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Abstract 
 
In this report, we present Pellet: a complete and capable OWL-DL reasoner with acceptable 
to very good performance, extensive middleware, and a number of unique features. Pellet is 
written in Java and is open source under a very liberal license. It is used in a number of 
projects, from pure research to industrial settings. 
 

Pellet is the first sound and complete OWL-DL reasoner with extensive support for rea-soning 
with individuals (including nominal support and conjunctive query), user-defined datatypes, and 
debugging support for ontologies. It implements several extensions to OWL-DL including a 
combination formalism for OWL-DL ontologies, a non-monotonic operator, and preliminary 
support for OWL/Rule hybrid reasoning. It has proven to be a reliable tool for working with 
OWL-DL ontologies and experimenting with OWL extensions. 
 

In this paper we describe Pellet’s features, architecture and special capabilities, along with an 
empirical comparison of its performance against other leading OWL-DL reasoners. 

 
Key words: Web Ontology Language, Description Logics Reasoning, Tableau-based 
Theorem Proving, Semantic Web 
 
 
 
 
 
1     Introduction 
 
 
OWL is a World Wide Web Consortium (W3C) Recommendation for representing 

ontologies on the Semantic Web. The OWL-DL sublanguage is a syntactic variant of the 

Description Logic SHOIN (D), that is, an OWL-DL ontology corresponds to a SHOIN 

(D) knowledge base. When OWL went to “Candidate Recommendation”, there was 

concern within the working group that implementing a standard tableau based reasoner 

for OWL-DL would be too difficult for people not already experts in Description Logics 

or theorem proving. We began work on the OWL-DL reasoner, Pellet, to lay these 

concerns to rest. In a matter of months, we had a rea-soner that passed a substantial 

number of the OWL test cases and even useful for reasoning with small, relatively 

simple ontologies. Over the next two years, Pellet has undergone continuous, if part time, 
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development. Pellet was perhaps, as a very generous guess-estimate, 1.5 person years of 

effort by people who had no prior ex-perience with Description Logics and little prior 

experience with theorem proving (especially not with tableau-based methods). This is not 

an unreasonable amount of effort for a production quality tool for a Recommendation of 

this complexity. 
1 

 
Pellet is now a complete and capable OWL-DL reasoner with acceptable to very 
good performance, extensive middleware, and a number of unique features. It is 
written in Java and is open source under a very liberal license. It is used in a number 
of projects, from pure research to industrial settings. In this paper, we describe Pel-
let’s features, architecture, and special capabilities, along with an empirical com-
parison of its performance against other leading OWL-DL reasoners. 
 
Pellet is the first implementation of the full decision procedure for OWL-DL (in-
cluding instances) and has extensive support for reasoning with individuals (in-
cluding conjunctive query over assertions), user-defined datatypes, and debugging 
ontologies. It implements several extensions to OWL-DL including a combination 
formalism for OWL-DL ontologies, a non-monotonic operator, and preliminary 
support for OWL/Rule hybrid reasoning. It has proven to be a reliable tool for 
working with OWL-DL ontologies and experimenting with OWL extensions. 
 
The rest of the paper is organized as follows: In Section 2, we discuss the basic 
services that can and should be provided by an OWL-DL reasoning component, 
followed, in Section 3, by a description of the architecture of Pellet. Sections 4 
and 5 present, respectively, Pellet’s support for ontology analysis and repair 
(especially, debugging) and Pellet’s support for key extensions to the OWL-DL 
language. Sec-tion 6 covers the new optimizations introduced in Pellet, while 
Section 7 compares Pellet’s performance with RacerPro and FaCT++. 
 
 
 
2     Pellet as an OWL-DL Reasoner 
 
 
The OWL Web Ontology Test Cases W3C Recommendation [1] defines two sorts of 
OWL “document checkers”: OWL syntax checkers and OWL consistency check- 
ers. It also defines four conformance classes of consistency checkers, OWL Lite/DL/Full 
 
1   

The system can be downloaded from http://www.mindswap.org/2003/pellet/download.shtml 
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consistency checkers, and complete OWL-Lite consistency checkers. To be a con-
sistency checker is to be sound with respect to the specific species’ semantics. To be 
complete is to be a decision procedure with respect to that semantics. OWL-Full is 
not decidable, so there is no such thing as a complete OWL-Full consistency checker. 
It is a bit odd that the Test Cases Recommendation does not explicitly de-fine a 
complete OWL-DL consistency checker, though perhaps explainable that, at the 
time, there was no known decision procedure for OWL-DL. Pellet is a com-plete 
OWL-DL consistency checker and a very incomplete OWL-Full consistency 
checker. It is also an OWL syntax checker. To our knowledge, Pellet is the first, and 
currently the only, complete OWL-DL consistency checker and has the most 
coverage of OWL as a whole of any reasoner (though some reasoners, particular 
OWL-Full ones, cover areas of OWL-Full reasoning Pellet just does not try to han-
dle). Our implementation validates the design of the WebOnt working group. 
 
Meeting the conformance criteria of a specification is laudable, but it does not 
nec-essarily result in a practical tool. The OWL Test Cases document [1] defines 
an OWL consistency checker as follows: 
 

An OWL consistency checker takes a document as input, and returns one word 
being Consistent, Inconsistent, or Unknown. 

