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ABSTRACT

The new Semantic Web recommendations for RDF, RBF$
OWL have, at their heart, the RDF graph. Jena2ge@rsl-
generation RDF toolkit, is similarly centered o tRDF graph.
RDFS and OWL reasoning are seen as graph-to-grapkforms,
producing graphs of virtual triples. Rich APIs am@vided. The
Model API includes support for other aspects of RBF
recommendations, such as containers and reificatibhe
Ontology API includes support for RDFS and OWL, limting
advanced OWL Full support. Jena includesdbédactoreference
RDF/XML parser, and provides RDF/XML output usirge tfull
range of the rich RDF/XML grammar. N3 I/O is supeor RDF
graphs can be stored in-memory or in databases’'sleuery
language, RDQL, and the Web API are both offeredHe next
round of standardization.

Categories and Subject Descriptors

D.2.11 [Boftware Engineering: Software Architectures, D.3.2
[Programming Language$: Language Classifications — Java,
1.2.4 [Artificial Intelligence]: Knowledge Representation
Formalisms and MethodsRepresentation languages.

General Terms
Standardization, Languages.

Keywords
RDF, OWL, Jena, RDQL, Semantic Web

1. INTRODUCTION

The new recommendations for
Framework (RDF) and the Web Ontology Language (OWdye
just been published. They provide a simple tripisdd
representation of knowledge, with formal semanéltswing for
automated inference. RDFS and OWL also provide sosedul
vocabulary, particularly for building schema andabogies.

1.1 Whatis Jena?

Jena is a leading Semantic Web toolkit [22] for aJav
programmers. Jenal was first released in 2000 aachad over
10,000 downloads. Jena2, with a revised interrcditecture and
many new features, was released in August 2003, hasdhad
over 7,000 downloads. This paper presents Jenazentrating
on the key architectural and design principles.

The heart of the Semantic Web recommendations ésRBF
Graph [20] as a universal data structure. An RDdplris simply
a set of triples (S, P, O), where P names a bipeeylicate over
(S, O). Jena2 similarly has the Graph as its auerface around
which the other components are built.
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The main contribution of Jenal [22] was the rdébdel API for

manipulating RDF graphs. Around this API, Jenalviled

various tools, including 1/0O modules for: RDF/XML9], [10],

N3 [7], and N-triple [13]; and the query langua@BQL [25].

Using the API the user can choose to store RDF hgrap

memory or in persistent stores. Jenal provideddditianal API

for manipulating DAML+OIL [32].

User feedback on Jenal suggested better integragioveen the

DAML+OIL support and the RDF support to permit, &sample,

the storing of DAML models within databases. ltalead proved

too difficult to add further implementations of thieh Model API
to Jenal.

In response to these issues, Jena2 has a more ptltou

architecture than Jenal. The two key architectymals of Jena2

are:

» Multiple, flexible presentations of RDF graphs tdet
application programmer. This allows graph dataecabcessed
and manipulated through higher-level interfaces.

e A simple minimalist view of the RDF graph to thesgm
programmer wishing to manipulate data as triplebis Tis
particularly useful for RDFS and OWL reasoning.

The first is layered on top of the second: anylérigource can

back any presentation API. Both the architecturalg provide

extension points for system programmers. The ptaten layer
is the basis of both the existiMpdel API and the nevDntology

APIs for OWL [12], DAML+OIL [32] and RDFS. The grap

layer allows the development of new triple sourcésth

materialized triples, for example from databaseirememory
triple stores, and virtual triples generated dyrcafly as a result
of some processing, such as inference or accelegémy data
sources. Jena2 provides inference support for lloth RDF

semantics [16] and the OWL semantics [26].

Jena supports a Semantic Web query language, RREJL that

can be used either on top of materialized graphendhe virtual

results of RDFS or OWL reasoning. Complete quedas be
passed into the underlying graph layers, so databasked
graphs can take advantage of SQL optimization.

A third presentation interface, the RDF WebAPI [3ftovides

web clients with query-based access to RDF graphis. query-

based access is also available at both the systdnagplication
programmer interfaces, and acts as a further uigfiieme of the
architecture.

1.2 The Semantic Web Standards

The RDF abstract syntax [20] provides triples amizersal data
structure. The vocabulary [8] from RDF and RDFSvjite a core
set of properties and classes to use with thgsiesriThese triples
can be serialized as RDF/XML [5]. The formal meanjt6] of
these triples and of the vocabulary permits entHili: to be
drawn.

The RDF Schema vocabulary permits the definition nefw
classes and properties to be used in the graphseTlze
augmented by the Web Ontology Language (OWL) [¥&]ich
provides three levels: OWL Lite (the weakest), O\DL, and



OWL Full (the strongest). OWL Full is a semantidemsion of
RDF; Jena2’s ontology support is targeted at OWIL Fu

Future Semantic Web standardization is likely tude work on
query languages, and possibly Web APIs for the 8Emu/eb.

2. JENA2 ARCHITECTURE OVERVIEW

The heart of the Jena2 architecture is the RDFhgrapset of
triples of nodes. This is shown in tl&aph layer (see figure 1).
This layer, following the RDF abstract syntax, isnimal by
design: wherever possible functionality is doneother layers.
This permits a range of implementations of thietaguch as in-
memory or persistence triple stores.

The EnhGraph layer is the extension point on which to build
APls: within Jena2 the functionality offered by tE@mhGraph
layer is used to implement the Jendbdel APl and the new
Ontologyfunctionality for OWL and RDFS, upgrading the Jena
DAML API.

1/0 is done in thévlodellayer, essentially for historical reasons.
The Jena2 architecture suppdist path quenthat goes all the
way through the layers from RDQL at the top ridiough to an
SQL database at the bottom, allowing user quenid® toptimized
by the SQL query optimizer.

