
Jena  

A Semantic Web Framework 

 

Overview: 

Jena is a Java framework for writing Semantic Web applications.  It features: 

An RDF API 

 statement centric methods for manipulating an RDF model as a set of RDF triples 

 resource centric methods for manipulating an RDF model as a set of resources 

with properties 

 cascading method calls for more convenient programming 

 built in support for RDF containers - bag, alt and seq 

 enhanced resources - the application can extend the behavior of resources 

 integrated parsers and writers for RDF/XML (ARP), N3 and N-TRIPLES 

 support for typed literals 

  

ARP - Jena's RDF/XML Parser 

ARP aims to be fully compliant with the latest decisions of the RDF Core WG. The Jena2 

version is compliant with the RDF Core recommendations. ARP is typically invoked 

using Jena's read operations, but can also be used standalone. 

  

SPARQL query language 

SPARQL is an RDF query language and protocol developed within W3C.  Jena provides 

the ARQ query engine which is a complete implementation of the SPARQL query 

language. In addition there is Joseki, an implementation of the SPARQL protocol. 

  

Persistence 

There are two persistence subsystems for Jena - SDB, which employs a custom SQL 

schema on a wide variety of databases, both open source and proprietary; and TDB, 

which is a high-performance system using custom storage. Both provide full SPARQL 

support through ARQ integration. 



Reasoning Subsystem 

The Jena2 reasoner subsystem includes a generic rule based inference engine together 

with configured rule sets for RDFS and for the OWL/Lite subset of OWL Full. These 

reasoners can be used to construct inference models which show the RDF statements 

entailed by the data being reasoned over. The subsystem is designed to be extensible so 

that it should be possible to plug a range of external reasoners into Jena, though worked 

examples of doing so are left to a future release. See the reasoner documentation for more 

details.  

Of these components, the underlying rule engine and the RDFS configuration should be 

reasonably stable. The OWL configuration is preliminary and still under development. 

  

Ontology Subsystem 

The Jena2 ontology API is intended to support programmers working with ontology data 

based on RDF. Specifically, this means support for OWL, DAML+OIL and RDFS. A set  

of Java abstractions extend the generic RDF Resource and Property classes to model 

more directly the class and property expressions found in ontologies using these 

languages, and the relationships between these classes and properties, and the individuals 

created from them. The ontology API works closely with the reasoning subsystem to 

derive additional information that can be inferred from a particular ontology source. 

Given that ontologists typically modularise ontologies into individual, re-usable 

components, and publish these on the web, the Jena2 ontology subsystem also includes a 

document manager that assists with process of managing imported ontology documents.  

 

 

Introduction 

The Resource Description Framework (RDF) is a standard (technically a W3C 

Recommendation) for describing resources. They use an RDF representation of VCARDS. RDF 

is best thought of in the form of node and arc diagrams. A simple vcard might look like this in 

RDF: 



 

The resource, John Smith, is shown as an elipse and is identified by a Uniform Resource 

Identifier (URI)1, in this case "http://.../JohnSmith.  

Resources have properties. A property is represented by an arc, labeled with the name of a 

property. The name of a property is also a URI. The part before the ':' is called a namespace 

prefix and represents a namespace. The part after the ':' is called a local name and represents a 

name in that namespace.  

Each property has a value. In this case the value is a literal, which for now we can think of as a 

string of characters2. Literals are shown in rectangles. 

Jena is a Java API which can be used to create and manipulate RDF graphs like this one. Jena 

has object classes to represent graphs, resources, properties and literals. The interfaces 

representing resources, properties and literals are called Resource, Property and Literal 

respectively. In Jena, a graph is called a model and is represented by the Model interface. 

The code to create this graph, or model, is simple: 

// some definitions 

static String personURI    = "http://somewhere/JohnSmith"; 

static String fullName     = "John Smith"; 

 

// create an empty Model 

Model model = ModelFactory.createDefaultModel (); 

 

// create the resource 

Resource johnSmith = model.createResource(personURI); 

 

// add the property 

 johnSmith.addProperty(VCARD.FN, fullName); 

It begins with some constant definitions and then creates an empty Model or model, using the 

ModelFactory method createDefaultModel() to create a memory-based model. Jena contains 

other implementations of the Model interface, e.g one which uses a relational database: these 

types of Model are also available from ModelFactory. 