 
But, while consistency checking is an important task, it does not, in itself, allow 
one to do anything interesting with an ontology. Traditionally, in the ontology 
and Description Logic community, there is a suite of inference services held to be 
key to most applications or knowledge engineering efforts. Given that OWL-DL 
is a syn-tactic variant of the very expressive Description Logic SHOIN (D), it is 
impera-tive that a practical OWL reasoner provide at least the “standard” set of 
Description Logic inference services, namely: 
 
• Consistency checking, which ensures that an ontology does not contain any 

con-tradictory facts. The OWL Abstract Syntax & Semantics document [2] 
provides a formal definition of ontology consistency that Pellet uses. In DL 
terminology (see Figure 1), this is the operation to check the consistency of an 
ABox with respect to a TBox. 

2
  

• Concept satisfiability , which checks if it is possible for a class to have any in-
stances. If class is unsatisfiable, then defining an instance of the class will 
cause the whole ontology to be inconsistent.   

• Classification , which computes the subclass relations between every named 
class to create the complete class hierarchy. The class hierarchy can be used to 
answer queries such as getting all or only the direct subclasses of a class.   

• Realization, which finds the most specific classes that an individual belongs to; or 
in other words, computes the direct types for each of the individuals. Realization 
can only be performed after classification since direct types are defined with  
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This corresponds to being an OWL consistency checker. 
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Abbr. Stands for Meaning 
   

ABox Assertional Box Component  that  contains  assertions  about  individuals, 
  i.e. OWL facts such as type, property-value, equality or 
  inequality assertions. 
TBox Terminological Box Component that contains axioms about classes, i.e. OWL 

  axioms such as subclass, equivalent class or disjointness 
  axioms. 
KB Knowledge Base A combination of an ABox and a TBox, i.e. a complete 

  OWL ontology. 
   

 
Fig. 1. Explanation of some commonly used terms in DL jargon 

 
respect to a class hierarchy. Using the classification hierarchy, it is also 
possible to get all the types for that individual. 

 
These services are inter-definable [3], but it is standard to reduce them all to con-
sistency checking, as Pellet does. These basic services can be accessed by 
querying the reasoner. Generally, such queries are supported via an API such as 
the DIG interface [4]. Pellet supports the standard array of derivative queries and 
various reasoner management services both via its own API and by supplying 
bindings and support for common toolkits (such as Jena [5], WonderWeb OWL 
API [6] and DIG [4], see Section 3 for details). 
 
Pellet also supports some less standard services. For example, while classification 
requires a degree of entailment support (i.e., certain subclass relations are 
entailed by the ontology and classification is the inferring of those relations), it 
generally is quite restricted. Only a very limited set of types of entailment are 
supported, though, in principle, arbitrary entailment between OWL documents 
can be reduced to the core service of consistency checking. In [7], the general 
entailment problem for OWL-DL is reduced to KB consistency problem by 
means of an appropriate transformation. Pellet has explicit support for testing 
arbitrary entailments using this technique. 
 
Similarly, it is possible to reduce ABox conjunctive query answering to 
consistency checking. Queries about instances that are written in languages such 
as RDQL [8] or SPARQL [9] fall into this category. Since DLs have generally 
focused on reason-ing with classes, queries about instances get much less 
emphasis in the literature and in implementations (though that is changing). As a 
consequence, there is not a lot of implementation experience or known 
optimization techniques in this area. In Pellet, we have implemented a somewhat 
optimized conjunctive query answering procedure. 
 
We also have gone beyond both the standard set of inference services (consistency, 
satisfiability, classification, and realization) and the ones suggested by W3C rec-
ommendations (consistency, entailment, and conjunctive query answering) to in-
troduce various nonstandard services, which we believe are almost indispensable 

 
 
4 



 

22 

for practical use, with the obvious example being the various services for explain-
ing and debugging ontologies (See section 5 for more details). 
 
An orthogonal dimension to these services is the language they are implemented 
for. Pellet covers all of OWL-DL including inverse and transitive properties, 
cardi-nality restrictions, datatype reasoning for an extensive set of built-ins as 
well as user defined simple XML schema datatypes, enumerated classes (a.k.a, 
nominals) and instance assertions. The latter two are particularly key as a lot of 
the information published on the Semantic Web is instance heavy, contrary to 
traditional practice in the Description Logic community. 
 
Just as Pellet does far more than is strictly required of a complete OWL consistency 
checker, it also does more than what is required of an OWL syntax checker. Pellet 
will automatically apply heuristics to an OWL-Full document to see if it can be 
coerced into an OWL-DL document and then processed in the normal way. 
 
Finally, merely having a comprehensive range of services, without clear and easy 
ways to access them, is pointless. From the start, we have tried to make Pellet’s 
services easily available to all sorts of users. We have a HTML form based ser-
vice published on our website that casual dabblers can use to test their ontologies 
or queries. That service replicates the functionality available from Pellet’s com-
mand line interface. We bundle Pellet inside our OWL ontology editor, Swoop 
[10], which, itself, can be run from a Web browser via Java WebStart. We also, 
as mentioned above, support the DIG interface and a panoply of Java based APIs 
for accessing Pellet’s functionality. 
 
To be a practical OWL-DL reasoner, one must balance functionality and accessi-
bility. Pellet provides both. 
 