We give some more detail on the three layers below.

2.1 The Graph Layer: Triples as the

Universal Data Structure

The Graph layer is based on the RDF Abstract Syntax [20is It

straightforward to implement any of:

« triple stores, both in memory and backed by pemstsitorage;

« read-only views of non-triple data as triples, sashdata read
from a computer file system hierarchy, or scrapeenfa web
page;

« virtual triples corresponding to the results ofiince processes
over some further set of triples as premises.

Implementations of th&raph layer provided with Jena2 give a

variety of concrete (materialized) triple stores)dabuilt-in

inference for RDFS and a subset of OWL.

2.2 The Model Layer: Views for Application

Programmers

Jena2 maintains th&lodel API from Jenal as the primary
abstraction of the RDF graph used by the applingtimgrammer.
This gives a much richer set of methods for opegatin both the
graph itself (theModel interface) and the nodes within the graph
(theResourcenterface and its subclasses).

Further, the DAML API is updated and enhanced ma2eto form
an Ontology API that can be realized as a DAML APan OWL
API.

2.3 TheEnhGraph Layer:

Multiple Simultaneous Views

Both theModel and theOntologylayers lie on top of th&raph
layer via an intermediate layer: tRehGraphlayer.

This provides an extension point for providing véeaf graphs,
and views of nodes within a graph. This generalthesneeds of
both theModel and theOntologyAPls, and, significantly, makes
the design decision that such presentation layest brestateless
all significant state is within the graph. (Cachio§ state is
permitted by the presentation layers). TBEehGraph layer is

! The term “Model” is taken from the original RDF Wil &
Syntax Recommendation [16], meaning data model.

75

RDQL

l Ontology Models
Model Layer

l Model H Resource l

ARP

N3 /0

API layel

. lStatement l
Jenal compatibilit

A\

EnhGraph Layer
l EnhNode

v
EnhGraph l

Nodes in conte
Polymorphisr
equality

Graph Layer v v
l Graph Node l

See [RDF Concepts]
FastPath Query
Reificatior

materialized graphs
in-memory SQL
stores databas

Figure. 1. The Jena2 Architecture

designed to permit multiple views of graphs andesodhich can
be used simultaneously. Java’'s single inheritanaedein is
sidestepped to provide polymorphic objects witlia EnhGraph
layer. This allows the multiple inheritance anditgpof RDFS to
be reflected in Java.

3. THE GRAPH SPI

Jena’s implementation of RDF'’s abstract syntax j[@@heGraph
SPI (System Programmer Interface), through whi@httiples of
all Jena graphs are accessed.

3.1 Overview

The Graph layer defines an interface representing RDF graphs

The design goals for tH@éraphlayer include:

« allowing collections of triples to be queried anddated
efficiently. In particular, querying triples held idatabases
should be able to exploit the underlying databasgne.

e being easy to reimplement, so that new triple ctib@s can
be represented Wyraphs with minimal programming effort.

e supporting some specialist operations from Kkhedel API
when these cannot be easily constructed from thee ba
functionality, reification in particular.

The elements within &raph are Triples ; eachTriple

comprises thre&lodes, the subject, predicate, and object fields.

A Node represents the RDF notion of a URI label, a blao#é,

or a literal; there are also two variable nodesnfimed variables

and a match-anything wildcard, for use in Qaery interface.

The RDF restrictions that a literal can only appasran object,

and that a property can only be labelled with a Uite not

enforced by th&raphlayer but by théModellayer.

The coreGraph interface supports modification (add and delete

triples) and access (test if a triple is presentigr all triples

present matching some patter@yaph implementations are free
to restrict the particular triples they regard egal and to restrict

virtual graphs
inferencing J graph uniol J

2 Also known as an anonymous resourcehdode



mutability — this is reflected through the use afid exceptions
and testable through@apabilities interface.

The most significant part of the caBaph interface is théind
operation. The primitivdind(Node S,Node P,Node O)

delivers aniterator over all the triples of th&raph which
"match" the triple(S, P, O) . To "match" means to be equal to
or for the S/P/O node to bevy. This allows theGraph to be
queried for e.g. all the properties of some paldicsubject, all
the predicates with some particular object, or @uall the triples
in the Graph. This is the extensibility point that the inferenc
engines andGraph combinators use for generating virtualized
triples.

3.2 Fast Path Query

One of the goals of th&raph layer is to allow queries to be
expressed which can exploit underlying efficienequengines,
and which can return different kinds of resultsariable bindings
or subgraphs, for example.

Rather than add many operationsGeaph itself, eachGraph
has an associatepiery handlewhich manages the more complex
queries. A standard simple query handler is praVigeich
implements the complex queries in terms of find primitive
for Graph s not offering more efficient possibilities.

A Query consists of a collection of triple patterns torbatched
against soméGraph s. A triple pattern is driple  that may
contain the extendeaNy and Variable nodes mentioned above.
So aQuery might contain

(?xP?y) (?y Q?2)

to request all the bindings for ?x, ?y, and ?zwibich matching
triples can be found in th@raph . The query is executed so as to
find all possible bindings of the variables; frofmist matched
subgraphs can be computed.

Jena's memory-basé&raph model simply implements the triple
pattern matches by iterating over tBeaph usingfind . The
RDB-basedGraph s instead compile some queries into SQL to be
submitted to the database query engine.

The query handling operates over all the triplgsressed by the
Graph, however they are generated - as base assertioas o
inferred consequences.

RDQL [25] uses this interface to do the non-cornstrparts of its
query handling.

