

Report

On

AllegroGraph RDFStore

Submitted

By

Ruku Roychowdhury

Shagun Kariwala

CSC 8711

Database and the Web

Spring 2011

Table of content

• Introduction
• Allegrograph Features

o Installation instructions
o Allegrograph Architecture
o Allegrograph Database

• Allegrograph Triple Store
o Creating a Triple store
o Adding triples into Triple Store
o Retrieving triples
o Query on Triple Store
o Deleting Triples

• Gruff
• Recent Projects in AllegroGraph
• Conclusion
• References

Introduction :-

Semantic web technology aim to build websites with sufficient self describing data so that
computers can browse through them as easily humans can do.Allegrograph is a framework to
develop semantic web applications.It is a high performance Graph Database to store this data and
metadata in triple format. Allegrograph provides various query APIs to perform query on these
triples. It also has its own built in RDFS++ reasoner but it is not complete.Allegrograph can be
integrated to other powerful GUI based reasoner if more elaborated reasoning is required.

Installation :-
Allegrograph runs as a service. We have to install the server first and start the service. The latest
version of Allegrograph Server, Allegrograph Server 4 runs natively on Linux x86-64 bit
machine. It is advisable to to set up a Linux Virtual machine if we want to run it on other
Operating Systems (Windows or MAC). Allegrograph 3.3 can run on 64-bit Mac, Windows, and
Solaris, and all 32-bit systems.
Allegrograph server can work with a large variety of programming interfaces like Java, Common
Lisp and Prolog to name a few. Future editions of Allegrograph will also have interfaces for C#
and Ruby. In this project, we have explored various features of the Java API to create and operate
on triple strores.
Allegrograph also provides a GUI based browser called “GRUFF” which is very easy to use. The
details about it are discussed later.

Allegrograph Features :-
Allegrograph is a database for triple store.A triple can simply be described as three URIs. It can
be easily broken down into three parts.

o subject
o predicate
o object

As for example,

In the above mentioned example, the subject object and predicate can be classified as follows:-
subject predicate object
Mary Type Human
Allegrograph data store adds one more piece of information named Graph to the standard set of
subject, predicate and object. Graph is used to mention some additional useful information about
the triple such as the context of the triple. Graph is useful for fast if we break down the graph data
store into subgraphs. Allegrograph also appends an unique id with every triple.

 Mary

 Type

Human

Therefore, AllegroGraph actually stores quints. A triple in AllegroGraph contains 5 slots, the first
three being subject (s), predicate (p), and object (o). The remaining two are a named-graph slot
(g) and a unique id assigned by AllegroGraph. The id slot is used for internal administrative
purposes, but can also be referred to by other triples directly.

The W3C proposal is to use the 'named-graph' slot for clustering triples. So for example,
when loading a file with triples into AllegroGraph filename is used as the named-graph.
This way, if there are changes to the triple file, user just has to update those triples in the
named graph that came from the original file.

Federation:-

AllegroGraph supports queries with distributed databases. Multiple triple-stores, both
local and remote can be grouped into a single virtual store. It allows thread-safe opening
of multiple triple-databases from one application (for the read only parts of the database).
Queries over multiple databases are easy with direct data access from applications. It also
supports physical merging of databases.

Encoded Strings:-

All these are unique strings and it will be inefficient to store all the duplicated strings.
Allegrograph assigns a 12 byte unique identifier called a Unique Part Identifier(UPI) to each
unique string. The String Dictionary manages the association between the strings and UPI and
prevent duplication.These UPI also saves the time and IO overhead for string retrieval.

Triple Indices:-

AllegroGraph employs a set of sorted indices to search a contiguous block of triples that are
likely to match a specific query pattern.
These indices are identified by names that describe their organization. The default set of indices
are called spogi, posgi, ospgi, gspoi, gposi, gospi, and i, where:

• S stands for the subject URI.
• P stands for the predicate URI.
• O stands for the object URI or literal.
• G stands for the graph URI.

• I stands for the triple identifier (its unique id number within the triple store).

SPOGI Index

The order of the letters denotes how the index has been sorted. For example, the spogi index
contains all of the triples in the store, sorted first by subject, then by predicate, then by object, and
finally by graph. The triple id number is present as a fifth column in the index.
When we run a SPARQL query to find triples with a specific subject value, the spogi index find
all of the triples with that subject value as a block. This block is further sorted by predicate, so if
the predicate value is known we can immediately narrow the potential matches to a small range of
triples.

POSGI Index

To find unknown subjects that have a specific predicate and object value, AllegroGraph uses the
posgi index. All triples that have the same predicate are located together in that index, and are
then sorted by object value.