 
 
3     Pellet Architecture and Design 
 
 
Pellet, in its core, is a Description Logic reasoner. However, unlike other DL rea-
soners, it has been designed to work with OWL right from the beginning. This 
design choice had huge influence on the overall architecture. It affected how the 
tableaux reasoner was implemented, e.g. with the ability to reason with instance 
data (ABox reasoning) without making the Unique Name Assumption (UNA), 
and what kind of supporting modules to have, e.g. having an XML Schema 
datatype reasoner and a query engine. 
 
The main design goal of Pellet was to have a small core reasoning engine that is 
suitable for extensions. Having a small core engine enabled us to develop inter-faces 
for different RDF/OWL toolkits, such as Jena and the WonderWeb OWL API or to 
support applications that communicate through DIG interface. Even the core 
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Fig. 2. Main components of the Pellet reasoner 
 
 
 
 
 
 
engine itself is designed with extensibility in mind allowing us to implement ex-
tensions such as explanation generation for ontology debugging (see Section 4.2), 
multi-ontology reasoning using E-Connections (see Section 5.1), non-monotonic 
reasoning with the epistemic operator (see Section 5.3) and integration with rule 
formalisms (see Section 5.2). 
 
 
 
 
 
 
Figure 2 shows the main components of Pellet. The core of the system is the tableaux 
reasoner that checks the consistency of a knowledge base. The reasoner is coupled 
with a datatype oracle that can check the consistency of conjunctions of (built-in or 
derived) XML Schema simple datatypes. The OWL ontologies are loaded into the 
reasoner after species validation and ontology repair. This step ensures that all the 
resources have an appropriate type triple (a requirement for OWL-DL but not OWL-
Full) and missing type declarations are added according to some heuristics (see 
Section 4.1 for details). During the loading phase, axioms about classes are put into 
the TBox component and assertions about individuals are stored in the ABox 
component. TBox axioms go through the standard preprocess-ing of DL reasoners, 
e.g. normalization, absorption and internalization, before they are fed to the tableaux 
reasoner. The system provides a thin layer for programmatic access through the 
Service Programming Interface (SPI) that provides convenience functions to access 
the reasoning services provided. 
 
 
In what follows, we describe the main modules of the system in more detail. 
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3.1     Parsing and Loading 
 
 
Pellet provides various different interfaces for loading ontologies. Pellet itself 
does not have an RDF/OWL parser but is integrated to different RDF/OWL 
toolkits that provide a parser. Ontologies represented in the data structures of 
such toolkits can be directly loaded to Pellet. Pellet also implements the reasoner 
interfaces defined in those toolkits to answer queries. 
 
Each toolkit has quite different structures for representing OWL ontologies, e.g. Jena 
has a triple-oriented view where WonderWeb OWL API uses a view more akin to 
the OWL abstract syntax tree [11]. Therefore, Pellet includes different sub-modules 
that can load ontologies from these different representations. Loading on-tologies 
from the Jena toolkit is done by examining the triples in the RDF graph and 
transforming them into OWL facts and axioms. This process also involves species 
validation and repair. The WonderWeb parser, on the other hand, already generates 
such structures in its own representation. Thus, loading an ontology simply involves 
traversing those structures with an appropriate visitor pattern. 
 
In addition to the RDF/OWL support, Pellet also supports the standards 
developed for DL systems. The DIG (DL Implementors Group) interface [4] 
defines an HTTP-based Tell/Ask mechanism (with an XML syntax) for 
interacting with DL reason-ers. Pellet supports the DIG interface and hence 
ontologies can also be loaded by communicating through an HTTP connection. 
Finally, Pellet has a parser to read the files written in KRSS format [12], a Lisp-
like syntax traditionally used by DL reasoners. Using this parser, ontologies 
described in KRSS format can be directly loaded. 
 
 
3.2     Tableaux Reasoner 
 
 
The tableaux reasoner has only one functionality: checking the consistency of an 
ontology. According to the OWL model-theoretic semantics [2], an ontology is con-
sistent if there is an interpretation that satisfies all the facts and axioms in the ontol-
ogy. Such an interpretation is called a model of the ontology. The tableaux reasoner 
searches for such a model through a process of completion. The tableaux comple-tion 
starts by constructing an initial completion graph from the ABox. The nodes in the 
completion graph intuitively stand for individuals and literals. Each node is 
associated with its corresponding types. Property-value assertions are represented as 
directed edges between nodes. The reasoner repeatedly applies the tableaux ex-
pansion rules until a clash (i.e. a contradiction) is detected in the label of a node, or 
until a clash-free graph is found to which no more rules are applicable. 
 
All other reasoning tasks can be defined in terms of consistency checking. For 
example, checking whether an individual is an instance of a concept or not can be 
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Fig. 3. Different completion strategies implemented in Pellet 
 
tested by asserting that the individual is an instance of the complement of that 
class and then checking for (in)consistency. 
 
In order to support future extensions, the internals of the tableaux reasoner are 
built on an extensible architecture. The completion algorithm inside the tableaux 
rea-soner is designed so that different completion strategies can be plugged in. 
This approach has two major advantages: Different completion strategies with 
different heuristics can be used based on the characteristics of the given KB, e.g. 
the expres-sivity; also extensions such as E-Connection support can be 
implemented without changing the rest of the system. 
 
Figure 3 shows the different completion strategies currently implemented in Pel-
let. SHOIN Strategy is the default completion strategy that supports the full ex-
pressivity of OWL-DL. This strategy is based on the recently developed decision 

procedure for SHOIQ 
3
 [13]. 