3.3 Reification

RDF Model & Syntax [21] suggests making statemeatisut
statements by means m@fication, representing the original triple
as four triples forming what is known as a reificatquad.

The new RDF recommendations reveal that the réificasyntax
does not completely achieve this goal, but contioueecommend
the use of reification for provenance. This is @eging with the
practice of those Jena users who use reificatianilye to be able
to add metadata to triples.

An important optimization is to be able to treafication quads
efficiently. Jena  provides an APl notion of a
ReifiedStatement
reification quad. This API-layer notion is refledtdown into the
Graph interface. EaclGraph has an associatd®eifier  that
is responsible for storing reifiedriple s compactly. (This
separation into a separate interface and implertientkeeps the
Graph interface uncluttered and allows differer@raph
implementations to share cod&gifiedStatement s may be
created by a single API call; thus users who eitpliceify many
Statements need not pay a large cost in reificaicads.

76

that encodes a statement in a model as a CardinalityRestriction

3.4 Other Details of the Graph Layer

Datatypes. The requirements of RDF manipulation of typed
literals [16] differ from the Java norms. The saseenantic value
can have multiple RDF representations (&4xsd:int and
1™Mxsd:short ). One is initially tempted to arrange the Java
equality operation olhiteral s to take this value mapping into
account. However, this interferes with the usd.ivéral s in
indexed collections. Instead we introduced a sepanation of
sameValueAs and arrange that searches®raph s default to
using this notion of equivalence in preferenceaealequality.

Size. Graphs are sets of triples; a set naturally has a size
(possibly infinite). However, with the notion of farencing
Graph s, implementing size is tricky and its behavioumno
obvious. While Jen&raph s have a&ize method, its meaning is
inexact; for inference graphs it means “at lea& thany”, not
“exactly this many”.

Transactions. JenaGraph s may supportransactionssuch that
changes to &raph may be committed or abandoned. At present
only RDB-based models offer this capability.

Bulk Update. If needed, triples may be added to or remosed
masserather than one at a time for efficiency reasang, for
initialising a database.

4. ADDING APIS

Within theGraphlayer, it is easy to provide triples. However sit i
not easy to work with them at the application le(gde [22]).
Thus Jena includes thdodel API to act as a presentation layer
above the rawGraph matching the abstractions of the RDF
Vocabulary [8].

A key abstraction in theModel APl is the Resource ,
corresponding tordf s: Resource. This is a URIref or blank
node seen as part of a particlléodel - not merely a node but the
collection of facts about that node in a particURDF graph.
From the point of view of the recommendationdResource
provides a view not of the node, which is merelyRiref, but of
its interpretation within an RDF gragh.

Sometimes it is useful at the application level iew and
manipulate &Resource with a richer set of primitives based on
extended functionality reflecting some aspect sfiiiterpretation
in a particular graph. For example, if a URIrekigown to have
type r df : Bag, then viewing the correspondiigesource as a
Bag allows easier access to its members without havog
explicit access thedf : _1,rdf: _2 ... triples. In this way we find
direct support for RDF containers, as defined bg RDF
Vocabulary, within theModel layer. Similar APl classes and
methods are provided to support the RDF reificationabulary,
which is implemented using the reification primésvin the graph
layer (see section 3.3).

The Model layer is shown in figure 1, along with an alteiveat
presentation layer: th®ntologylayer. In theOntologylayer we
find explicit support for concepts from RDF Schearad OWL.
Ontology support adds many additional views of a URIrefaod
within a particular graph, e.g. as a@ntClass or a

. The functionality of theModel
layer has previously been published, for examplg];[2he
Ontologylayer is described below (section 9).

® The interpretation according to the RDFS semamégsiired is
only reflected when an RDFS reasoner is used,esgi®B 5.



4.1 The Enhanced Graph Layer

Jena2 does not attempt to present one consoligasgntation
API onto an RDF graph. A consolidated APl might dree in
which a URIref withrdf:type of owl:ObjectProperty

would be realized as a Java object of claggectProperty
which would implement all the interfaces that weppropriate,
and inherit from some appropriate superclass. Thereno
obviously correct class hierarchy for the differeahcepts within
theModel APl andOntologyAPI. Moreover choosing which view
to take of a particular URIref in the graph tendsrake a closed
world assumption: this resources an RDFS class; later
information may cause us to reconsider. A direcppireg of the
class hierarchy of RDF onto that of Java would theis mistake.
To address this issue a framework for using marfierént
presentation layers is provided, with two builtiivstantiations,
theModel API and theOntology ModeAPI.

4.1.1 Presentation Layers and Personalities

Each presentation layer consists of some interfaoces some
implementation classes, and a mapping from integfdo factory
methods that invoke the implementation classess Wapping is
known as thePersonality of the presentation layer. These
presentation layers are stateless. All state redtmGraph s.

The implementation classes either extelthhGraph or
EnhNode. EnhGraph is a simple wrapper around Graph,
with a pointer to thePersonality . EnhNode is a wrapper
around a Node, with an additional field pointing to an
EnhGraph . This is the context in which thenhNode is seen.
For example,Model extends EnhGraph, and Resource
extendsEnhNode.

Each subclass &inhGraph provides a set of operations that can
be performed on &raph. Thus an instance acts as a view of a
Graph .

Each subclass dnhNode provides a set of operations that can
be performed on &lode in aGraph . Thus an instance acts as a
view of aNode in a specificGraph . It is often appropriate to
take different views of the sarode.