The John Smith resource is then created and a property added to it. The property is provided by a 

"constant" class VCARD which holds objects representing all the definitions in the VCARD 

http://openjena.org/tutorial/RDF_API/index.html#fn-01
http://openjena.org/tutorial/RDF_API/index.html#fn-02


schema. Jena provides constant classes for other well known schemas, such as RDF and RDF 

schema themselves, Dublin Core and DAML. 

The code to create the resource and add the property, can be more compactly written in a 

cascading style: 

Resource johnSmith = 

        model.createResource(personURI) 

             .addProperty(VCARD.FN, fullName); 

 

Here we have added a new property, vcard:N, to represent the structure of John Smith's name. 

There are several things of interest about this Model. Note that the vcard:N property takes a 

resource as its value. Note also that the ellipse representing the compound name has no URI. It is 

known as an blank Node. 

The Jena code to construct this example, is again very simple. First some declarations and the 

creation of the empty model. 

// some definitions 

String personURI    = "http://somewhere/JohnSmith"; 

String givenName    = "John"; 

String familyName   = "Smith"; 

String fullName     = givenName + " " + familyName; 

 

// create an empty Model 

Model model = ModelFactory.createDefaultModel(); 

 

// create the resource 

//   and add the properties cascading style 

Resource johnSmith 

  = model.createResource(personURI) 

         .addProperty(VCARD.FN, fullName) 

         .addProperty(VCARD.N, 

                      model.createResource() 

                           .addProperty(VCARD.Given, givenName) 

                           .addProperty(VCARD.Family, familyName)); 



Statements 

Each arc in an RDF Model is called a statement. Each statement asserts a fact about a resource. 

A statement has three parts: 

 the subject is the resource from which the arc leaves 
 the predicate is the property that labels the arc 
 the object is the resource or literal pointed to by the arc 

A statement is sometimes called a triple, because of its three parts. 

An RDF Model is represented as a set of statements. Each call of addProperty  adds an another 

statement to the Model. (Because a Model is set of statements, adding a duplicate of a statement 

has no effect.) The Jena model interface defines a listStatements() method which returns an 

StmtIterator, a subtype of Java's Iterator over  all the statements in a Model. StmtIterator 

has a method nextStatement() which returns the next statement from the iterator (the same one 

that next() would deliver, already cast to Statement). The Statement interface provides 

accessor methods to the subject, predicate and object of a statement. 

// list the statements in the Model 

StmtIterator iter = model.listStatements(); 

 

// print out the predicate, subject and object of each statement 

while (iter.hasNext()) { 

    Statement stmt      = iter.nextStatement();  // get next statement 

    Resource  subject   = stmt.getSubject();     // get the subject 

    Property  predicate = stmt.getPredicate();   // get the predicate 

    RDFNode   object    = stmt.getObject();      // get the object 

 

    System.out.print(subject.toString()); 

    System.out.print(" " + predicate.toString() + " "); 

    if (object instanceof Resource) { 

       System.out.print(object.toString()); 

    } else { 

        // object is a literal 

        System.out.print(" \"" + object.toString() + "\""); 

    } 

 

    System.out.println(" ."); 

}  

Since the object of a statement can be either a resource or a literal, the getObject() method 

returns an object typed as RDFNode, which is a common superclass of both Resource and 

Literal. The underlying object is of the appropriate type, so the code uses instanceof to 

determine which and processes it accordingly. 

 

 



When run, this program should produce output resembling: 

http://somewhere/JohnSmith http://www.w3.org/2001/vcard-rdf/3.0#N 

anon:14df86:ecc3dee17b:-7fff . 

anon:14df86:ecc3dee17b:-7fff http://www.w3.org/2001/vcard-rdf/3.0#Family  

"Smith" . 

anon:14df86:ecc3dee17b:-7fff http://www.w3.org/2001/vcard-rdf/3.0#Given  

"John" . 

http://somewhere/JohnSmith http://www.w3.org/2001/vcard-rdf/3.0#FN  "John 

Smith" . 

 

Writing RDF 

Jena has methods for reading and writing RDF as XML. These can be used to save an RDF 

model to a file and later read it back in again. 

model.write can take an OutputStream argument. 