 
The SHOIN Strategy covers the full expressivity of OWL-DL and exhibits a good 
“pay as you go” behavior, e.g. the tableaux rule for nominals is never applied if there 

are no nominals in the KB. However, the blocking strategy 
4
 required for SHOIN 

(dynamic double blocking strategy) is quite complex and may not pre-vent the 
completion graph from getting very large. If it is known that there are no nominals in 
the KB then an optimized version of double blocking [16] can be used. Also, in this 
case, we do not even need to check if nominal rules is appli-cable (since it will never 
be) and save some more time. The SHIN Strategy does exactly this, and hence, 
whenever the expressivity of the KB is detected to fall into 
 
3 

SHOIQ is equivalent to OWL-DL extended with qualified cardinality restrictions which 
were present in the DAML+OIL language but omitted in OWL  4 
Blocking ensures the termination of tableaux algorithm by halting the completion pro-cess 

when a “cycle” that can cause infinite expansion is detected [14]. Several blocking strategies 
have been developed for different expressivities (see, for example, [15]). 
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this category, this strategy will be selected over the default SHOIN Strategy. 
Simi-larly, the SHON Strategy employs an even more efficient blocking strategy 
(subset blocking) and is selected whenever appropriate. 
 
Some completion strategies behave quite different than others. For example, if 
there are no instances in the KB (just class and property descriptions) then it is 
known that every concept satisfiability check will start with a completion graph 
that has just one node. In such cases, more efficient completion strategies, e.g. the 
trace method, can be used. Moreover, when there are no inverse properties, we 
can use additional optimizations such as caching the satisfiability status of 
internal nodes. The EmptySHN Strategy uses this approach and manages to 
handle very large KB’s such as the famous Galen medical ontology. 
 
The dynamic completion strategy selection ensures the soundness and complete-ness 
of the reasoner while exploiting the most efficient algorithm for the given KB. 
 
 
3.3     Datatype Reasoner 
 
 
The datatype reasoner is responsible for checking if the intersection of (possibly 
negated) datatypes is consistent or not. Datatypes in OWL are described using XML 
Schema which provides a rich set of simple datatypes including various nu-meric 
types (integers and floats), strings, and date/time types. In addition to this, XML 
Schema also provides several mechanisms for creating new types out of the base 
types, e.g. it is possible to define a type that consists of integer values less than or 
equal to 10 and integer values greater than 20. An intersection of datatypes is 
inconsistent when they have no data value in common, e.g. the intersection of 
xsd:positiveInteger and xsd:negativeInteger is empty. 
 
Datatype reasoning in Pellet is based on the framework presented in [17]. This 
approach allows combining expressive DLs with an arbitrary type system. In this 
approach, the datatype reasoner is used as an oracle by the tableaux reasoner. For 
each literal node in the completion graph, the tableaux reasoner uses the datatype 
reasoner to determine if the intersection of all the datatypes associated with that 
node is satisfiable or not. Pellet’s datatype reasoner supports all the built-in XSD 
types along with any type derived from numeric or date types. 
 
 
3.4     Knowledge Base Interface 
 
 
All the reasoning tasks can be reduced to a KB consistency test with an appro-
priate transformation. However, such transformations are not always trivial and 
doing a consistency check for every arbitrary query is very expensive. The Sys-
tem Programming Interface (SPI) of Pellet provides generic functions to manage 
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such transformations and hide the details from users. This KnowledgeBase inter-
face makes decisions as to when to check the consistency of the ABox (if any 
changes have been made after the last time), when to classify all the concepts or 
when to realize all the individuals. 
 
The KnowledgeBase interface provides functionality to answer arbitrary atomic 
queries. These queries can be related to classes (e.g. getSubClasses, getDis-
joints, etc.), to properties (getSubProperties, isFunctional, etc.), or to 
individuals (e.g. getTypes, getPropertyValues, etc.). For boolean queries, the 
query is transformed to an unsatisfiability problem. For queries where a set of answers 
need to be returned, multiple consistency checks are required in theory but some 
optimizations are possible. For example, if we want to find all the instances of a 
concept, KnowledgeBase first computes all the obvious instances (e.g. all indi-viduals 
explicitly asserted to be instances) and then uses sophisticated methods (see Section 6 
for details) to find non-instances. For the remaining individuals, methods like binary 
instance retrieval [18] is used to test multiple individual with one con-sistency test. 
This general strategy is used for all the other queries, e.g. finding all the property 
values for a specific individual, because in the end all the other tests are reduced to 
similar unsatisfiability problems. 
 
The Knowledge Base interface, as the rest of internal components, is built on the 
ATerm library [19]. ATerm (short for Annotated Term) is an abstract data type 
de-signed for the exchange of tree-like data structures between distributed 
applica-tions. The ATerm library provides maximal subterm sharing and 
automatic garbage collection making it very suitable for representing complex 
OWL class expressions. The term sharing feature reduces the overall memory 
consumption spent for storing concept expressions and makes it is easy to 
transform the data from Pellet SPI to external APIs. 
 