4.1.2 Polymorphism

RDFS permits any resource to have multiple typdschvmay or
may not be relateddfs:subClassOf can be used to express
multiple inheritance and not just a simple hiergrdin contrast,
Java objects have a single Java class, from afrelasses with
single inheritance. Jena2 implements polymorphsoueces to
model within Java the RDFS style of multiple typing

Given aNode or anEnhNode it is always possible to use the
factory methods in thd”ersonality to create a view (an
instance of a subclass BhhNode) of theNode that implements
a particular interface. The constraint that thesdNodes are
stateless ensures that it is always safe to cmeate than one
identical EnhNode. It also permits caching dEnhNodes for
performance reasons. Thus a key method orEanNode is
as(interface) , which returns a view of thdtlode which
implements the given interface. If the desired Itesunot in a
simple cache, then the view is created using tbfa methods
found in thePersonality

This methodas is used while implementing a presentation API
such as thévlodel or the Ontology layer as part of an extended
casting idiom e.g.

(OntClass) ontProp.as(OntClass.class);

This is particularly useful for implementing OWL IF{27], in
which there is no separation of vocabulary.
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4.2 User defined Presentation APIs
Applications may well want to have their own spbe&d views

of Resource s. Within the Jena2 architecture these views can be

generated from an RDF Schema or an OWL Ontology and
incorporated within the overall framework. That ishile the
figure shows two instantiations of the top layerthes
instantiations can be added.

5. INPUT/OUTPUT

The de factoreference parser for RDF/XML [5] is part of Jena.
This is used at the W3C RDF validator site.

Jena /O is provided at thdodel layer, for historical rather than
technical reasons. The basic primitives are to raad write
models, in a choice of Semantic Web languages; 3apports
RDF/XML [5], N3 [7] and N-Triple [13].

5.1 Parsing RDF/XML

The RDF/XML parser uses Xerces to parse the XMLd an
validates the RDF input against a range of starsdaebrporated
by reference into RDF/XML. Specifically, input i©ecked for
conformance with RFC 2396 (URIs), RFC 3066 (langsag
including ISO 601 and ISO 3166 checking), and th&Cw
Character Model.

The parser architecture, described in [9], clesdparates the
RDF processing and the XML processing, which hasnjieed
the parser to closely track the revised RDF/XML kiog drafts
as they evolved to the new Recommendation.

In Jena2, the implementation of that architectuss tbeen
improved, using a single Java thread, rather thanttreads (for
the XML parser and the RDF parser) as in Jenal.

5.2 Unparsing RDF/XML

RDF/XML output can be performed either in a basade which
is preferred for large files, or in a pretty writeode. The former
groups the triples of the graph by subject and thveites each
triple using a simple property element - the abiaténs
provided in RDF/XML are not used.

The pretty writer format, intended for when the puitmay be
seen by people, is significantly more expensivel ases all the
productions in the revised syntaRtriping, as described in the
recommendation [5], is the default. One of the mmito control
the output switches off rules as specified in teeised syntax.
This option takes as an argument the URL refererdethe

productions which are not to be used: e.qg.
RDFWriter w = m.getWriter(“RDF/XML-ABBREV”);
String rdfSyntax =
“http://mww.w3.0org/TR/rdf-syntax-grammar”;
w.setProperty(“blockRules”,
rdfSyntax+"#idAttr,"+
rdfSyntax+"#parseTypeCollectionPropertyElt");

Since, as described in [10], the code closely fadldhe formal

grammar in the W3C recommendation, the URL referencsed
refer directly to the grammar, making it easy fosens to

understand how to use the controls.

Feedback from users has indicated that the propéripute rule

in RDF Syntax is poorly understood, and we chartgeddefault

to not use it. Further feedback has indicated tisats value the
preservation of the prefixes used for XML namespa@hanges
to both the RDF/XML input and output have implensshthis

functionality.

6. INFERENCE SUPPORT

The treatment of schema and ontologies in the foseraantics of
both RDF [16] and OWL [26] makes it clear that dmant is a



core feature of the Semantic Web recommendatiohis. i$ also
reflected in the hundreds of entailments testsigeml/[11], [13].
Jena supports this by giving access to a rangenfefreince
capabilities. A core set of such capabilities arailable “out of
the box”, particularly RDFS inference, and OWL imefiece
supporting the subset of OWL Full roughly correstiog to the
union of OWL Lite and RDFS. The architecture pesngtug-in
connections to engines being developed by the vademunity,
such as Racer [15], FaCT [18] and the Java The®wwer [14].
It is planned that using such plug-ins complete OWie and
improved OWL DL reasoning will be supported.

The design center for Jena2’s inference API is tabée
applications to access RDF data that has been hedridy
additional assertions entailed from a set of reieantologies —
that is we emphasize Abox queries over Thox qudBgsThis
bias influences our choice of API, architecture anfirence
engines.

6.1 Inference access API and architecture

In Jena2, inference engines are structure@raph combinators
called Reasoner s. An instance of &easoner combines one
or more RDF Graphs and exposes the entailments tihem as
another RDF Graph in which some of the retrievalifdes are
virtual entailments rather than materialized datee(figure 2).
The inputGraph s contain both the ontology and instance data,
with optional separation between the two. In patég it is
possible to partially-bind &easoner to an ontology and then
use the resulting specializeReasoner to access multiple
different dataGraph s — reusing the ontology inferences.

This layering offers great flexibility. For examplan OWL Lite
Reasoner can be stacked on top of an RDR8asoner with
the latter being used to infer the type statemestsired by the
OWL Lite syntax but deducible from the domain/range
declarations of the OWL Lite properties. An RDQLeqguican be
issued to an inferre@raph, just like any otheiGraph, thus
allowing query over the entailments. For instance isferred
RDFS graph can be used by RDQL to do schema ditegteries,
and hence have functionality more like RQL [19]theut any
additional query syntax, and with better alignmefth the RDF
recommendation.

Different APIs can be bound to the inferr@daph allowing the
results to be viewed at the RDF level or thoughadbevenience
ontology API.

