Pellet An Owl DL Reasoner

Presented By
Aditya R Joshi
Neha Purohit

=

Pellet

What is Pellet?

Pellet is an OWL-DL reasoner

Supports nearly all of OWL 1 and OWL 2
Sound and complete reasoner

Written in Java and available from http://
clarkparsia.com/pellet

Dual-licensed
AGPL license for open-source applications

Proprietary license available for proprietary
applications

P —

Pellet

Broader Definition

Pellet is an OWL DL reasoner based on the tableaux
algorithms developed for expressive Description
Logics. It supports the full expressivity OWL DL
including reasoning about nominals (enumerated
classes).

[t can be used in conjunction with both Jena and OWL
API libraries and also provides a DIG interface.

~

Pellet

Pellet provides functionalities to see the species
validation

Check consistency of ontologies, classify the
taxonomy

Check entailments and answer a subset of RDQL
queries (known as ABox queries in DL terminology).

~

Pellet

Why Pellet

The capabilities of Pellet are exposed from a Java API,
a command line interface, and a Web form.

The Web form has been used by a number of people
for species validation, consistency checking, and
experimenting with OWLDL classification and
entailment.

Pellet provides programmatic access to the reasoning
functions through two different interfaces, one for the
Jena toolkit and one for the OWLAPI library.

P — =

Pellet

Why Pellet

Pellet is also used to find the inconsistent concept
descriptions in browsed ontologies. This feature helps
to locate the errors in the ontology

ellet Architecture

RDF/XML Parser

Species Validation &
Ontology Repair

Tableau
Reasoner

Jauoseay asx

Internalization I—

ABox Query
Engine

Reasoner AP|
OWL API Interface

Jena Interface

Jena OWL API
Application Application

Figure 1: Architecture of Pellet reasoner

—Pellet Architecture

Figure 1 shows the main components of Pellet
reasoner.

An OWL ontology is parsed into RDF triples (RDF/
XML, N3 and N-Triple syntaxes are supported). Pellet
validates the species of the ontology while the triples
are converted to assertions and axioms in the
knowledge base. If the ontology level is OWL Full
because of missing type triples then Pellet uses some
heuristics to repair the ontology. For example

—Pellet Architecture

For example an untyped resource that has been used
in the predicate position of a triple will be inferred to
be a data type property if the triple has a literal in the
object position.

As usual, Pellet stores the axioms about classes in the
TBox component and stores the assertions about
individuals in the ABox component. TBox
partitioning, absorption and lazy unfolding
optimizations are implemented

—Pellet Architecture

The tableau reasoner uses the standard tableau rules
(as described above) and includes various standard
optimizations such as dependency directed
backjumping, semantic branching and early blocking
strategies.

Datatype reasoning for the built-in and derived
primitive XML Schema datatypes are supported.Pellet
is implemented in pure Java

Small Intro on tahleai Alsorithm

anb

Tave

m"cVvb

b

7N

py

Small Intro on tableau Algorithm

In proof theory, the semantic tableau (or truth
tree) is a decision procedure for sentential and
related logics, and a proof procedure for formulas of
first-order logic. The tableau method can also
determine the satisfiability of finite sets of formulas of
various logics. It is the most popular proof procedure
for modal logics (Girle 2000). The method of semantic
tableaux was invented by the Dutch logician Evert
Willem Beth.

: / : a4

Owl Terminology

Class: Person, Organization, Project, Skill, ...

Datatype: string, integer, date, ...
Individual: Evren, C&P, POPS, ...

Literal: "Evren Sirin", 5, 5/26/2008, ...
Object Property: worksAt, hasSkill, ...
Data property: name, proficiencyLevel, ...

_
Owl Terminology

Class expressions
and, or, not

some, only, min, max, exactly, value, Self

e

Datatype definitions
and, or, not

< == s e

L.}

py

Owl Terminology

Class axioms

subClassOf, equivalentTo, disjointWith
Property axioms

subPropertyOf, equivalentTo, inverseOf,

disjointWith, subPropertyChain, domain, range
Property characteristics

Functional, InverseFunctional, Transitive,

Symmetric, Asymmetric, Reflexive, Irreflexive
Individual assertions

Class assertion, property assertion, sameaAs,

differentFrom

~

OWL Example

Employee equivalentTo (CivilServant or Contractor)
CivilServant disjointWith Contractor
Employee subClassOf

employeelD some integer[>= 100000, <= 999999
Employee subClassOf employeelD exactly 1
worksOnProject domain Person
worksOnProject range Project
Persono853 type CivilServant
Persono853 employeelD 312987
Persono853 worksOnProject Project2133

~

OWL Example

Employee equivalentTo (CivilServant or Contractor)
CivilServant disjointWith Contractor
Employee subClassOf

employeelD some integer[>= 100000, <= 999999
Employee subClassOf employeelD exactly 1
worksOnProject domain Person
worksOnProject range Project
Persono853 type CivilServant
Persono853 employeelD 312987
Persono853 worksOnProject Project2133