 
 
3.5     ABox Query Engine 
 
 
The KnowledgeBase interface is coupled with an ABox Query Engine that an-
swers conjunctive queries. This module supports queries written in the SPARQL 
[9] language as well as in the RDQL [8] language. More specifically, any ABox 
query expressed in these languages is parsed into an internal query format using 
the parser provided by HP Lab’s ARQ module in the Jena toolkit. A query 
written in one of these RDF query languages is an ABox query if it satisfies the 
following conditions: 
 
• No variable is used in the predicate position.   
• Each property used in the predicate position is either a property (object or 

datatype) defined in the ontology or one of the following built-in properties: 
rdf:type, owl:sameIndividualAs, owl:differentFrom.  
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• If rdf:type is used in the predicate position, a constant URI is used in the 
object position.  

 
Queries written in a more logic-oriented language such as KIF naturally fall into 
this category as the syntax does not allow violating these conditions. 
 
The query answering for expressive DLs, such as OWL-DL, has some interesting 
implications. For example, a query that has undistinguished variables, i.e. vari-
ables that appear in the query body but not in the SELECT clause, need to be 
answered in a different way [20]. This is due to the fact that constructs such as 
owl:someValuesFrom cause new individuals to be created that are generally 
not to be included in the query result. 
 
The Pellet query engine uses the “rolling-up” technique [20] to answer queries 
with undistinguished variables. This technique creates one concept expression 
from the query expression and reduces the problem to retrieving the instances of 
that con-cept. This step needs to be repeated for each distinguished variable. We 
have de-veloped several optimizations to reduce the number of instance retrieval 
operations (See Section 6 for more details). 
 
Figure 4 shows the general design of the query engine. There are multiple query 
engines that actually answer queries and one main query engine that preprocesses the 
query and selects the appropriate query engine. The first step of the main engine is to 
analyze the query and determine if it consists of independent sub-queries. If this is 
the case, the query is split into multiple queries which are answered sepa-rately. The 
results are combined at the end on a tuple by tuple basis. The next step is to examine 
the structure of the query and sort the patterns or variables to improve efficiency. The 
heuristic used here is to first bind variables with a smaller number of likely 
candidates, e.g. variables used with classes that have fewer instances or vari- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Components of the query engine 
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ables used in conjunction with functional properties. This step is generally mixed 
with the last step, where one of the actual query engines generates the answer. 
For example, if there is no selection statement in the query, i.e. it is a boolean 
query, then no reordering is required, since the query can be answered in one 
rolling-up step. 
 
 
 
4     Ontology Analysis and Repair 
 
 
In this section we briefly describe the capabilities of Pellet for detecting syntactic 
and semantic defects in ontologies. 
 
 
 
4.1     Species coercion 
 
 
OWL has two major dialects, OWL-DL and OWL-Full, with OWL-DL being a 
subset of OWL-Full. All OWL knowledge bases are encoded as RDF/XML graphs. 
OWL-DL imposes a number of restrictions on RDF graphs, some of which are sub-
stantial (e.g., that the set of class names and individual names be disjoint) and some 
less so (that every item have an rdf:type triple). Ensuring that an RDF/XML 
document meets all the restrictions is a relatively difficult task for authors, and many 
existing OWL documents are nominally OWL-Full, even though their au-thors 
intend for them to be OWL-DL. Pellet incorporates a number of heuristics to detect 
“DLizable” OWL-Full documents in order to “repair” them. 
 
The heuristics implemented in Pellet attempt to guess the correct type for an un-
typed resource. These are mainly standard operations, e.g. a resource used in the 
predicate position is inferred to be a property. Some situations have more than 
one solution, e.g. an untyped resource used only in one cardinality restriction can 
be any of object or a data property. In these cases, Pellet heuristics choose object 
proper-ties and classes over data properties and datatypes by default, but this 
behavior can be configured. 
 
Ensuring the vocabulary separation, e.g. disjointness of classes, properties and in-
dividuals, is another hard problem especially in the distributed Web environment 
where people might be required to import an OWL-Full ontology that they might 
have no control over. In such a case, it is not acceptable for a reasoner to reject 
processing the ontology altogether. For this reason, Pellet provides several 
options to the users where vocabulary separation is not respected: 
 
• Ignore the statements that cause the problem. If a URI is used both as a class and 

as a property, one of these definitions will be ignored and the accepted definition 
depends on the order the statements are processed (this order is generally non-  

 
 
12 



 

22 

deterministic and based on which underlying parser is used).  
• Accept all the definitions for the URI but treat them differently for query 

answer-ing. For example, if the same URI is defined both as a class and as a 
property, Pellet will create both a class and a property and associate the axioms 
with the corresponding definition. Depending on the queries, asking subclasses 
vs. asking sub properties, the appropriate definition will be used.   

• Reject processing the ontology completely.  
 
These options give the user more control about how to deal with the different 
cases and provide a plausible solution for a certain set of OWL-Full ontologies. 
On the other hand, some features of OWL-Full ontologies are completely out of 
scope for Pellet. For example, defining cardinality restrictions on transitive 
properties causes undecidability. Extending built-in vocabulary, e.g. creating a 
subproperty of rdf:type, requires a completely different reasoning procedure. 
Therefore, for such OWL-Full features only options provided are Ignore or Fail. 
 