OSPGI Index
If only the object value is known, we can use the ospgi index. It is organized by object, and from
it we can rapidly retrieve the corresponding subject and predicate.

Graph Indices

The graph indices, gspoi, gposi, and gospi, are used when the triple store is divided into
subgraphs. If the subgraph value is known then we can immediately take out all of its triples and
then index by subject, predicate or object as needed.

I Index

The i index is special. It is simply a list of all triples sorted by id number. Its primary purpose is
to make triple deletion fast when triples are deleted by id. The id alone is sufficient to identify the
subject, predicate, object and graph values that let AllegroGraph delete the same triple from the
other indices. Without the i index, AllegroGraph has to scan the other indices line-by-line to find
the matching id numbers. This is very slow.
Triples can also be deleted by pattern-matching instead of id. That type of deletion is not
influenced by the i index.

The standard seven indices are enabled when a triple store is created. User can customize this set,
both by eliminating indices that his/her application will not use, and by requesting custom indices
that match his/her more unusual triple patterns.

• For example if his/her application does not use subgraphs, the indices beginning with "g"
will never be used. User can speed up indexing dramatically by eliminating these indices
from the system.

• As a second example, if the user have a pattern that asks what graphs contain resources
that are blue, he/shemight request a pogsi index which the system does not normally
provide. If the user knows that the predicate is "color" and the object is "blue," then the g
column of the pogsi index will contain a block of graph URIs that can be returned in one
operation to match this triple pattern.

Java Programming API:-

Allegrograph provides a very powerful Java API to interact with the triple store. It provides built
in methods for:-

• Creating a triple store
 Method Name: renew()
Create an instance that accesses an AllegroGraph triple store. If the triple store exists, it is
deleted and replaced with a new empty triple store.
Triple stores are created with the methods access(), create(), open(), renew(), and
replace().
Parameters:
Name: the name of the triple store or a pathname string that specifies the name and
location of the triple store. If the name argument is a pathname string then the directory
argument must be null.
Directory: the directory where the data base does or will reside. If this argument is a
non-null string, then the name argument must be a simple name.
If the operation implies the deletion of a triple store, the entire directory is deleted.

• Bulk Load the triple store from any RDF/NTriple file

Method Name: loadNtriples()
Load a file of triple declarations. The triples are added in the null context of the triple
store.
Parameters:
Name: A string that specifies the source of the triple declarations. This can be a file
pathname or a file URI or a web URI. The data must be in the Ntriples format expected
by the AllegroGraph server. All file pathnames are relative to the pathname defaults in
the server. The file environment of the client application is irrelevant.

• Add triples to the triple store
Method Name: addStatement()
Add a Statement in the null context to the triple store.
Parameters:
Subject: Specifies subject of the triple
Predicate: Specifies predicate of the triple
Object: Specifies object of the triple

• Retrieve all triples from triple store

Method Name:getStatements()
Retrieve null context/graph statements from the triple store if we provide null for every
parameter.
Parameters:
subject
predicate
object

• Retrieve a set of triples based on some condition
getStatements()
Retrieve all statements from the triple store which matches the subject, predicate,object
values passedin the parameters.
Parameters:
Subject: Specifies subject of the triple we want to retrieve
Predicate: Specifies predicate of the triple we want to retrieve
Object: Specifies object of the triple we want to retrieve

• Delete triples from triple store
Method Name: removeStatement()
Remove all statement that match a pattern in the null context of the triple store.

Parameters:
s the subject pattern (Value, UPI, string, or array of same)
p the predicate pattern (Value, UPI, string, or array of same)
o the object pattern (Value, UPI, string, or array of same)
The s, p, or o, arguments may also be null or an empty string to denote a wild card.
Returns:
The number of triples deleted.

• Close triple store
 Method Name: closeTripleStore()

Close an AllegroGraph instance. Since many other users may be using this same triple
store, closing the AllegroGraph instance does not actually close the triple store but only
synchronizes the store and invalidates this access instance unless this is the only instance
accessing the store.

• Psedocode for Querying Triple Store:-
 String query =

 "SELECT ?s ?p ?o WHERE { ?s ?p ?o } ";

 // Query the store and show the results
 SPARQLQuery sq = new SPARQLQuery();
 sq.setTripleStore(ts);
 sq.setQuery(query);
 AGSparqlSelect.doSparqlSelect(sq);

Gruff

Gruff is an interactive triple-store browser, query manager, and editor that is built on
AllegroGraph. Information can be browsed as visual graphs of nodes and link lines that are layed
out automatically, and also as tables of properties for particular nodes. Queries can be written
textually as SPARQL or Prolog code, or designed graphically as diagrams of nodes and link lines.
Data can be created and edited by filling in tables of property values. The various views and tools
are tightly integrated to facility rapid browsing, querying, and editing.

