EasyRDF

Mohammad Asif Jamaluddingari

Harshal Jhaveri

Name of the tool: EasyRdf
Home page: http://www.aelius.com/njh/easyrdf/
Programming Language(s) that can be used with the PHP
tool: —
Relevant Semantic Web technologies: RDF
Categories: Programming Environment

Introduction:

EasyRdf is a PHP library designed to make it easy to consume and produce RDF. It was
designed for use in mixed teams of experienced and inexperienced RDF developers. It is written
in Object Oriented PHP.

During parsing EasyRdf builds up a graph of PHP objects that can then be walked around to get
the data to be placed on the page.

Data is typically loaded into a EasyRdf Graph object from source RDF documents. The source

document could either be an RDF file on the web or the output of a Construct or Describe
SPARQL query from a triplestore.

Requirements and Implementation:
EasyRdf contains all its features written in its php library. So it needs PHP 5.2.1.
In order to check out the features provided by the EasyRdf and to run the php programs from its

library, we set up an environment by installing wamp server which already has the apache and
php running in it, is made available at www.wampserver.com/en/download.php

Parsing Example:
The following example illustrated how the EasyRdf parses any kind of Rdf document.

Consider the RDF document present at http://www.bbc.co.uk/music/artists/70248960-cb53-4ea4-
943a-edb18f7d336f.rdf

Suppose, we want to print the artist information from the above document. The following code is
used to generate the artist info from the document. Each step of the code is described in the
comments

set_include path(get include path() . PATH SEPARATOR . "'../lib/");

//set_include path sets the path for the rdf document which is to be parsed and get include path
reads the file path and places it in the library.

require_once "EasyRdf.php";
require_once "html tag helpers.php";

//The above statement states that the program uses once the file EasyRdf.php and
html tag helpers.php. The EasyRdf.php is described below

EasvRdf.php :

This file is used to load the core of EasyRdf if you don’t have an autoloader. It includes many
other files among which some of the important files are:

EasyRdf Http Response : Class that represents an HTTP 1.0 / 1.1 response message
EasyRdf Graph : Container for collection of EasyRdf Resources.

EasyRdf Http Client : This class is an implementation of an HTTP client in PHP.
EasyRdf Literal : Class that represents an RDF Literal

EasyRdf Parser RdfPhp : Class to parse RDF with no external dependencies.

EasyRdf Exception : All exceptions thrown by EasyRdf are an instance of this class.
EasyRdf Namespace : A namespace registry and manipulation class.

EasyRdf Parser : Parent class for the EasyRdf parsers.

EasyRdf Parser Ntriples : A pure-php class to parse N-Triples with no dependencies.
EasyRdf Parser Json : A pure-php class to parse RDF/JSON with no dependencies.
EasyRdf Resource : Class that represents an RDF resource

EasyRdf Serialiser : Parent class for the EasyRdf serialiser

EasyRdf Serialiser Json : Class to serialise an EasyRdf Graph to RDF/JSON with no external
dependencies.

EasyRdf Serialiser RdfXml : Class to serialise an EasyRdf Graph to RDF/XML with no
external dependencies.

EasyRdf Serialiser Turtle : Class to serialise an EasyRdf Graph to Turtle with no external
dependancies.EasyRdf TypeMapper : Class to map between RDF Types and PHP Classes
EasyRdf Utils: Class containing static utility functions.

require_once "EasyRdf/Http/Client.php";
EasyRdf Graph::setHttpClient(new EasyRdf Http Client());

//Configure the HTTP client to use

function birthEvent()
{
foreach ($this->all('bio:event') as $event) {
if (in_array('bio:Birth', $event->types())) {
return $event;
H
H

return null;

}

//Function to iterate for each event in the document

function age()
{

$birth = $this->birthEvent();

if ($birth) {
$year = substr($birth->get('bio:date"), 0, 4);
if (Syear) {

return date("Y") - $year;

}

}

return 'unknown';

//The above function reads the date of birth of the artist in the first step. And then takes the
substring of the date of birth (i.e., only year is returned) and the returns the year.

EasyRdf Namespace::set('mo', 'http://purl.org/ontology/mo/");
EasyRdf Namespace::set('bio', 'http://purl.org/vocab/bio/0.1/');

EasyRdf TypeMapper::set('mo:MusicArtist', 'Model MusicArtist');

//the above statements adds the namespaces. The detailed information of EasyRdf Namespace is

given below.