 
4.2     Debugging Support 
 
 
As descriptions in OWL ontologies become more complicated, finding the cause of 
semantic errors, i.e., contradictions in ontological definitions, becomes an ex-tremely 
hard task even for experts. Typically, reasoners only detect unsatisfiable concepts (or 
inconsistent ontologies); however, the diagnosis and resolution of the bug is not 
supported at all. To overcome this problem, Pellet contains two debug- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. The explanation of unsatisfiability for class OceanCrustLayer includes a de-
scription of the clash created in the tableaux reasoner. Also, the set of axioms responsible 
for this clash is extracted by the Pellet axiom tracing service. (Screenshot taken from the 
Swoop Ontology editor running Pellet) 
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ging services that help explain why the inconsistency occurs: the first service – 
clash detection is used to pinpoint the root contradiction or clash in the 
completion graph; and the second – axiom tracing is used to extract the relevant 
source axioms from the ontology responsible for the clash (see Figure 5 for an 
example). These services are used in the OWL Ontology Editor, Swoop [10], as a 
debugging aid for ontology users and modelers. [21] 
 
 
 
5     Beyond OWL-DL 
 
 
5.1     Multi-Ontology Reasoning using E-Connections 
 
 
E-Connections [22] are a framework for combining several families of decidable 
logics, such as Description Logics, Modal Logics, as well as some logics of time and 
space. In an E-Connection, the coupling between the combined logics is loose 
enough for obtaining general results about transfer of decidability: if reasoning is 
decidable in each of the logics in the combination, then it is decidable in the com-
bined formalism as well. Thus, E-Connections are computationally more robust than 
other combination methods, such as Fusions [23] or Multidimensional Modal Logics, 
[24], in which the interaction between the combined formalisms is closer and general 
transfer of decidability results cannot be expected. 
 
A knowledge base in the combined language is composed of a set of knowledge 
bases, expressed in any of the component logics. The component KBs are inter-
preted over disjoint logical domains and connected by means of link relations. 
The new operators provided by the E-Connection language are associated to the 
link relations and hence are used to describe the relationships between the 
connected KBs. 
 
In [25] and [26] we have proposed tableau algorithms for different E-Connection 
languages involving Description Logics. The basic strategy to extend a DL tableau 
algorithm with E-Connections support is based on “coloring” the completion graph. 
Nodes of different “colors”, or sorts, correspond to different domains (ontolo-gies). 
The application of the expansion rules, blocking conditions and clash trig-gers 
depend on both the “color” of the node under consideration and the expres-sivity 
allowed on the link relations. When implementing tableau algorithms for  
E -Connections as an extension of an OWL reasoner, all these issues must be thor-oughly 
considered. For a detailed discussion on combined tableau algorithms for  
E -Connections we refer the reader to [25] and [26].  
 
Pellet has been extended with tableau-based decision procedures for several E-

Connection languages. The implementation is still in “beta” stage, but our initial 

experimental results show that the performance for the E-Connected KBs is very 
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similar to their OWL counterparts. E-Connections do not seem to affect existing 
op-timizations or degrade the performance of the reasoner, even in our “naive” 
imple-mentation. Currently, we are tuning the reasoner and performing a more 
extensive evaluation. 
 
Finally, it is worth emphasizing here that, although Pellet currently can only handle 
E-Connections of OWL-DL ontologies, it can be easily extended to other interest-ing 
E-Connection languages, such as E-Connection languages including the quali-tative 
spatial logic RCC-8 as a component logic, or Distributed Description Logics [27], 
which can be seen as sub-formalisms of basic E-Connections [22]. 
 
 
5.2     Integration with Rules formalisms 
 
 
The Semantic Web Rules Language (SWRL) [28] has recently been proposed as 
the basic rules language for the Semantic Web. 
 
SWRL is based on a simple idea, namely, that the coupling between a DL Knowl-
edge Base K and a Datalog program P is achieved by allowing the use of classes, 
object and datatype properties defined and used in K (called DL-atoms) in the 
Dat-alog rules in P. 
 
Unfortunately, although SWRL provides useful new expressive power, it is 
known to be undecidable. 
 
In the mid and late 90s, many proposals for combining DLs and Datalog were 
presented under the name of “Hybrid Systems”. The most prominent ones are 
AL-Log [29] and CARIN [30]. Both can be seen as decidable subsets of SWRL 

5
 

. In particular, in AL-Log the only DL atoms allowed in the Datalog rules are 
classes and these can only be included in the body of the rule. 
 
We have implemented a prototype of AL-Log using Pellet. The implementation 
slightly generalizes the original AL-Log in two ways: first, we use SHOIN (D) 
instead of ALC, which was the language originally used in the DL component, 
and secondly we allow the use of OWL datatypes, and SWRL built-ins in the 
antecedent of Datalog rules. 
 
The reasoner computes answers to queries based on the specification of both 
com-ponents and is based on the notion of constrained SLD-derivation and 
constrained SLD-refutation, as presented in [29]. The system has been 
implemented in Prolog, coupled to Pellet. Potential applications for AL-Log 
include Web Policies and Web Services. 
 
5   

If only unary and binary predicates are allowed 
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5.3     Non-monotonic Reasoning with the Epistemic Operator 
 
 
Non-monotonic logics have been generally successful in capturing several forms 
of common sense and database reasoning. A prominent family of non-monotonic 
formalisms are rooted in various forms of the closed world assumption. 
Sometimes, it is reasonable to assume that the information at hand is complete. 
Under these circumstances, if a formula cannot be proved true or false in a KB, it 
is considered to be false. This constitutes the closed-world assumption (CWA). 
Under the open world assumption (OWA), on the other hand, it is accepted that 
the knowledge in our KB is perhaps incomplete and hence, if a formula cannot be 
proved true or false, we do not draw any conclusion. 
 