ModeIFqcﬂH Ont/Model API ‘

find
‘ InfGraph ‘
T
Reasoner R
Regisiry | create easoner

pind bindRuleset (optional)

Gruph - base assertions ‘ Gruph - onfelogy definitions

Figure 2. The inference API layering

Many entailments are easily accessible through Ginaph or
Model APIs in this way. For example finding all instascef a
given class is a simple triple query:

(?x rdf:type C)
whereC is aNode representing ardfs:Class in the ontology
Graph (and can be either a bnode or a named class).
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There are several limitations of this API approétdt we had to
address.

First, arbitrary class expressions introduced leydbmprehension
axioms of OWL [27] are not directly supported. Wiklgessed the
same requirement by extending tfied operation to take an
optional parameter, for additional premises. Thasameter is a
Graph containing expressions whobkdes can be used within
the query triples; the intended use is with expoessknown to be
valid from the comprehension axioms.

Second, for transitive relations it is often coneanto be able to
query the direct (or minimal) as well as the trémsly closed
version of the relations. We handle this by intrmidg additional
RDF properties to represent the direct version rof &ansitive
property. This style of extension, introducing aiial RDF
properties to represent inferable relationshipskewahe triple-
based API very flexible.

Thirdly, to give convenient access to consistemfgrmation we
added avalidate  method which returns a report containing a
list of all warnings or errors identified withindlGraph . This is
more convenient than the property introduction méghe, in this
case, because validity reports may need to refstat@ments or
groups of statements and not simpi\\wdes.

6.2 Built-in reasoners

As part of the default distribution we include aesédon of

inference engines, which conform to this architextu

Transitive Reasoner. This reasoner provides the transitive
closure of the RDFSubClassOf  and subPropertyOf
relationships contained in the source graphs, migalorrectly
with cases such as declaring sub-properties of
rdfs:subClassOf property. This relatively simple
functionality corresponds quite closely to the hardded
inference implemented by the Jenal DAML+OIL APlakeling
applications to make similar queries in Jena2 wsathilar
performance without needing to invoke more soptastid
inference engines.

RDFS Reasoner.This provides an implementation of the RDFS
closure rules [16]. It strikes a balance betweggeeand lazy
processing. The sub-class and sub-property latdoesached
using an embedded@ransitiveReasoner . Each domain,
range, sub-property and sub-class declaration igerba
translated into a single query rewrite rule. Theuteof a query
to the graph will be the union of the results frapplying the
query plus all the rewritten versions of the queoy the
underlying graphs.

Rubrik* Reasoner. This reasoner supports rule based RDF
inferences. Rule clauses are either extended tppteerns or
procedural callouts to primitives defined in JaVhe triple
patterns arextendedn the sense that the objects of the triple
can be functor-like data structures. This allowle muthors to
control the combinatorics of graph pattern matchigchaving
one rule map a subgraph pattern into compact diatetsre and
later rules fire off that data structure. Both fard chaining and
memoized backward chaining rule engines are prayigéth
some hybridization in that forward rules are albleteate and
install new backward rules.

These rule engines may be used with applicationipeule sets

or with prepackaged rule sets for RDFS and for WL Lite

subset of OWL Full. The rule-based approach comedp well to

our emphasis on ABox reasoning: indeed, we handissc

the

* RDF basic rule inference Kkit.



subsumption checking by introducing prototypicastémces of
classes and letting the instance rules determipeother type
labels for the prototype.

In addition to these inference engines we have ddtimseful to

provide a set of operators (union, multi-union, emsection,

difference, delta) for combining da&raph s.

The possibility of custom rules within the rubrikasoner has
generated user interest, indicating that this aggracomplements
more complete OWL reasoning. Other user feedbaskégulted
in (incomplete) support for owl:hasValue being atlde the

OWL rulebase.

6.3 External reasoners

By using such a generic, triple-based, interfacto dnference
results it becomes possible to expose the capalufita wide
range of reasoning engines through the same APIlel@ance
this flexibility by providing aReasonerRegistry in which
available reasoners can be registered along witldamtifying
URI and a reasoner capability description (expig$seRDF). In
this way applications can be made somewhat indeperaf the
particular inference engine being used.

We intend to construct adaptors for several opemgilable
reasoners, to enable their use from within Jena.

7. RDQL — RDF QUERY

RDQL (RDF Data Query Language) was pioneered imUemhhe
Jena implementation is thie factoreference implementation. A
full description is found in [29], the original papis [25].

An RDQL query consists of a graph pattern, expieessea list of
triple patterns. Each triple pattern is comprisefl named
variables and RDF values (URIs and literals). ADQR query
can additionally have a set of constraints on thleias of those
variables, and a list of the variables requirethmnanswer set.

SELECT ?x

WHERE (?x,

<http://  www.w3.0rg/1999/02/22-rdf-syntax-ns#
<http://lexample.com/someType>)

type>,

This triple pattern matches all statements in thaply that have
predicate  http://www.w3.0rg/1999/02/22-rdf-syntax-

ns#type and objecthttp://example.com/someType The

variable "?x" will be bound to the label of the gdb resource.
All such "x" are returned

An RDQL query treats an RDF graph purely as datahé

implementation of that graph provides inferencingappear as
"virtual triples” (i.e. triples that appear in tgeaph but are not in
the ground facts) then an RDQL will include thosiplés as
possible matches in triple patterns. RDQL makedistinction

between inferred triples and ground triples.

The next phase of the Semantic Web activity byWs€ is likely

to address RDF query. We hope that this work velket our
positive experinces with RDQL into account. Jen&BDQL

implementation will evolve as a result of the newrkvat the
W3C.

