being an object in the first statement,
with a Blank Node. Additional statements describing this B-Node are made. To do this,
first create a new BlankNode allowing the identifier to be automatically generated for in
MemModel Smodel1l:

SbNode = new BlankNode(Smodel1);

Next using replace(), to exchange the objects.

Smodell->replace (NULL, NULL, new Literal ("Radoslaw Oldakowski"),
SbNode) ;

This will search for all statements having an object equal to the passed literal and
replace this literal with the value of the fourth parameter (SbNode). Subsequently new
statements are added describing the Blank Node using RAP's pre-defined vCard
vocabulary (SVCARD_FN, SVCARD_EMAIL):

include(RDFAPI_INCLUDE_DIR . "vocabulary/VCARD.php");
Smodell->add(new Statement(SbNode, SVCARD _FN, new Literal("Radoslaw
Oldakowski")));

Smodell->add(new Statement(SbNode, SVCARD EMAIL, new
Literal("radol@gmx.de")));

Typed Literals,

Add statement to the model Smodell describing the age of person represented by the
blank node.

Sage = new Literal("26"); //creating literal object

Sage->setDatatype ("http://www.w3.0org/TR/xmlschema-2/integer") ;
//setting the datatype explicitly

Smodell->add (new Statement ($SbNode, new
Resource ("http://www.example.org/myVocabulary/age"), S$age))

Language of a literal can be specified by calling the method setLanguage() or by passing
the language string as second parameter to the constructor method on an object Literal.

To traverse the model one by one, getStatementlterator() is used.

$it = Smodel2->getStatementIterator();//instantiation

Once instanced, the Statement Iterator can be ordered to return the current (current()),
next (next()), or previous (previous()) statement. It can also move to a desired position
(moveFirst(), movelast(), moveTo()).

while ($Sit->hasNext()) {
Sstatement = $it->next();
echo "Statement number: " . S$it->getCurrentPosition() . "
";
echo "Subject: " . Sstatement->getLabelSubject() . "
";
echo "Predicate: " . S$statement->getLabelPredicate() . "
";
echo "Object: " . Sstatement->getLabelObject () . "<P>";

}

Above, the iterator is used to output the label of the subject,
predicate and object of each statement in S$Smodel2.

To models can be compared using equals().Methods containsAny() and containsAll()
return a corresponding Boolean value about statements shared by two models being
compared. Furthermore, methods unite(), subtract() or intersect(), which will return a
new MemModel respectively.

Querying a model

In Smodell, the statements having subject
http://www.example.org/someDocument.html are searched using find() and pass the

object Resource Ssomedoc representing the particular subject as parameter.

Sresult = Smodel1->find(SsomeDoc, NULL, NULL);
Sresult->writeAsHtmITable();

Build indices for better performance.

Smodell = ModelFactory::getDefaultModel();
Smodell->index(IND_SPO); // IND_SP, IND_SO respectively or NO_INDEX to delete all
indices.

Reification is done using reify() method.

Sreified = Smodel2->reify();
Sreified->writeAsHtmlTable () ;

Close() is used to terminate any model.

Example of ResModel API:

In RAP, the classes representing resources, properties and literals are called
ResResource, ResProperty and ReslLiteral.

//change the RDFAPI INCLUDE DIR to your local settings
define("RDFAPI_INCLUDE DIR", "C:/!htdocs/rdfapi-php/api/");
include(RDFAPI_INCLUDE DIR . "RdfAPIL.php");

/I Some definitions

define('VCARD NS, 'http://www.w3.0rg/2001/vcard-rdf/3.0#");
$personURI = "http://somewhere/JohnSmith";

$fullName = "John Smith";

/I Create an empty Model
$model = ModelFactory::getResMode(MEMMODEL); //underlying memmodel

// Create the resources

$fullNameLiteral = $model->createLiteral($fullName);

$johnSmith = $model->createResource($personURI);

$vcard FN= $model->createProperty(VCARD NS.'FN');

$vcard NICKNAME= $model->createProperty(VCARD _NS."NICKNAME));