It would be desirable to be able to “turn on” the closed-world assumption when 
needed in OWL in order the reap the benefits of nonmonotonicity, but without 
giv-ing up OWL’s open-world semantics in general. The logic ALCK allows for 
this interaction. Many useful nonmonotonic features such as integrity constraints 
and procedural rules (among others− see [31]) are formalizable in this logic. 
 
In [31], the epistemic operator K is added to the Description Logic ALC. The K 
operator allows queries that assume the CWA, making ALCK a nonmonotonic 
formalism. The K operator (which is a kind of necessity operator) can be applied 
to a concept or role. 
 
In its simplest form, ALCK allows the use of K operator only in queries and assume 

that queries that are posed to an ALC knowledge base Σ. Intuitively, the query ha : 

KCO (resp. haKRbO for a role) is read as “Is the individual a known to be C?” 
 
Pellet includes an implementation of the ALCK language. In addition to the K 
queries outlined above (accessible as an extension to the SPARQL query 
language), we also admit a restricted use of K in the terminology, in the form of 
an epistemic rule. An epistemic rule is of the form of KC v D where C and D are 
ALC con-cepts. In order to allow for K and epistemic rules we have extended the 
KRSS format (as it is not clear how to integrate such rules with OWL’s 
RDF/XML syn-tax). 
 
 
 
 
6     Implementation and Optimizations 
 
 
Expressive Description Logics, such as SHOIN (D), are known to have very high 
worst-case complexity. As a consequence, there exists a significant gap between 
the design of a decision procedure and the achievement of a practical 
implementation. Naive implementations are doomed to failure. 
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In order to achieve acceptable performance, modern DL reasoners implement a 
suite of optimization techniques. These optimizations lead to a significant 
improve-ment in the performance of the reasoner and have proved effective in 
wide variety of realistic applications. 
 
Pellet implements most of the state of the art optimization techniques provided in 
the DL literature and have been implemented in other systems such as FaCT++ 
and RACER (see [32] for a complete description) including: 
 
• Normalization and Simplification Normalization is the process of transforming 

all the concepts in a form where contradictions involving complex concepts are 
detected early during tableaux expansion. Simplification detects obvious 
clashes during the normalization process and also gets rid of redundant 
elements of a concept expression.   

• TBox Absorption is a technique that tries to eliminate GCIs as possible from a 
KB by replacing them with primitive definitions. Absorption can be improved 
if general axioms are absorbed into domain or range axioms whenever possible 
[33].   

• Semantic Branching When a disjunction is being expanded, a single disjunct D 
is chosen and two possible search trees are obtained by adding either D or ¬D. 
Because the two search trees are strictly disjoint, there is no possibility of 
wasted search.   

• Dependency-directed Backjumping Dependency-directed backjumping 
eliminates unproductive backtracking search by finding which branching points 
are respon-sible for a clash and jumping back over the intervening branching 
points without exploring any alternatives.   

• Oldest-first Disjunction Selection When an individual contains many disjunc-
tions in its label, the order in which these disjuncts are expanded has an impor-
tance. To improve the effectiveness of dependency-directed backjumping we 
first expand the disjunct that depends on the minimum branch number.   

• Caching Intermediate Satisfiability Status During a consistency check there 
may be many fresh nodes created in the completion graph. Some of these 
nodes can be very similar and caching the satisfiability status of these nodes 
can save signif-icant computation time especially if there are no inverse 
properties or nominals used in the ontology.   

• Optimized Blocking Performance can be improved drastically by optimizing the 
double blocking strategy so that cycles are detected earlier and completion 
graphs do not become very deep. Pellet incorporates this blocking strategy for 
the KBs with suitable expressivity, e.g. SHI.   

• Top-Bottom Search for Classification Classification performance is highly im-
proved when an algorithm based on the traversal of concept hierarchy is used 
instead of checking the subclass relation between each named class. Using the 
asserted subclass relations and exploiting the transitivity of the subclass 
relation during traversal proves to be very useful.   

• Model  Merging  The  obvious  non-subsumption  relation  between  two  concepts  
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can be detected by inspecting the cached models for the concepts. If merging 
the model for C and ¬D does not have any possible clash then we can infer that 
C is not a subclass of D without doing the expensive consistency test. 

 
The optimizations above have been implemented and proved useful for the 
Descrip-tion Logic SHIN (D) (a.k.a OWL-Lite). However, from an 
implementation point of view, the recent achievement of a decision procedure for 
SHOIN (D) poses new challenges: 
 
• While many optimization techniques are completely independent of the DL sup-

ported by the reasoner, others are valid for certain logics only. In particular, some 
optimizations for reasoning with ABoxes, e.g. chain contraction [34], are not 
applicable in the presence of nominals. Moreover, in the presence of nominals, 
ABox assertions can affect concept satisfiability and TBox classification. In other 
words, nominals break the traditional “separation” between TBox and ABox in 
Description Logics. As a consequence, ontologies with nominals in the TBox and 
large number of instances in the ABox are likely to compromise the perfor-mance 
of DL reasoners.  