// now write the model in XML form to a file 

model.write(System.out); 

The output should look something like this: 

<rdf:RDF 

  xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#' 

  xmlns:vcard='http://www.w3.org/2001/vcard-rdf/3.0#' 

 > 

  <rdf:Description rdf:about='http://somewhere/JohnSmith'> 

    <vcard:FN>John Smith</vcard:FN> 

    <vcard:N rdf:nodeID="A0"/> 

  </rdf:Description> 

  <rdf:Description rdf:nodeID="A0"> 

    <vcard:Given>John</vcard:Given> 

    <vcard:Family>Smith</vcard:Family> 

  </rdf:Description> 

</rdf:RDF> 

RDF is usually embedded in an <rdf:RDF> element. The element is optional if there are other 

ways of know that some XML is RDF, but it is usually present. The RDF element defines the 

two namespaces used in the document. There is then an <rdf:Description> element which 

describes the resource whose URI is "http://somewhere/JohnSmith". If the rdf:about attribute 

was missing, this element would represent a blank node. 

The <vcard:FN> element describes a property of the resource. The property name is the "FN" in 

the vcard namespace. RDF converts this to a URI reference by concatenating the URI reference 

for the namespace prefix and "FN", the local name part of the name. This gives a URI reference 

of "http://www.w3.org/2001/vcard-rdf/3.0#FN". The value of the property is the literal "John 

Smith". 



Jena has an extensible interface which allows new writers for different serialization languages 

for RDF to be easily plugged in. The above call invoked the standard 'dumb' writer. Jena also 

includes a more sophisticated RDF/XML writer which can be invoked by specifying another 

argument to the write() method call: 

// now write the model in XML form to a file 

model.write(System.out, "RDF/XML-ABBREV"); 

  

This writer, the so called PrettyWriter, takes advantage of features of the RDF/XML abbreviated 

syntax to write a Model more compactly. It is also able to preserve blank nodes where that is 

possible. It is however, not suitable for writing very large Models, as its performance is unlikely 

to be acceptable. To write large files and preserve blank nodes, write in N-Triples format: 

// now write the model in XML form to a file 

model.write(System.out, "N-TRIPLE"); 

   

Reading RDF 

The following code will read it in and write it out. Note that for this application to run, the input 

file must be in the current directory. 

 

 // create an empty model 

 Model model = ModelFactory.createDefaultModel(); 

 

 // use the FileManager to find the input file 

 InputStream in = FileManager.get().open( inputFileName ); 

if (in == null) { 

    throw new IllegalArgumentException( 

                                 "File: " + inputFileName + " not found"); 

} 

 

// read the RDF/XML file 

model.read(in, null); 

 

// write it to standard out 

model.write(System.out); 

       

The second argument to the read() method call is the URI which will be used for resolving 

relative URI's. As there are no relative URI references in the test file, it is allowed to be empty. 

When run above program will produce XML output which looks like: 

<rdf:RDF 

  xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#' 

  xmlns:vcard='http://www.w3.org/2001/vcard-rdf/3.0#' 

 > 

  <rdf:Description rdf:nodeID="A0"> 

    <vcard:Family>Smith</vcard:Family> 

    <vcard:Given>John</vcard:Given> 



  </rdf:Description> 

  <rdf:Description rdf:about='http://somewhere/JohnSmith/'> 

    <vcard:FN>John Smith</vcard:FN> 

    <vcard:N rdf:nodeID="A0"/> 

  </rdf:Description> 

  <rdf:Description rdf:about='http://somewhere/SarahJones/'> 

    <vcard:FN>Sarah Jones</vcard:FN> 

    <vcard:N rdf:nodeID="A1"/> 

  </rdf:Description> 

  <rdf:Description rdf:about='http://somewhere/MattJones/'> 

    <vcard:FN>Matt Jones</vcard:FN> 

    <vcard:N rdf:nodeID="A2"/> 

  </rdf:Description> 

  <rdf:Description rdf:nodeID="A3"> 

    <vcard:Family>Smith</vcard:Family> 

    <vcard:Given>Rebecca</vcard:Given> 

  </rdf:Description> 

  <rdf:Description rdf:nodeID="A1"> 

    <vcard:Family>Jones</vcard:Family> 

    <vcard:Given>Sarah</vcard:Given> 

  </rdf:Description> 

  <rdf:Description rdf:nodeID="A2"> 

    <vcard:Family>Jones</vcard:Family> 

    <vcard:Given>Matthew</vcard:Given> 

  </rdf:Description> 

  <rdf:Description rdf:about='http://somewhere/RebeccaSmith/'> 

    <vcard:FN>Becky Smith</vcard:FN> 

    <vcard:N rdf:nodeID="A3"/> 

  </rdf:Description> 

</rdf:RDF> 

Operations on inference models 

For many applications one simply creates a model incorporating some inference step, using the 

ModelFactory methods, and then just works within the standard Jena Model API to access the 

entailed statements. However, sometimes it is necessary to gain more control over the processing 

or to access additional reasoner features not available as virtual triples. 