/

Reasoning in OWL

Check the consistency of a set of axioms
Verity the input axioms do not contain contradictions

P —

Inconsistency Examples

Unsatisfiable class cannot have any instances
Consistent ontologies may contain unsatisfiable
classes Declaring an instance for an unsatisfiable class
causes inconsistency

Example

CivilServant disjointWith Contractor
CivilServantContractor subClassOf

(CivilServant and Contractor)

Using Pellet

-_’ Pl Reasoner

Not recomme
nded

-— B — Recommende

d

P —

Programming with Pellet

API for Pellet
Pellet can be used via three different APIs

Internal Pellet API
Manchester OWLAPI

Jena API
Each API has pros and cons
Choice will depend on your applications’ needs and

requirements

P —

Pellet Internal AP

API used by the reasoner

Designed for efficiency, not usability

Uses ATerm library for representing terms
Fine-grained control over reasoning

Misses features (e.g. parsing & serialization)
Pros: Efficiency, fine-grained control

Cons: Low usability, missing features

— SRR

y

Manchester OWLAPI

API designed for OWL

Closely tied to OWL structural specification
Support for many syntaxes (RDF/XML, OWL/XML,
OWL functional, Turtle, ...)

Native SWRL support

Integration with reasoners

Support for modularity and explanations
Pros: OWL-centric API

Cons: Not as stable, no SPARQL support
More info: http://owlapi.sf.net

~

Jena API

RDF framework developed by HP labs

An RDF API with OWL extensions

In-memory and persistent storage

Built-in rule reasoners and integrated with Pellet
SPARQL query engine

Pros: Mature and stable and ubiquitous

Cons: Not great for handling OWL, no specific
OWL 2 support

More info: http://jena.sf.net

~

Jena API

RDF framework developed by HP labs

An RDF API with OWL extensions

In-memory and persistent storage

Built-in rule reasoners and integrated with Pellet
SPARQL query engine

Pros: Mature and stable and ubiquitous

Cons: Not great for handling OWL, no specific
OWL 2 support

More info: http://jena.sf.net

~

Owl?2

Owl2 is similar to owl1 with added capabilities
keys;

property chains;

richer datatypes, data ranges;

qualified cardinality restrictions;

asymmetric, reflexive, and disjoint properties; and
enhanced annotation capabilities

: / : a4

Dealing with Inconsistency

In semantic web inconsistency are unavoidable
Distributed data, no single point of enforcement
Expressive modeling language
Classical logical formalisms are not good at
dealing with inconsistency
Reasoners refuse to reason with inconsistent
ontologies

Paraconsistent logics not practical

: / : a4

Dealing with Inconsistency

In semantic web inconsistency are unavoidable
Distributed data, no single point of enforcement
Expressive modeling language
Classical logical formalisms are not good at
dealing with inconsistency
Reasoners refuse to reason with inconsistent
ontologies

Paraconsistent logics not practical

Typical process for solving a contradiction

Use Pellet to find which axioms cause contradiction
Domain expert (human) inspects the axiom set

Expert edits/deleted incorrect axioms

An automated (and cautious) solution
Use Pellet to find which axioms cause contradiction
Delete all reported axioms
When to use the automated solution
Pros: Completely automated, guaranteed to retain
only consistent information
Cons: May remove too much information

py

Code Snippet

// continue until all inconsistencies are resolved
while (!pellet.isConsistent()) {

// get the explanation for current inconsistency
Graph explanation = pellet.explainInconsistency();
// iterate over the axioms in the explanation

for (Triple triple : explanation.find(Triple.ANY).toList()) {
// remove any individual assertion that contributes
// to the inconsistency (assumption: all the axioms
// in the schema are believed to be correct and

// should not be removed)

if (isIndividualAssertion(triple))
graph.remove(triple);

)
}

py

Code Snippet

// continue until all inconsistencies are resolved
while (!pellet.isConsistent()) {

// get the explanation for current inconsistency
Graph explanation = pellet.explainInconsistency();
// iterate over the axioms in the explanation

for (Triple triple : explanation.find(Triple.ANY).toList()) {
// remove any individual assertion that contributes
// to the inconsistency (assumption: all the axioms
// in the schema are believed to be correct and

// should not be removed)

if (isIndividualAssertion(triple))
graph.remove(triple);

)
}

/ 3 o e

Closed vs. Open World

Two different views on truth

CWA: Any statement that is not known to be true is false
OWA: A statement is false only if it is known to be false
Used in different contexts

Databases use CWA because (typically) you have
complete information

Ontologies use OWA because (typically) you have
incomplete information

Data validation results significantly

> e

Closed vs. Open World

CWA or OWA Validation?

Should I use CWA or OWA?

Of course use both!

In the application domain there is complete
information about some parts but not others

In POPS application we have...Complete knowledge
about employees

Incomplete information about external publications
Retrieved from conference proceedings, etc

N

Pops interface

e http://nasa.clarkparsia.com/

e http://www.mindswap.org/2003/pellet/demo.shtml

Pops interface
* Code demo by neha

N

Thanks You

