
 CSc 8711 Report: OWL API

 Syed Haque
 Department of Computer Science
 Georgia State University
 Atlanta, Georgia 30303
 Email: shaque4@student.gsu.edu

Abstract: The Semantic Web is an extension of human-readable webpages towards
making them machine processable so that software agents can be deployed on the web to
intelligently perform automated tasks in place of users. Semantic Web makes use of
technology which includes Resource Description Framework (RDF) , RDF Schema ,
Web Ontology Language (OWL) and other data interchange formats to define concepts,
relationships in a given knowledge domain. Web Ontology Language (OWL) is one of
the knowledge representation language for creating, manipulating and processing
ontologies and is a W3C recommendation since May, 2004. This report is a study of the
OWL API a java based API for semantic web ontologies. The WonderWeb group [6]
produced the initial implementations of the API and the current development is supported
by the CO-ODE group [7] which also provides the Protégé tool development.

History: The history of OWL can be traced back to two independent works DAML-
ONT and OIL. OIL was a frame-based language developed by group of European
researchers with RDFS based syntax and semantics described in terms of Descriptive
Logics. DAML-ONT was developed largely by US based researchers which extended
RDFS with constructs from object-oriented language and frame-based languages. The
problems with DAML-ONT included problems with both human and machine
interpretation. DAML+OIL language came into being with the merging of OIL and
DAML-ONT which had a RDFS syntax based on Descriptive Logic. DAML+OIL was
submitted to W3C for standardization which led to the Web Ontology Language (OWL).

Ontology in Computer Science: An ontology is defined as an engineering artifact
constituted by a specific vocabulary used to describe a certain reality and a set of explicit
assumptions regarding the intended meaning of the vocabulary. Thus an ontology
describes a formal specification of a certain domain that allows for shared understanding
of a domain of interest and formal and machine manipulable model of a domain of
interest. Ontology represents knowledge in terms of concepts defined by classes,
properties and individuals and a set of axioms that assert how those concepts are to be
interpreted. The building of a semantic web requires following : i) Annotation –
Associating metadata with resources ii) Integration – Integrating information sources iii)

Inference – Reasoning over the information we have iv) Infrastructure - Could be light-
weight or Could be heavy-weight v) Interoperation and Sharing are key goals

Semantics and Languages: Semantic Web is based on frame based modeling
approaches that describes concepts in terms of classes, slots, fillers. The language
constructs is derived from RDF, RDF(S) and includes logical foundation through which
well-formed inference can be derived. The increased formality makes languages more
amenable to machine processing. The formal semantics provides an unambiguous
interpretation of the descriptions and well defined semantics are vital to support machine
interpretability and to remove ambiguities in the interpretation of the descriptions. The
work on Semantic Web has concentrated on the definition of a collection or “stack” of
languages namely XML, RDF, RDF(S), OWL. These languages provide basic machinery
that we can use to represent the extra semantic information needed for the Semantic Web.

OWL API Philosophy and Abstract Syntax: There are three variations of
OWL existing currently: OWL Full, OWL DL and OWL Lite . The OWL API is targeted
primarily at representing OWL-DL. An Ontology is represented as a collection of axioms
that assert information about the classes, properties and individuals that are in the
ontology. The API is build with the philosophy that a higher level data model can help to
insulate us from the vagaries of concrete syntax, make it clear what is happening in terms
of functionality, increase the likelyhood of interoperating applications and make it easy
to write code spotting “internal errors”. The OWL abstract syntax provides a definition of
the language in terms of the constructs and assertions allowed. Semantics are then defined
in terms of this abstract syntax. OWL API data model is based largely on this abstract
syntax presentation.