8. PERSISTENT STORAGE

As in Jenal, the database subsystem in Jena2 ssimeosistent

storage of RDF Models in a conventional databasag].[3
Implemented at the Graph layer, it provides all tiselal Graph

operations (add, delete, find) and efficiently sopp reification.

8.1 Denormalized Schema
Jena2 stores each triple either in a general parpipde table or a
property table, for a specific property.
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The interface trades-off space for time. It usedeaormalized
schema in which resource URIs and simple literdues are
stored directly in the triple table. A separaterkis table is used
only to store literal values whose length exceedbreshold or
that are typed or have a language tag. This makesssible to
process a large class of queries without a joinwéile@r, a
denormalized schema uses more database space dédvasame
value (literal or URI) is stored repeatedly.

The increase in database space consumption is ssedren
several ways. First, common prefixes in URIs, suab
namespaces, are stored in a separate table anutrefie in the
URI is replaced by a reference. This prefix tabik e cacheable
in memory so expanding a prefix does not requilatabase join.
Second, a literals table is used so that longal$esire stored only
once. Third, Jena2 supponsoperty tables as described below.
Property tables offer a modest reduction in spacesemption in
that the property URI is not stored.

8.2 Configuration

Configuration parameters are specified as RDF ranés in a
memory model that is passed as an argument whatirgex new
persistent model. Jena2 includes default modeldagung the
default configuration parameters for all supportédtabases.
Specifying configurations in RDF makes configuraioeasy to
search, share and re-use since they can be maeipui#h Jena’s
existing operations.

8.3 Property Tables

A property table (also known as attribute table$) [folds
statements for a specific property. They are stasesubject-value
pairs in a separate table. Triple tables and ptgpables are
disjoint - a statement is only stored once. Fompprtes with a
maximum cardinality of one, it is possible to ckrsmultiple
properties together in a single table. A single rofshe table
stores property values for a common subject. Famgte, a
Dublin Core [6] property table might storelc:title ,
dc:publisher  , dc:description

Multi-valued properties, e.gdc:creator , cannot be clustered
and must be stored in separate tables. Note thia¢ iflatatype of
the object value is known, it may be possible make the
underlying database column for the value matciptbperty type.

A property classtable is a special kind of property table that
stores properties associated with a particularsclasd also
records all instances of that class. Each propexgt have the
class as its domain. Jena2 implements reificat®ra groperty
class table. The  properties  are rdf:subject ,
rdf:predicate , rdf:object and the class is constrained to
be rdf:Statement . The subject of the property class table is
the URI that reifies the statement.

8.4 Query Processing

Queries are executed against graphs which may haigple
statement tables. For each statement table theaehisndler to
convert between the graph view of Jena and theetupw of
SQL. To evaluate a triple pattern, the query preaepasses the
pattern, in turn, to each table handler for evadumat

A goal of Jena2 is support fdast pathquery processing for
RDQL (see section 3.2). In Jenal, an RDQL queryaoaserted
into a pipeline of triple pattern queries. Thiseigaluated in a
nested-loops fashion in Java by using the resdltene triple
pattern to bind values to variables and then géngraew triple

® Not all XSD types correspond to an SQL datatype.



patterns for evaluation. Jena2’s RDQL uses @&raph query
interface to pass all the triple patterns intoda&abase graph; the
goal of fast path query processing is to use thabdge engine to
process the entire query, rather than single petter

A full discussion of fast path query processingb&yond the
scope of the paper. Here, we present two simplescasd
mention the difficulties for the general case. Hw first simple
case, assume that all the triple patterns referente the triple
table. As mentioned above, a single triple pattean be
completely evaluated over a table by a single SQerg To
evaluate multiple patterns in the database engirgesufficient to
combine the SQL statements for the individual pateand add
additional join conditions for the linking variakle

The second simple case is when all patterns cacobwletely
evaluated by a single property table. This is simtb the first
case. However, here it may be possible to elimijaites if the
patterns reference properties stored together gsihe property
values for the same subject are stored in the sawje

When the triple patterns for a query apply to npldtitables, it is
more difficult to construct a single SQL query tatisfy all
patterns. The Jenal nested-loops approach is dpplihis case.
We are currently investigating optimized solutidosthe general
case.

9. ONTOLOGY SUPPORT

Since Jena is, at heart, an RDF platform, we ststtirselves to
ontology formalisms built on top of RDF. Specifigaihis means
RDFS [8], the varieties of OWL [12] and DAML+OIL 23.

While OWL builds on top of the RDF specificatioiitss possible
to treat OWL as a separate language in its ownt,righd not
something that is built on an RDF foundation; smeekample the
OWL API [3], which merely uses RDF as a serializatsyntax.
The RDF-centric view treats RDF triples as the aufréhe OWL
formalism. While both views are valid, in Jena ket the RDF-
centric view. As such, the ontology support witdena addresses
OWL Full features that are not present in OWL DLg.ethe
ability to use a single URIref to denote a clasgr@perty and a
participant in some other ontological schema.

The Ontology layer defines the interfac©ntModel
extends the Model interface from thtodel API.

Rather than having Java class names that areytightind to the

which

language being processed (e.g. DAMLClass,
DAMLObjectProperty , etc.), the ontology API is language-
neutral  (thus the classes areOntClass and
ObjectProperty ). To support this, each of the languages has

a profile, which lists the permitted constructs and the BJf'the
classes and properties. Thus in the DAML profilee URI for
object property isdaml:ObjectProperty , in the OWL
profile is it owl:ObjectProperty and in the RDFS profile it
isnull  since RDFS does not define object properties.