EasyRdf Namespace :

This is a namespace registry and manipulation class. The methods included are:

(Note:- All the methods are static methods. For example, If there is delete, it means that static

method delete)

Delete : Delete an existing namespace.

Expand : Expand a shortened URI (qname) back into a full URI.

Get : Return a namespace given its prefix.

Namespaces: Return all the namespaces registered

prefixofUri : Return the prefix namespace that a URI belongs to.

reset : Delete the anonymous namespaces and reset the counter to 0

set : Register a new namespace.

shorten : If $createNamespace is true, and the URI isn't part of an existing namespace, then
EasyRdf will attempt to create a new namespace and use that namespace to shorten the URI (for
example nsO:term).

If it 1sn't possible to shorten the URI, then null will be returned.

<?php echo form_tag(); 7>

<?php echo text field tag(‘uri', 'http://www.bbc.co.uk/music/artists/70248960-cb53-4ea4-943a-
edb18f7d336f.rdf, array('size'=>50)); 7>

<?php echo submit_tag();?>

<?php echo form_end tag() ;7>

//The above code is normal php code. The first step opens a new form. Then a textfield is created

with the uri. This is the place where the input rdf document is to be passed. The URI of the rdf
documents is passed here. And as usual a sumit button and an end tag of the form is echoed.

if (isset($_REQUEST['uri"])) {

$graph = new EasyRdf Graph($ REQUEST['uri']);
$graph ->load();

if ($graph)
{ Sartist = $graph->primaryTopic();
h
H

//Here comes the major part. i.e., building the graph object for the input rdf document. The
EasyRdf Graph build the graph for the input rdf through which one can traverse to get the
intended nodes or children.

EasyRdf Graph:

This is the container for collection of EasyRdf Resources. It has the following methods.

getHttpClient : Get the HTTP Client object used to fetch RDF data
setHttpClient : Set the HTTP Client object used to fetch RDF data
Constructor _construct ; If no URI is given then an empty graph is created.

If a URI is supplied, but no data then the data will be fetched from the URI.

The document type is optional and can be specified if it can't be guessed or got from the HTTP
headers.

Add : The resource can either be a resource or the URI of a resource.

The properties can either be a single property name or an associate array of property names and
values.

The value can either be a single value or an array of values.

Examples: $res = $graph->resource("http://www.example.com"); $graph->add($res,
'prefix:property’, 'value'); $graph->add($res, 'prefix:property’, array('valuel',value2')); $graph-
>add($res, array('prefix:property’ => 'valuel')); $graph->add($res, 'foaf:knows', array(
'foaf:name' => 'Name')); $graph->add(Sres, array('foaf:knows' => array('foaf:name' => 'Name'));

allofType : Get all the resources in the graph of a certain type. If no resources of the type are
available and empty array is returned.

dump : Return view of all the resources in the graph
This method is intended to be a debugging aid and will return a pretty-print view of all the
resources and their properties.

getUri : Get the URI of the graph

load ; Load RDF data into the graph.

If a URI is supplied, but no data then the data will be fetched from the URI.

The document type is optional and can be specified if it can't be guessed or got from the HTTP
headers.

newBnode : Create a new blank node in the graph and return it.
If you provide an RDF type and that type is registered with the EasyRdf TypeMapper, then the
resource will be an instance of the class registered.

primaryTopic : Get the primary topic of the graph

resource : Get or create a resource stored in a graph

If the resource did not previously exist, then a new resource will be created. If you provide an
RDF type and that type is registered with the EasyRdf TypeMapper, then the resource will be an
instance of the class registered.

resources_matching : Get an arry of resources matching a certain property and value.
For example this routine could be used as a way of getting everyone who is male: $people =

$graph->resourcesMatching('foaf:gender', 'male');

serialize : Serialise the graph into RDF

<table border="1">
<tr><td>Artist Name:</td><td><?php echo S$artist->get('foaf:name'); ?></td></tr>
<tr><td>Type:</td><td><?php echo join(', ', Sartist->types()) ;?></td></tr>
<tr><td>Homepage:</td><td><?php echo link to($artist->get('foaf:homepage'));
></td></tr>
<tr><td>Wikipedia page:</td><td><?php echo link to(S$artist->get('mo:wikipedia'));
></td></tr>
<?php
if ($artist->is_a('mo:SoloMusicArtist')) {
/' echo " <dt>Age:</dt>";
echo " <dd>Age:" . $artist->age(). "</dd>\n";
H

?7></table>

//This is the normal php code in order to display the artist information in a tabular format.