Validation 

The most common reasoner operation which can't be exposed through additional triples in the 

inference model is that of validation. Typically the ontology languages used with the semantic 

web allow constraints to be expressed, the validation interface is used to detect when such 

constraints are violated by some data set.  

A simple but typical example is that of datatype ranges in RDFS. RDFS allows us to specify the 

range of a property as lying within the value space of some datatype. If an RDF statement asserts 

an object value for that property which lies outside the given value space there is an 

inconsistency. 

To test for inconsistencies with a data set using a reasoner we use the InfModel.validate() 

interface. This performs a global check across the schema and instance data looking for 



inconsistencies. The result is a ValidityReport object which comprises a simple pass/fail flag 

(ValidityReport.isValid()) together with a list of specific reports (instances of the 

ValidityReport.Report interface) which detail any detected inconsistencies. At a minimum 

the individual reports should be printable descriptions of the problem but they can also contain 

an arbitrary reasoner-specific object which can be used to pass additional information which can 

be used for programmatic handling of the violations. 

For example, to check a data set and list any problems one could do something like: 

    Model data = FileManager.get().loadModel(fname); 

    InfModel infmodel = ModelFactory.createRDFSModel(data); 

    ValidityReport validity = infmodel.validate(); 

    if (validity.isValid()) { 

        System.out.println("OK"); 

    } else { 

        System.out.println("Conflicts"); 

        for (Iterator i = validity.getReports(); i.hasNext(); ) { 

            System.out.println(" - " + i.next()); 

        } 

    } 

The file testing/reasoners/rdfs/dttest2.nt declares a property bar with range 

xsd:integer and attaches a bar value to some resource with the value "25.5"^^xsd:decimal. 

If we run the above sample code on this file we see: 

Conflicts  

- Error (dtRange): Property http://www.hpl.hp.com/semweb/2003/eg#bar has a typed range 

Datatype[http://www.w3.org/2001/XMLSchema#integer -> class java.math.BigInteger]that is 

not compatible with 25.5:http://www.w3.org/2001/XMLSchema#decimal  

Whereas the file testing/reasoners/rdfs/dttest3.nt uses the value "25"^^xsd:decimal 

instead, which is a valid integer and so passes.  

OWL Configuration 

This reasoner is accessed using ModelFactory.createOntologyModel with the prebuilt 

OntModelSpec OWL_MEM_RULE_INF or manually via ReasonerRegistery.getOWLReasoner(). 

There are no OWL-specific configuration parameters though the reasoner supports the standard 

control parameters: 

Parameter Values Description 

PROPtraceOn boolean 
If true switches on exhaustive tracing of rule executions 

to the log4j info appender. 

PROPderivationLogging Boolean If true causes derivation routes to be recorded internally 



so that future getDerivation calls can return useful 

information. 

As we gain experience with the ways in which OWL is used and the capabilities of the rule-

based approach we imagine useful subsets of functionality emerging - like that that supported by 

the RDFS reasoner in the form of the level settings. 

OWL Example 

As an example of using the OWL inference support, consider the sample schema and data file in 

the data directory - owlDemoSchema.xml and owlDemoData.xml.  

The schema file shows a simple, artificial ontology concerning computers which defines a 

GamingComputer as a Computer which includes at least one bundle of type GameBundle and a 

component with the value gamingGraphics.  

The data file shows information on serveral hypothetical computer configurations including two 

different descriptions of the configurations "whiteBoxZX" and "bigName42". 

We can create an instance of the OWL reasoner, specialized to the demo schema and then apply 

that to the demo data to obtain an inference model, as follows: 

    Model schema = 

FileManager.get().loadModel("file:data/owlDemoSchema.owl"); 

    Model data = FileManager.get().loadModel("file:data/owlDemoData.rdf"); 

    Reasoner reasoner = ReasonerRegistry.getOWLReasoner(); 

    reasoner = reasoner.bindSchema(schema); 

    InfModel infmodel = ModelFactory.createInfModel(reasoner, data); 

A typical example operation on such a model would be to find out all we know about a specific 

instance, for example the nForce mother board. This can be done using: 

    Resource nForce = infmodel.getResource("urn:x-hp:eg/nForce"); 

    System.out.println("nForce *:"); 

    printStatements(infmodel, nForce, null, null); 

where printStatements is defined by:  

    public void printStatements(Model m, Resource s, Property p, Resource o) 