The profile is bound to an ontology model, whictais extended
version of Jena's Model class. The general Modelvalaccess to
the statements in a collection of RDF data. OntMedatends this
by adding support for the kinds of objects expedtedbe in an
ontology: classes (in a class hierarchy), propeitie a property
hierarchy) and individuals. The properties defiirethe ontology
language map to accessor methods. For examplent@lass
has a method to list its super-classes, which spaeds to the
values of thesubClassOf property. No information is stored in
the OntClass object itself. When the OntClass
listSuperClasses() method is called, the information is
retrieved from the underlying RDF statements. Siriladding a
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subclass to a®ntClass asserts an additional RDF statement
into the model.

The statements that the ontology Java objects eygend on both
the asserted statements in the underlying RDF grapt the

statements that can be inferred by the reasoneg lusied (if any).

Ontology model

:

[ Jena Graph interface

Reasoner

'

| Jena Graph interface

Base RDF graph

Figure 3. The statements seen by the OntModel

The asserted statements are held in the base grhjshpresents
the simple internal interfac&raph . The reasoner, or inference
engine, can use the contents of the base graplthensemantic
rules of the language, to show a more completefssatements -
i.e. including those that aentailedby the base assertions. This is
also presented via th@raph interface, so the model works only
with that interface. This allows us to build modeiéth no
reasoner, or with one of a variety of differents@zers, without
changing the ontology model. It also means thathbi®e graph
can be an in-memory store, a database-backed tpetsitore, or
some other storage structure altogether (e.g. adFLBirectory)
again without affecting the ontology model.

9.1 RDF-level polymorphism and Java

Consider the following RDF sample:
<rdfs:Class rdf:ID="DigitalCamera">
</rdfs:Class >
This declares that the resource with the (relativéRl
#DigitalCamera is an ontology class. It might be appropriate
to model declaration in Java with an instance oDatClass .
Now suppose we augment the class declaration wittesmore
information:
<rdfs:Class rdf:ID="DigitalCamera">
<rdf:type owl:Restriction />
</rdfs:Class>
Now we are saying thatDigitalCamera is an OWL
Restriction (which is a subclass ofdfs:Class ). A
problem we have is that Java does not allow usytamtically
change the Java class of the object modeling #geurce. The
resource has not changed: it still has URligitalCamera
But the appropriate Java class we might chooseddeimt has
changed fronOntClass to Restriction . Conversely, if we
remove thedf:type Restriction from the model, the use
of aRestriction Java class is no longer appropriate.
Even worse, OWL Full allows us the following (rathe
counterintuitive) construction:
<rdfs:Class rdf:ID="DigitalCamera">
<rdf:type owl:ObjectProperty />
</rdfs:Class>
That is,#DigitalCamera is now a clasanda property. While
this may not be a very useful operation, it illagts a basic point
that we cannot rely on a consistent or unique nrappetween an
RDF resource and the appropriate Java abstraction.



Jena 2 accepts this basic characteristic of polyhism at the
RDF level by considering that the Java abstract@ntClass
Restriction , DatatypeProperty , etc.) is just a view or
facet of the resource. Given a RDF object in Jena, weget a
new facet with thas() method. For example:
Resource r = myModel.getResource(

myNS + "DigitalCamera" );
OntClass cls = (OntClass) r.as(

OntClass.class );
Restriction rest = (Restriction) cls.as(

Restriction.class );
This pattern allows us to defer until run-time dems about the
correct Java abstraction to use, and make thiscehigpend on
the properties of the resource itself. If a givees®urce will not
support the conversion to a given facet, it wilkeaan exception.
This RDF-level polymorphism is used extensivelytire Jena
ontology API to allow maximum flexibility in handig ontology
data.

9.2 Imports

The imports mechanism of OWL and DAML+OIL are usypal
handled as shown in Figure 4.

Figure 4 shows that each imported ontology docunsehneld in a

separate graph structure. If we did not do thigeothe imports
had been processed it would be impossible to kndwerev a

statement came from. It is possible to switch afiports

processing.

‘ Ontology model ‘

'

Jena Graph interface

Reasoner

—

{ Jena Graph interface l

[ Union Graph J
[ Jena Graph interface I [ Jena Graph interface } [ Jena Graph interface ]
| Base RDF graph ’ [ Imported ontology A ] l Imported ontology B |

Figure 4. Ontology internal structure including imports

9.3 OntResource

All of the classes in the ontology API that repregsentology
values have OntResource as a common super-class.
OntResource
classes. Example properties are annotations, silebel
sameAs.

For each of these properties there is a standarerpaf available
methods, to set and get a singleton value or matfifinspect a
multivalue.
OntResource
setting the RDF types of a resource. Tdktype property is
one for which many entailment rules are definedhim semantic
models of the various ontology languages. Therefitre values
that listRDFTypes()
on the actual reasoner bound to the ontology méaelexample,
suppose we have class A, class B which is a subofag, and
resource X whose assertatf:type is B. With no reasoner,
listing x's RDF types will return only B. If theasoner is able to
calculate the closure of the subclass hierarchg (aost can), X's
RDF types would also include A. Furthermore, corple

, and
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contains shared functionality for the ontology

also provides methods for listing, getting and

returns is more than usually dependent

reasoners might also infer that x has typel:Thing and
rdf:Resource

For some tasks, getting a complete list of the Riges of a
resource is exactly what is needed. For other tdBksis not the
case. An ontology editor, for example, might wandtstinguish
in its display between inferred and asserted typeshe above
example, onlyx rdf:type B is asserted, everything else is
inferred. One way to make this distinction is tokeaise of the
base model or of the union graph containing the lmagdel and
the imported graphs (see Figure 4). Getting thesource from
the base model and listing the type propertiesetheruld return
only the asserted values.