Fig 1: Graphical view of GRUFF

The graph view displays a "visual graph" of a subset of the nodes and links that are in the
store that you are currently browsing as shown in Fig. 1. The nodes are automatically
arranged (or "layed out") to make the relationships readable. A node in the graph view is
a labeled box that represents a resource or literal in the store. A link is a straight line
segment between two nodes that represents one or more of the triples that link those
nodes.

Fig. 2 Table view in GRUFF

The table view displays a table of all of the properties of a single node, which is known
as "the displayed node" as shown in Fig. 2. You can browse from that node to linked

nodes in the usual hyperlink way, and edit the property values. Each row of the table
represents a single triple that's in the store.

Fig. 3 Graphical Query view in GRUFF

The query view displays a view where you can do a SPARQL or Prolog query (as shown
in Fig. 3 and see the results in a table. Nodes in the results table can then be viewed in
detail in the table view, or added as nodes to the graph view. To do a query, first decide
whether you want to do a SPARQL query or a Prolog query, and select the corresponding
radio button at the upper left.

The graphical query view allows devising a query "visually" as a diagram. This is done
by arranging node boxes and link lines that represent triple patterns in the query, where
the triples patterns can contain variables as well as actual objects that are in the store.
General and specialized filters can be specified as well. A SPARQL or Prolog query can
then be automatically generated from the diagram and executed as usual in the query
view.

Fig. 4 Result returned by SPARQL query in GRUFF

It generates the text query as can be seen in Fig.4 in the top text area.

Recent Projects in Allegrograph:-

Allegrograph is used in many commercial, Open Source, Defense projects as a datastore.
Some of the significant ones are:-

1. DBPedia Germany

DBpedia is a community effort to extract structured information from Wikipedia
and to make this information available on the Web as Linked Data. DBPedia
Deutschland is the German part of DBPedia. It extracts structured information from
Wikipedia (Deutschland) and makes this information available on the Linked Date
Web. DBPedia Deutschland is a joint project of the research group AKSW, lead by
Dr. Soeren Auer at the University of Leipzig, and the research group Corporate
Semantic Web, lead by Prof. Dr. Adrian Paschke at the Freie Universitaet Berlin.It
comprises over 100 million facts extracted from Wikipedia Deutschland. This allows
machines answering questions, such as "Which impressionists are born in Berlin?" or
"Which chemical elements are contained in the periodic table?” DBPedia
Deutschland runs an AllegroGraph triple store.

2. GenomeWeb

This project was an initiative of Pfizer to serve as a "real-world example" of semantic technology in the
pharmacy setting.

3. TweetLogic

TweetLogic is a project to bring the Semantic Web concept to Tweeter Data.
Allegrograph is also the storage component for this project.

Conclusion:-

AllegroGraph uses disk-based storage, enabling it to scale to billions of triples while
maintaining high performance through indices. AllegroGraph supports SPARQL,
RDFS++, and Prolog reasoning from Java applications. It has wide range of
programming APIs to work with many different languages like Java, Python, Lisp,
Prolog to name a few. Visual editors like GRUFF makes it easy for beginners to
interact with the tool and makes data retrieval more pleasant.

References:-

• http://www.franz.com/agraph/services/conferences_seminars/Franz_Webinar_6-12-08.pdf
• http://www.franz.com/agraph/allegrograph/doc/server-installation.html -
• http://www.franz.com/agraph/support/documentation/v4/java-tutorial/java-tutorial-40.html
• http://www.franz.com/agraph/support/learning/
• http://www.franz.com/agraph/allegrograph/doc/learning/Building-in-Eclipse.html
• http://www.franz.com/agraph/allegrograph/doc/learning/index.html
• http://en.wikipedia.org/wiki/AllegroGraph
• http://www.iscb.org/cms_addon/conferences/cshals2009/presentations/GudivadaCFeb09.pdf
• http://jp.franz.com/base/seminar/2006-07-24/AllegroGraph-presentation-July06.pdf
• http://www.semantic-web-journal.net/content/new-submission-racerpro-knowledge-representation-

and-reasoning-system
• http://www.snee.com/bobdc.blog/2009/04/getting-started-with-allegrogr.html

	SPOGI Index
	POSGI Index
	Graph Indices
	I Index