{ 

        for (StmtIterator i = m.listStatements(s,p,o); i.hasNext(); ) { 

            Statement stmt = i.nextStatement(); 

            System.out.println(" - " + PrintUtil.print(stmt)); 

        } 

    } 

 

http://jena.sourceforge.net/inference/data/owlDemoSchema.xml
http://jena.sourceforge.net/inference/data/owlDemoData.xml


This produces the output: 

nForce *: 

 - (eg:nForce rdf:type owl:Thing) 

 - (eg:nForce owl:sameAs eg:unknownMB) 

 - (eg:nForce owl:sameAs eg:nForce) 

 - (eg:nForce rdf:type eg:MotherBoard) 

 - (eg:nForce rdf:type rdfs:Resource) 

 - (eg:nForce rdf:type a3b24:f7822755ad:-7ffd) 

 - (eg:nForce eg:hasGraphics eg:gamingGraphics) 

 - (eg:nForce eg:hasComponent eg:gamingGraphics) 

Note that this includes inferences based on subClass inheritance (being an eg:MotherBoard 

implies it is an owl:Thing and an rdfs:Resource), property inheritance (eg:hasComponent 

eg:gameGraphics derives from hasGraphics being a subProperty of hasComponent) and 

cardinality reasoning (it is the sameAs eg:unknownMB because computers are defined to have 

only one motherboard and the two diffferent descriptions of whileBoxZX use these two different 

terms for the mother board). The anonymous rdf:type statement referencesthe 

"hasValue(eg:hasComponent, eg:gamingGraphics)" restriction mentioned in the definition 

of GamingComputer. 

A second, typical operation is instance recognition. Testing if an individual is an instance of a 

class expression. In this case the whileBoxZX is identifiable as a GamingComputer because it is a 

Computer, is explicitly declared as having an appropriate bundle and can be inferred to have a 

gamingGraphics component from the combination of the nForce inferences we've already seen 

and the transitivity of hasComponent. We can test this using: 

    Resource gamingComputer = infmodel.getResource("urn:x-

hp:eg/GamingComputer"); 

    Resource whiteBox = infmodel.getResource("urn:x-hp:eg/whiteBoxZX"); 

    if (infmodel.contains(whiteBox, RDF.type, gamingComputer)) { 

        System.out.println("White box recognized as gaming computer"); 

    } else { 

        System.out.println("Failed to recognize white box correctly"); 

    } 

Which gnerates the output: 

White box recognized as gaming computer 

Finally, we can check for inconsistencies within the data by using the validation interface: 

    ValidityReport validity = infmodel.validate(); 

    if (validity.isValid()) { 

        System.out.println("OK"); 

    } else { 

        System.out.println("Conflicts"); 

        for (Iterator i = validity.getReports(); i.hasNext(); ) { 

            ValidityReport.Report report = (ValidityReport.Report)i.next(); 

            System.out.println(" - " + report); 

        } 



    } 

Which generates the output: 

Conflicts 

 - Error (conflict): Two individuals both same and different, may be  

   due to disjoint classes or functional properties 

Culprit = eg:nForce2 

Implicated node: eg:bigNameSpecialMB 

 

... + 3 other similar reports 

This is due to the two records for the bigName42 configuration referencing two motherboards 

which are explicitly defined to be different resources and thus violate the FunctionProperty 

nature of hasMotherBoard. 

Querying/Reasoning with Jena and SPARQL  

Here is a short overview and comparison of RDF querying with SPARQL and Jena which is 

presented as follows: 1. SPARQL; 2. SPARQL from inside Jena; 3. Explicit and implicit 

relations when querying with Jena 4.Querying remote SPARQL endpoitns  

1. SPARQL 

The Simple Protocol and RDF Query Language (SPARQL) is a SQL-like language for querying 

RDF data. For expressing RDF graphs in the matching part of the query.  SPARQL is emerging 

as the de-facto RDF query language, and is a W3C Recommendation. 

For our purposes SPARQL queries could be executed either directly through the SPARQL query 

panel in Protege or from inside a JAVA application using the specialised Jena library methods.  

Both approaches are able to handle queries concerning explicit object and property relations but 

Jena libraries have the advantage of using a reasoner. Thus queries executed using Jena library 

methods can return results taking in account also the transitive and inferred relations. 

Here is an example for querying the http://www.eswc2006.org/technologies/ontology ontology  

PREFIX ot: <http://www.opentox.org/api/1.1#>  

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>  

SELECT  ?uri  

WHERE {  

    ?uri rdfs:subClassOf <ot:Feature>.  