9.4 Other Aspects

As one might expect, the Ontology API contains s#as
corresponding to the main concepts within OWL, #mal ability
to inspect and manipulate the principal propeniethese classes.
The same API can be used for DAML+OIL, and a sulb$ehe
API is useful for RDFS.

Moreover, the base model can be stored in a daalfasquired.
A further independent module is an OWL Syntax Cleeck
conforming with the specification given in the OWilest Cases
[11]. It inspects a set of triples and determindeetiver they fit
within the OWL Lite or OWL DL or OWL Full syntactispecies
of OWL. It’s triple oriented operation is described4].

10. VIEWS IN JENA2

We have seen that tl@&raph interface acts as a uniform interface
into triples, both actual, as found in documentslatabases, or
virtual, as defined by arbitrary Java code, inipatar reasoners.
Similar but more constrained mechanism are found@RiPLE
[24] and are proposed as RVL [23]. In each of thesmwvs of
virtual triples are defined using a high-level viedefinition
language in terms of other views or collectionsnwdterialized
triples.

It would be possible to translate such high-levielwdefinition
languages into Java code, and, with care, featirdsna2 such as
fast-path query could be utilized. Moreover, theaZearchitecture
shows a continuum between such view languages rdacknce.
The rule language in Jena2 can be seen in itself agew
definition language, although with a somewhat défe intent
from RVL or TRIPLE views. In particular, the reagos in Jena
add triples, whereas an RVL or TRIPLE view both ada=swvn
triples and hides the old triples.

11. JOSEKI

A further feature of Jena that we hope will be dtadized in the
next round of the Semantic Web activity is thaa&/ebAPI [30].

Joseki takes the RDF graph as the primary desigiceqi and
makes it accessible to remote clients and appbicati The RDF
WebAPI provides a simple, universal access mecharfis an

application on one machine to extract informaticonf an RDF
repository hosted by another machine. The acceshanism is
graph-based query where the access to the removddage base
is a query and the results are expressed in tefmsiagle graph.

11.1 Query as access primitive

The WebAPI fits into the Jena paradigm by providangess to a
graph. This graph may be ground data or it mag geaph where
inference is performed to yield entailed tripléhis is not visible

to the remote client application.  The contract ween

information consumer and the information publisiethat the

graph is a set of triples expressing some inforwnati How this



information is derived is purely a matter for tha&formation
provider and not part of the contract between mrewv{publisher)
and the client application.

Query forms the access paradigm because it is esitatble to
copy such knowledge bases across networks, Thig lmea
because they are large, and the client applicaionly interested
in a small part of the overall graph, or because khowledge
base is frequently changing, making locally cachireifective.

A query returns a single subgraph. Unless the yqterther
modifies the request with additional parameters, ¢bntract is
that the subgraph returned should yield the samehing results
as the original query would on the entire knowletigse. The
minimal complete subgraph is the smallest such hgrap a
conjunctive query language such as RDQL [25], ihisquivalent
to calculating the result triples by substitutiracle of the query
solutions into the graph pattern and merging insingle graph.
The graph returned does not have to be minimasophisticated
cache could return a precomputed, or previous ctedpu
subgraph that is larger than the minimal matchimogsaph but
still meets the completeness requirement.

Query provides a sufficiently coarse-grained openatfor
efficient application use. Direct triple accesswdbcause large
numbers of fine-grained network accesses leadingxtessive
overhead.

11.2 The RDF WebAPI

To make RDF repositories available across the rietethe RDF
WebAPI requires each graph to have a URL for theogaes of
naming and routing query traffic to the repositprpviding that
graph. One host repository may have several RDéphyr
available, so it is necessary to direct querigbeoright one based
on both network location and on name. URLs provide
mechanism for this.

The protocol used for query is HTTP, specificalig tGET verb.
In order to provide compatibility with regular welse, a plain
GET (no query string provided) is interpreted agHmg the
whole RDF graph. A query string provides refinemeh the
GET to extract a subgraph of the target graph. query string
consists of identification of the query languaged an query-
language specific string giving the query itself.

The full details of this can be found in the membalbmission to
the W3C [30].

11.3 Joseki — Client Library

The client library provides integration with thesref the Jena2
API in two ways. First, the primitive operation qfierying and

returning the minimal, complete subgraph is progidéhere the

remote query processor is expected to compute apleten
subgraph. Second, a remote query engine, matchagtandard
QueryEngine interface in th@raph layer is also provided. This
latter access mechanism yields an iterator of baamihbles just

like a local query. The variable bindings are lbcalalculated

based on the complete subgraph returned by theteevperation.

12. CONCLUSION

Jena2 provides integrated implementations of th&€V8&8mantic
Web Recommendations, centred on the RDF graph. dwere
additional features of Jena: the query languageth@dVebAPI,
are ones that we hope will be finalized in the nexase of the
Semantic Web activity.

The Jena2 architecture cleanly separates presemghtissues,
concerning what the application programmer wisbegot with an
RDF graph, from the system programming issues aschow to
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store concrete triples or derive virtual triplesisl enables the

following new features in Jena2:

* RDFS inference support, following the RDF Semantics

e  Full integration of the Ontology support with othéena
components. The Ontology presentation API can berdal,
with or without any inference support, over anplgistore.

* RDQL can be used to query the virtual triples résglfrom
RDFS or OWL inferences.

* Adding a new extensibility point in Jena for intating DL
reasoners such as Racer and FACT, as part of irmgydive
ontology support and, in particular, support of OWL

* Integration of query optimizers, for example, bysgiag
back-end relational
representing the user level query, rather than lgneeng a
relational database as a triple store.

*  Seamless extension to access over the web.

Jena2 is available under a BSD-style

http://jena.sourceforge.net .
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