OWL API Implementation: The OWL API implementation includes the following
functionalities on an ontology: i) Modeling – A set of data structures to represent OWL
ontologies/documents ii) Parsing - Taking some syntactic presentation, e.g. OWL-RDF
and converting it to some (useful) internal data structure iii) Serializing - Producing a
syntactic presentation, e.g. OWL-XML from a local data structure iv)
Manipulation/Change - Being able to manipulate the underlying objects v) Inference -
Providing a representation that implements/understands the formal semantics of the
language. The API provides classes to create, manipulate, parse, render and reason about
those structures. The model data structures provide representations of the basic building
blocks.The basic data structure represents the objects in the ontology and corresponds
roughly to the abstract syntax of OWL.

OWL Classes: OWL allows to describe a domain in terms of individuals, classes and
properties and a collection of axioms describing how these classes, individuals, properties
etc. should be interpreted. Some of the important classes in the API are :-

i) OWLOntology - An OWLOntology represents an ontology and consists of a
collection of OWLAxioms. The OWLOntology provides an explicit context
within which we can assert information about classes and properties

ii) OWLEntity - OWLEntity is the fundamental building block of the ontology
classes, properties, individuals and datatypes.

iii) OWLClass – OWLClass represents an OWL Class. The class itself is a
lightweight object and axioms relating to the class are held by an
OWOntology object

iv) OWLProperty – OWLProperty is the base class for OWLObjectProperty and
OWLDataProperty. Properties can have associated domains and ranges.

v) OWLObjectProperty - Represents an Object Property that can be used to
relate two individuals.

vi) OWLDataProperty - Represents an Object Property that can be used to relate
an individual to a value.

vii) OWLAxiom – OWL Axiom class contains a collection of OWLAxioms
namely Annotation Axioms, Declaration Axioms, Import Axioms, Logical
Axioms

The API also provides a collection of interfaces for inference services over the ontology
model:-

i) OWLClassReasoner – Checks for class satisfiability
ii) OWLConsistencyChecker – Checks for Ontology consistency
iii) OWLIndividualReasoner - Reasoning about individuals
iv) OWLPropertyReasoner - Reasoning about properties

The Reasoner implementation is not a part of the OWL API but the API can make use of
the following reasoner implemenatations:-

i) Pellet , Hermit – Pure Java implementation and implements OWL API
reasoner interfaces

ii) FaCT++ - C++ Implementation that acts as OWL API wrapper implementing
OWL API interfaces.

iii) Debuggers – Reside on top of reasoner

Ontology Management: The Management and creation of ontologies is controlled
by an OWLOntologyManager class object. This replaces OWLConnection/OWLManager
in the original OWL 1.1 implementation. The Manager is responsible for keeping track of
the ontologies and concrete formats for storage of the ontologies.

Pseudo-Code Examples:

1) The following code snippet shows loading of an ontology using a logical URI by
creating a mapping of logical URI and physical URI :-

//create OntologyManager object for working with ontologies
OWLOntologyManager manager = OWLManager.createOWLOntologyManager();
//Logical URI
IRI ontologyIRI = IRI.create("http://www.test.com/ontologies/testont.owl");
//Physical URI

IRI documentIRI = IRI.create("file:/C:/Users/Syed/Desktop/animal.owl");
//Create a mapping for logical and physical URI using SimpleIRIMapper class object
SimpleIRIMapper mapper = new SimpleIRIMapper(ontologyIRI, documentIRI);
manager.addIRIMapper(mapper);

2) The following pseudo-code shows how to create a class in the ontology:-

//Create a OWLDataFactory object that actually contains reference to all entities in an
ontology namely classes, individuals, properties
OWLDataFactory factory = manager.getOWLDataFactory();
//Create a class using the OWLDataFactory object
OWLClass animal = factory.getOWLClass(IRI.create(ontologyIRI + "#animal"));

Or use a PrefixManager class create a class

PrefixManager pm = new DefaultPrefixManager("://www.test.com/ontologies/testont.owl
#");
OWLClass animal = factory.getOWLClass(":animal", pm);

3) The following pseudo-code creates an axiom that specifies one class as the subclass of
another:-