} 

  

Each SPARQL request starts with PREFIXes which denote the namespaces used in the query 

afterwards.The first lines defines namespace prefix, the last two lines use the prefix to express a 



RDF graph to be matched. Identifiers beginning with question mark ? identify variables. In this 

query, we are looking for resource ?uri participating in triples with predicates rdfs:subClassOf 

and want the subjects of these triples. Detailed SPARQL syntax description can be found here. 

Since SPARQL is not aware of the rdfs semantics (hence SPARQL is not aware of owl's 

semantics). SPARQL doesn't understand the subclass assertions (which are processed as any 

assertion) and it doesn't understand that rdfs:subClassOf is transitive. Executed from inside 

Protege this example would return as result only the direct descendats of the class ot:Feature and 

nothing else. If we want to obtain a full list of subclasses of the ot:Feature class we need to do it 

using Jena Lib methods. 

2. SPARQL from inside Jena 

Jena supports several different ontology model specifications.  

  OntModelSpec.OWL_MEM_MICRO_RULE_INF  contains Transitive Reasoner which can be 

used to  infer  rdfs:subClassOf and rdfs:subPropertyOf.  In contrast  the model OWL_MEM does 

not contain such. Thus The same query we've shown above would return the same result as in 

Protege if we run in from inside Jena using the simpler model and it will return the entire subtree 

of subclass if we run it with the model using inference. Executing the following example you 

will be able to see the difference in the resultset using the two different models. 

public static void main (String args[]) { 

        String SOURCE = "http://www.opentox.org/api/1.1"; 

        String NS = SOURCE + "#"; 

       //create a model using reasoner 

        OntModel model1 = ModelFactory.createOntologyModel( 

OntModelSpec.OWL_MEM_MICRO_RULE_INF); 

       //create a model which doesn't use a reasoner 

        OntModel model2 = ModelFactory.createOntologyModel( 

OntModelSpec.OWL_MEM); 

         

        // read the RDF/XML file 

        model1.read( SOURCE, "RDF/XML" ); 

        model2.read( SOURCE, "RDF/XML" ); 

        //prints out the RDF/XML structure 

        qe.close(); 

        System.out.println(" "); 

         

 

    // Create a new query 

    String queryString =         

      "PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> "+ 

        "PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>  "+ 

        "select ?uri "+ 

        "where { "+ 

         "?uri rdfs:subClassOf <http://www.opentox.org/api/1.1#Feature>  "+ 

        "} \n "; 

    Query query = QueryFactory.create(queryString); 

 

    System.out.println("----------------------"); 

http://www.w3.org/TR/rdf-sparql-query/


 

    System.out.println("Query Result Sheet"); 

 

    System.out.println("----------------------"); 

 

    System.out.println("Direct&Indirect Descendants (model1)"); 

 

    System.out.println("-------------------"); 

 

    

    // Execute the query and obtain results 

    QueryExecution qe = QueryExecutionFactory.create(query, model1); 

    com.hp.hpl.jena.query.ResultSet results =  qe.execSelect(); 

 

    // Output query results     

    ResultSetFormatter.out(System.out, results, query); 

 

    qe.close(); 

     

    System.out.println("----------------------"); 

    System.out.println("Only Direct Descendants"); 

    System.out.println("----------------------"); 

     

    // Execute the query and obtain results 

    qe = QueryExecutionFactory.create(query, model2); 

    results =  qe.execSelect(); 

 

    // Output query results     

    ResultSetFormatter.out(System.out, results, query);   

   qe.close(); 

} 

Prints out the following result: 

---------------------- 

Query Result Sheet 

---------------------- 

Direct&Indirect Descendants (model 1) 

----------------------------------------------------- 

| uri                                               | 

===================================================== 

| <http://www.opentox.org/api/1.1#NumericFeature>   | 

| <http://www.opentox.org/api/1.1#NominalFeature>   | 

| <http://www.opentox.org/api/1.1#StringFeature>    | 

| <http://www.opentox.org/api/1.1#Feature>          | 

| <http://www.w3.org/2002/07/owl#Nothing>           | 

| <http://www.opentox.org/api/1.1#Identifier>       | 

| <http://www.opentox.org/api/1.1#ChemicalName>     | 

| <http://www.opentox.org/api/1.1#IUPACName>        | 

| <http://www.opentox.org/api/1.1#InChI>            | 

| <http://www.opentox.org/api/1.1#MolecularFormula> | 

| <http://www.opentox.org/api/1.1#CASRN>            | 

| <http://www.opentox.org/api/1.1#SMILES>           | 

----------------------------------------------------- 

 