Finally the output would be as in following screen

lé& Artist Info -

€| http://localhost/njh-easyrdf-94a8ee5/examples/artistinfo.php?uri=hhttp %3A%2F %2Fwww.bbc.co.uk%e2Fmusic%2Fartists %2F70248)

File Edit View Favorites Tools Help

x Go gle v i’ Search ~ /|- &2 Translate ~ _/ AutoFil
<7 Favorites 95 €] Web Slice Gallery v

88|~ 1 & ArtistInfo X @8 http://www.bbc.co.uk/mu... ’7‘

4
Artist Info
1sic/artists/70248960-cb53-4ea4-943a-edb 18f7d336f rdf | Submit
Age62

‘Artist Name: lBruce Springsteen

Type: ‘mo-MusicArtist, mo-SoloMusicArtist

‘Homepage: |http;v".v"wsmv.brucespringsteen.netv"

‘Wikipedia page: Ihttp://en wikipedia org/wikiBruce Springsteen

The graph created can be seen by just echoing the following line
echo $graph->dump();

//This will just print the dump of the graph as in following screenshot.

ma‘c p lecahort 2% ; ey te ' 1 700 a9 4ok Hila-edk - | X T Googe p
x Google v P sench e & Transtate = sl - Moe» Sgnin X -
i Fovomes e v
sneinio X O Mg/ b0 ok B8 ® v Pagev Sleyr Toke @ &

hitp Awww BOC CO ukimusic/ansts/70248960.cb53-4ead-943a.ec 1817d336! 1of EasyRd_Resource)
=+ 15 Jabel = “Descrphon of he anst Bruce Spangsieen”
=+ foaf primaryTopsc = hitp www bbc 0o ukimusicanists/T0248060-cb53 4ead-943a-ecd 187d330Mantst

Bitp Awww bOC co ukimusicansts/T0248960-cb53-40a4-943a-0cb 187366 S! (Model_MusicAtist)
— 1A type — mo MusicAtit, mo SolMUSICAS! !
— foal rame — "Beuce Sprngsteen”
= hiip Sopen vocad orplems’sonlabel — "Spangsieen, Bruce®
=+ Dioevent = et
=+ foaf page = hitp www bbc co ukmusscianmsts/70248960.cb53-4ead. 943a.edd 187 d336! mi
=+ owl sameAs = hip idbpedia orgresourceBruce_Springsteen
= Momusicbeainz — hip Smusicbeainz oeg/artist T0245960-cb53 4ead-943a-cd 187d336 hemi
— MO IMage — hip istabic bbe co uumusicimages/ansts234x1 3270248960-cb53 4ead- 5432000 18178336 jpo
= foal homepage — HEp 'www brucesprngsioen ey
= mowiipedia — Mip len wikipeda ceg'wiki/Bruce_Springsteen
=+ MO AN = HIp Mwww e comnamenm(8 19803
=+ MOMYSPACe =+ MID Mwww MySpace ComBILCESpAngSieenestrest
=+ M0:s0cial_network = hitp Awww facebook combeucespringsteen
=+ mo:member_of = hitp www bt co ukimusiclanistsSa 128308 1d5-4700-5019-683ecaal2bebdartist
=+ hip fpurl orgvocabirelationship/spouseOf = http Awww bb co ukimusiclanssts09aa40c-bb 13 4ea2.a8d B0S6c265T a%amanst
—+ foafmade — _0id2, o3, _edd, _eidS, _eidd, _ed7, _eds

& Local intuwnet | Protected Mode O e RN~

The example above we have seen is just a simple example of easyrdf to show the way of building
up of the graph and parsing. It has lot of capabilities and functionalities which are defined in a
number of methods in each class, inturn in number of classes defined in the php library.

The easyRDF is also capable of converting the file into different formats. For example, given a
input RDF file, it can convert it into RDF/PHP, RDF/JSON Resource-centric, N-Triples, Turtle
terse RDF triple language, RDF/XML, Notation3.

Though easyRDF has lot of advantages, the major disadvantage of this is that it is not flexible
with the documents which have a large amount of data as it has to produce a big graph in which
the traversing through such a big graph reduces the performance of the code. And hence, it is
more flexible with small sized documents.