//Create two classes
OWLClass animal = factory.getOWLClass(IRI.create(ontologyIRI + "#animal"));
OWLClass herbivore = factory.getOWLClass(IRI.create(ontologyIRI + "#herbivore"));

//Create the subclass axiom
OWLAxiom axiom1 = factory.getOWLSubClassOfAxiom(herbivore,animal);

//Save the axiom in the ontology by using applyChange() method of
OWLOntologyManager
AddAxiom addAxiom1 = new AddAxiom(ontology, axiom1);
manager.applyChange(addAxiom1);

4) The following pseudo-code shows an ObjectProperty axiom :-

PrefixManager pm = new
DefaultPrefixManager("http://www.test.com/ontologies/testont.owl");

//Create two individuals of the class
OWLIndividual lion = dataFactory.getOWLNamedIndividual(":lion", pm);
OWLIndividual cow = dataFactory.getOWLNamedIndividual(":herbivore", pm);

//Create the object property eats
 OWLObjectProperty eats = dataFactory.getOWLObjectProperty(IRI.create(animal +
"#eats"));

//Create the ObjectPropertyAssertionAxiom
 OWLObjectPropertyAssertionAxiom axiom1 =
dataFactory.getOWLObjectPropertyAssertionAxiom(eats, lion, cow);
 manager.addAxiom(animal,axiom1);

5) The following pseudo-code shows how to create DataTypeProperty axiom :-

//Create a typed datatype object(of type integer)
OWLDatatype integer = dataFactory.getIntegerOWLDatatype();

//Create an untyped datatype
OWLLiteral hundred = dataFactory.getOWLLiteral(100);

//Create a MIN_INCLUSIVE restriction on a typed datatype
OWLDatatypeRestriction range = dataFactory.getOWLDatatypeRestriction(integer,
OWLFacet.MIN_INCLUSIVE, hundred);

//Create a OWLDataProperty object
OWLDataProperty tall = dataFactory.getOWLDataProperty(IRI.create(animal + "#tall"));

// Create the restriction and save it
OWLDataPropertyRangeAxiom axiom2 =
dataFactory.getOWLDataPropertyRangeAxiom(tall,range);
 manager.addAxiom(animal,axiom2);
 manager.saveOntology(animal);

6) The following pseudo-code shows a Hermit reasoner in action in OWL API. The
reasoner checks if the ontology is consistent or not

//Create a OWLReasonerFactory object
OWLReasonerFactory reasonerFactory = new Reasoner.ReasonerFactory();

//Reasoner progress monitor object
ConsoleProgressMonitor progressMonitor = new ConsoleProgressMonitor();

// Create a configuration object for the reasoner to be created
OWLReasonerConfiguration config = new SimpleConfiguration(progressMonitor);

//Create a reasoner object
 OWLReasoner reasoner = reasonerFactory.createReasoner(animal,config);
reasoner.precomputeInferences();
//Check if ontology is consistent or not
boolean consistent = reasoner.isConsistent();
//Print the result

 System.out.println("Consistent: " + consistent);

Conclusion: The OWL API has no native support for SPARQL. However, a Jena
model can be created with the contents of an OWLAPI reasoner so SPARQL query
answering can be done on the Jena model. OWLAPI reasoner and Jena model can be
queried together but all updates should be done on the OWLAPI ontology. Semantic Web
as originally envisioned, a system that enables machines to understand and respond to
complex human requests based on their meaning, has remained largely unrealized but it is
expected to grow in the coming years.

References:

[1] http://owlapi.sourceforge.net/index.html
[2] http://en.wikipedia.org/wiki/Semantic_Web
[3] http://www.w3.org/2007/OWL/wiki/Document_Overview
[4] http://sourceforge.net/projects/owlapi/
[5] http://owl.man.ac.uk/api/readme.html
[6] http://wonderweb.semanticweb.org/
[7] http://www.co-ode.org/
[8] http://hermit-reasoner.com/