• Nominals are not supported by state of the art DL reasoners, except for Pellet. 
Thus, there is very little experience in developing techniques for dealing with 
nominals efficiently in practice. In particular, to the best of our knowledge, no 
optimizations specific for nominals, other than ours, have been explored.  

 
We have developed a suite of new optimizations for facing these challenges in 
the presence of individuals. We provide a brief description of these optimizations 
(de-tails will be provided in our upcoming technical report): 
 
• Nominal Absorption Pellet uses an improved absorption technique where 
axioms involving enumerations (tt oneOf) are absorbed into ABox assertions.  

• Partial Backjumping During backjumping it is highly likely that some useful 
in-formation generated a the intervening branching points is being thrown 
away. Partial backjumping inspects the dependency set information to keep 
this infor-mation and avoids repeated application of same tableaux rules.   

• Learning-based Disjunct Selection When there are large number of individuals 
in the KB with similar characteristics, it is highly likely that selecting the same 
disjunct from a disjunction will work on all the individuals. Learning-based 
dis-junct selection keeps track of the successful disjunct selections and when a 
dis-junction is being expanded it always selects the disjunct that caused less 
clashes in previous applications.   

• Nominal-based Model Merging Nominals always have a fixed interpretation in 
the domain. Pellet exploits this property to improve the model merging 
algorithm for detecting obvious non-subsumptions.  

 
In addition, Pellet incorporates several optimizations for ABox query answering. 
Different techniques are employed depending on the structure of the query. The 
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rolling-up technique [20] provides an easy reduction of query answering to KB 
consistency, but it is important to use pseudo models as much as possible to avoid 
expensive consistency tests. Examining the query atoms without rolling up helps 
to achieve this since the pseudo models for named concepts are generally 
available (or generating them is profitable considering they are used very 
frequently). It is possible to minimize the number of candidates for each variable 
and reduce the required consistency tests. With this approach, the queries with 
only distinguished variables can be answered without any consistency tests most 
of the time. Similar to dynamic completion strategy selection, Pellet uses a 
combination of different tech-niques to ensure completeness and best efficiency. 
The different query strategies are preferred in the following order: 
 
• No distinguished variables: First check if all ground atoms are trivially entailed 

(without performing a consistency test). Then pick one constant from the 
query, roll everything else into one concept and return true as the answer if the 
selected individual is an instance of the rolled up concept.   

• Only distinguished variables: Pick a variable with minimum number of 
possible bindings (or start with a constant if there is one), verify that all the 
types given in the query actually hold, get the values for the related variables 
and continue with that variable.   

• One distinguished variable: Using pseudo model checking compute possible 
bindings for the variable, roll the query into one concept and apply binary in-
stance retrieval using the candidates.   

• More than one distinguished variable: Similar as above to compute candidates; 
variables are then sorted based on the number of candidates. Different 
permuta-tion of bindings are applied to the query and rolling up is used to 
verify if the query is entailed. Bindings for variables are added one by one 
allowing to prune a large number of permutations when a certain binding fails.  

 
In practice, it turns out that most queries fall into the second category (“ SELECT *” 
queries). Moreover, generally, users desire this kind of query evaluation in order to 
query based on something akin to the Closed World Assumption. For this reason, 
Pellet provides an option to turn off special treatment of undistinguished variables.
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8     Conclusion and Future Directions 
 
 
 
In this report, we have presented Pellet, an open source OWL-DL reasoner with a 
number of unique features. Pellet exhibits a competitive performance and has 
already been used in both industry and academia. 
 
 
Owl Pellet Reasoner in six main directions. 
 
 
(1) More Expressive DLs: Many applications demand a Description Logic beyond 

OWL-DL. In particular, qualified number restrictions and extended datatype 
representation and reasoning, such as multi-arity datatype predicates [38] and 
inverse-functional datatype properties, are especially relevant.  

(2) New optimizations, including secondary-storage support for reasoning with 
large number of individuals, query answering for ontology management, and 
novel optimization techniques based on partitioning of OWL ontologies 
[39] and axiom tracing.   

(3) Combination with other logical formalisms. Many Semantic Web applica-
tions, such as multi-media systems, require the ability to reason with space, 
time and motion. We are currently working on extending Pellet with various 
spatio-temporal representation and reasoning functionalities.   

(4) Incremental reasoning: Many applications, such as Ontology Management, 
OWL-based multimedia systems or task computing, involve repeated changes 
in OWL KBs in a relatively short period of time. For these applications, it is 
critical for the reasoner to recompute as little as possible after each update.  

(5) Rules: Support of rules toward full SWRL support (focusing on interesting 
decidable subsets such as DL Safe rules along the way) and investigate other 
ways of combining rules with OWL. We intend this work to follow and support 
the forthcoming W3C working group on rules.   

(6) Non-monotonicity: Support for the K (and related A) operator as well as 
investigating such extensions as defaults, integrity con-straints, and various 
forms of closed world reasoning.  

 
 OWL is now a Recommendation and Pellet is a mature, practical, accessible tool. 
We have found that having (intelligible) source code goes a long way to 
demystifying description logic theorem proving. While there is plenty of room for 
improving Pellet’s performance both by straightforward engineering and with new 
optimizations, it has reached a level that is acceptable for most use. Indeed, given the 
utility of Pellet’s unique functionality, it is either the only choice (e.g., if one uses 
nominals), or the only choice for everything except final deployment in a production 
environment, and even there, it is a good choice. 
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