Only Direct Descendants (model 2) 



--------------------------------------------------- 

| uri                                             | 

=================================================== 

| <http://www.opentox.org/api/1.1#NumericFeature> | 

| <http://www.opentox.org/api/1.1#NominalFeature> | 

| <http://www.opentox.org/api/1.1#StringFeature>  | 

--------------------------------------------------- 

3. Explicit and implicit relations when querying with Jena predefined methods 

only 

From inside Jena one could query the RDF knowledge base also without using SPARQL but by 

predefined predicates. Here if one wants to query for transitive and inferred relations he must use 

again a model with a reasoner. Most of the methods for selection have a boolean argument 

specifying whether only direct or indirect relations must be analysed. The same example shown 

above executed using only Jena methods would look as follows. 

public static void main (String args[]) { 

                 

         // create the base model using reasoner 

        String SOURCE = "http://www.opentox.org/api/1.1"; 

        String NS = SOURCE + "#"; 

        OntModel base = ModelFactory.createOntologyModel( 

OntModelSpec.OWL_MEM_MICRO_RULE_INF); 

        base.read( SOURCE, "RDF/XML" ); 

 

        System.out.println( "These are all direct&indirect subClasses of 

Feature"); 

        OntClass event = base.getOntClass( NS + "Feature" ); 

 

       //listSubClasses(bool direct) - the false stands for direct and 

indirect descendants 

 

        for (Iterator<OntClass> i = event.listSubClasses(false); i.hasNext(); 

) {   

          OntClass c = (OntClass) i.next(); 

          System.out.println( c.getURI() ); 

        } 

         

        System.out.println( "-------------------------" ); 

        System.out.println( "These are only the direct subClasses of 

Feature"); 

        System.out.println( "-------------------------" ); 

        OntClass event = base.getOntClass( NS + "Feature" ); 

  

        //listSubClasses(bool direct) -  true stands for direct descendants 

only 

   

        for (Iterator<OntClass> i = event.listSubClasses(true); i.hasNext(); 

) {    

          OntClass c = (OntClass) i.next(); 

          System.out.println( c.getURI() ); 

        } 

 



    } 

  

4. Querying remote SPARQL services 

Jena provides convenience methods for querying and processing results of a remote SPARQL 

endpoint, via its QueryExecutionFactory class: 

import com.hp.hpl.jena.query.QueryExecution; 

import com.hp.hpl.jena.query.QueryExecutionFactory; 

import com.hp.hpl.jena.query.ResultSet; 

import com.hp.hpl.jena.query.ResultSetFormatter; 

 

        String ontology_service = "http://ambit.uni-

plovdiv.bg:8080/ontology"; 

 String endpoint = "otee:Endpoints"; 

 String endpointsSparql =  

 "PREFIX ot:<http://www.opentox.org/api/1.1#>\n"+ 

 " PREFIX ota:<http://www.opentox.org/algorithms.owl#>\n"+ 

 " PREFIX owl:<http://www.w3.org/2002/07/owl#>\n"+ 

 " PREFIX dc:<http://purl.org/dc/elements/1.1/>\n"+ 

 " PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>\n"+ 

 " PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>\n"+ 

 " PREFIX otee:<http://www.opentox.org/echaEndpoints.owl#>\n"+ 

 "  select ?url ?title\n"+ 

 "  where {\n"+ 

 "  ?url rdfs:subClassOf %s.\n"+ 

 "  ?url dc:title ?title.\n"+ 

 "  }\n"; 

 

 QueryExecution x = QueryExecutionFactory.sparqlService(ontology_service, 

String.format(endpointsSparql,endpoint)); 

 ResultSet results = x.execSelect(); 

 ResultSetFormatter.out(System.out, results); 