/I Add the property
$johnSmith->addProperty($vcard FN, $fullNameLiteral);

// Retrieve the John Smith vcard resource from the model
$vCard = $model->createResource($personURI);

/I Retrieve the value of the FN property
$statement = $vCard->getProperty($vcard FN);
$value = $statement->getObject();

/I Add two nickname properties to vcard

$literall = $model->createLiteral("Smithy");

$literal2 = $model->createLiteral("Adman");
$vCard->addProperty($vcard NICKNAME, $literall);
$vCard->addProperty($vcard NICKNAME, $literal2);

//card resource has only one vcard:FN property. RDF permits a resource to have several
properties of the same name Calling Svcard->getProperty(VCARD.NICKNAME) will return
one of the values, but it is indeterminate which one. So if it is possible that a property
might occur more than once, then the Sresource->listProperties(Sproperty) method has
to be used to get an array containing all statements with this resource and property

// List the nicknames
echo 'Known nicknames for '.$fullNameLiteral->getLabel().".
',
foreach ($vCard->listProperties($vcard NICKNAME) as $currentResource)

{
echo $currentResource->getLabelObject().'
";
s

Querying a Model:

Smodel->listSubjects() returns an iterator over all resources that have properties, ie are
the subject of some statement. Smodel->listSubjectsWithProperty(Sproperty, Svalue)
will return an iterator over all the resources which have a property Sproperty with value
Svalue.

// Iterate over all vcards which having FN property

Siter = Smodel->listSubjectsWithProperty(new ResResource(VCARD_NS.'FN'));
for (Siter->rewind(); Siter->valid(); Siter->next())

{

ScurrentResource=Siter->current();

5

// Create a bag
$bag smiths = $model->createBag();

$beckySmith = $model->createResource('http://somewhere/BeckySmith');
$beckySmithFN = $model->createLiteral('Becky Smith');
$beckySmith->addProperty($vcard FN,$beckySmithFN);

// Add persons to bag
$bag_smiths->add($beckySmith);
$bag_smiths->add($johnSmith);

Serialize this Model, it gives:

<rdf:Description rdf:nodeID="A3">
<rdf:type rdf:resource="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#Bag'/>
<rdf: 1 rdfiresource='http://somewhere/BeckySmith'/>
<rdf: 2 rdfiresource='http://somewhere/JohnSmith'/>

</rdf:Description>

which represents the Bag resource.

// Print out the full names of the members of the bag
echo '

Print out the full names of the members of the bag:</BR>";
foreach ($bag smiths->getMembers() as $resResource)

{

// Retrieve the value of the FN property
$statement = $resResource->getProperty($vcard FN);
echo $statement->getLabelObject().'
",

s

The RAP ResContainer classes currently ensure that the the list of ordinal properties
starts with rdf: 1 and is contiguous. The RDFCore WG have relaxed this constrain, so
RAPS's container implementation might follow in the future.

echo '

AIll Statements as HTML table’;
Smodel->writeAsHTMLTable();

Write the model as HTML table.
Conclusion:

RAP is easy to install and work with RDF models. Smaller implementations can be done
using ModelAPI and higher level applications are dealt with ResModelAPI based on the
user requirements. SPARQL is supported and easy to implement. RDQL which is part of
RAP model and a W3 standard like SPARQL is effective over ResModelAPI. It gives
flexibility to user by giving choice of database to implement i.e. using MySQL,
MSACCESS, ODBC or other databases. Official link for the RAP tool is
http://www4.wiwiss.fu-berlin.de/bizer/rdfapi/

Note:

While running the PHP files, some points to be considered as the latest rdf-api package
downloaded from server has some bugs. We fixed them while working. Ereg
depreciation error: when encountered such errors using the PHP 5.3 or higher version,
http://devthought.com/2009/06/09/fix-ereg-is-deprecated-errors-in-php-53/ refer this
to fix the problem.

We would be happy to answer any questions related to using the tool or doubts.

-Lakshmi Narayana Gupta Kollepara — lkolleparal @student.gsu.edu

-Srujana Gorge — sgorgel@student.gsu.edu