Results 

-----------------------------------------------------------------------------

--------------------------------------------------------------------------- 

| url                                                                    | 

title                                                                       | 

=============================================================================

=========================================================================== 

| <http://www.opentox.org/echaEndpoints.owl#PhysicoChemicalEffects>      | 

"Physicochemical effects "^^<http://www.w3.org/2001/XMLSchema#string>       | 

| <http://www.opentox.org/echaEndpoints.owl#ToxicoKinetics>              | 

"Toxicokinetics "^^<http://www.w3.org/2001/XMLSchema#string>                | 

| <http://www.opentox.org/echaEndpoints.owl#EcotoxicEffects>             | 

"Ecotoxic effects"^^<http://www.w3.org/2001/XMLSchema#string>               | 

| <http://www.opentox.org/echaEndpoints.owl#HumanHealthEffects>          | 

"Human health effects"^^<http://www.w3.org/2001/XMLSchema#string>           | 

| <http://www.opentox.org/echaEndpoints.owl#EnvironmentalFateParameters> | 

"Environmental fate parameters "^^<http://www.w3.org/2001/XMLSchema#string>  



OWL notes and limitations 

Comprehension axioms 

A critical implication of our variant of the instance-based approach is that the reasoner does not 

directly answer queries relating to dynamically introduced class expressions. 

For example, given a model containing the RDF assertions corresponding to the two OWL 

axioms: 

class A = intersectionOf (minCardinality(P, 1), maxCardinality(P,1)) 

class B = cardinality(P,1) 

Then the reasoner can demonstrate that classes A and B are equivalent, in particular that any 

instance of A is an instance of B and vice versa. However, given a model just containing the first 

set of assertions you cannot directly query the inference model for the individual triples that 

make up cardinality(P,1). If the relevant class expressions are not already present in your model 

then you need to use the list-with-posits mechanism described above, though be warned that such 

posits start inference afresh each time and can be expensive.  

Actually, it would be possible to introduce comprehension axioms for simple cases like this 

example. We have, so far, chosen not to do so. First, since the OWL/full closure is generally 

infiite, some limitation on comprehension inferences seems to be useful. Secondly, the typical 

queries that Jena applications expect to be able to issue would suddenly jump in size and cost - 

causing a support nightmare. For example, queries such as (a, rdf:type, *) would become near-

unusable. 

Approximately, 10 of the OWL working group tests for the supported OWL subset currently rely 

on such comprehension inferences. The shipping version of the Jena rule reasoner passes these 

tests only after they have been rewritten to avoid the comprehension requirements. 

Prototypes 

As noted above the current OWL rule set introduces prototypical instances for each defined 

class. These prototypical instances used to be visible to queries. From release 2.1 they are used 

internally but should not longer be visible.  

Direct/indirect 

We noted above that the Jena reasoners support a separation of direct and indirect relations for 

transitive properties such as subClassOf. The current implementation of the full and mini OWL 

reasoner fails to do this and the direct forms of the queries will fail. The OWL Micro reasoner, 

which is but a small extension of RDFS, does suppor the direct queries. 

This does not affect querying though the Ontology API, which works around this limitation. It 

only affects direct RDF accesses to the inference model. 

http://jena.sourceforge.net/inference/#directRelations


Performance 

The OWL reasoners use the rule engines for all inference. The full and mini configurations omit 

some of the performance tricks employed by the RDFS reasoner (notably the use of the custom 

transitive reasoner) making those OWL reasoner configurations slower than the RDFS reasoner 

on pure RDFS data (typically around x3-4 slow down). The OWL Micro reasoner is intended to 

be as close to RDFS performance while also supporting the core OWL constructs as described 

earlier. 

Once the owl constructs are used then substantial reasoning can be required. The most expensive 

aspect of the supported constructs is the equality reasoning implied by use of cardinality 

restrictions and FunctionalProperties. The current rule set implements equality reasoning by 

identifying all sameAs deductions during the initial forward "prepare" phase. This may require 

the entire instance dataset to be touched several times searching for occurrences of 

FunctionalProperties. 

Beyond this the rules implementing the OWL constructs can interact in complex ways leading to 

serious performance overheads for complex ontologies. Characterising the sorts of ontologies 

and inference problems that are well tackled by this sort of implementation and those best 

handled by plugging a Description Logic engine, or a saturation theorem prover, into Jena is a 

topic for future work. 

One random hint: explicitly importing the owl.owl definitions causes much duplication of rule 

use and a substantial slow down - the OWL axioms that the reasoner can handle are already built 

in and don't need to be redeclared. 

Incompleteness 

The rule based approach cannot offer a complete solution for OWL/Lite, let alone the OWL/Full 

fragment corresponding to the OWL/Lite constructs. In addition the current implementation is 

still under development and may well have ommisions and oversights. We intend that the 

reasoner should be sound (all inferred triples should be valid) but not complete.  

 

 

 

 

 

 

--Project Report Submitted By 

Krishna Priyanka Chebrolu 

Ranjani Sankaran 


