DBPEDIA.ORG

APRIL 22ND, 2011 - MATT HARBERS

OUTLINE

- DBPedia:
 - o What is it?
 - o How's the data structured?
 - o Where does the data come from?
 - Accessing the data
- Query Examples

DBPEDIA.ORG

- Community whose goal is to provide web based information from Wikipedia data
- Allows users to ask sophisticated questions
- Links data sets together across the web
- Describes more than 3.5 million things which are broken down into categories
 - o People
 - Places
 - Music Album
 - o Films
 - Video games
 - Organizations
 - Species
 - Diseases
 - etc

WHAT KIND OF DATA?

- Dataset is represented in a cross-domain ontology that was manually created by members of the community
- 272 classes based on information in Wikipedia infoboxes
 - o organized in hierarchy under "owl:Thing"
 - infoboxes are grey "summary" boxes in top right of Wikipedia pages
- Organization of classes:
 - Means of Transportation parent of:
 - aircraft, ship, automobile, etc
 - Event parent of:
 - music festival, military conflict, convention, etc.

STRUCTURE OF DATA

- OWL ontology describing all classes
- Data must be mapped from Wikipedia to DBpedia
 - o data from Wikipedia not stored in standardized way
 - creation of data and properties decentralized by many users.
 - o eg.

 birthplace & placeofbirth property names same data

STRUCTURE OF DATA (CONTD)

Example of class ontology:

- Support for multiple languages
- "Person" is one level below root.
- Mapping to FOAF makes machine-readable
- Ontology Classes
- http://dbpedia.org/ontology/Persor

STRUCTURE OF INSTANCE

```
chttp://dbpedia.org/resource/Aristotle> <http://dbpedia.org/ontology/deathPlace> <http://dbpedia.org/resource/Chalcis> .
chttp://dbpedia.org/resource/Aristotle> <http://dbpedia.org/ontology/birthPlace> <http://dbpedia.org/resource/Stageira> .
chttp://dbpedia.org/resource/Aristotle> <http://purl.org/dc/elements/1.1/description> "Greek philosopher"@en .
chttp://dbpedia.org/resource/Aristotle> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://xmlns.com/foaf/0.1/Person> .
chttp://dbpedia.org/resource/Aristotle> <http://xmlns.com/foaf/0.1/name> "Aristotle"@en .
```

- Instance Property description of "Person"
- Subject, predicate, object
- Predicates/Objects can be DBpedia defined (deathPlace) or standards defined (foaf)
- Objects can be literal values ("Greek Philosopher")
- Objects can be DBPedia/Standards defined:
 - o foaf/Person
 - o DBpedia defined

RELATIONSHIPS

- Resources may reference other resources by relationships
- Relationships can be represented as edges in a large web of data
- You can follow these relationships to other resources

RELATIONSHIP EXAMPLES

(http://www.visualdataweb.org/relfinder/relfinder.php):

RelFinder -

Viewable Relationships:

- Porsche, Volkswagen, Allan McNish, Audi

- Physics, Albert Einstein, Literature (then + Barack Obama)

- George Clooney, O Brother, Where Art Though + John Turturro (start clicking on classes)

Wikipedia Data

- Most Wikipedia data is unstructured
- infobox templates, categorization information, images, geo information, and external url links are structured, however

```
{{Infobox Town AT |
  name = Innsbruck
  image_coa = InnsbruckWappen.png |
  image_map = Karte-tirol-I.png |
  state = [[Tyrol]]
  regbzk = [[Statutory city]] |
  population = 117,342 |
  population_as_of = 2006 |
  pop_dens = 1,119 |
  area = 104.91
  elevation = 574
  lat_deg = 47
  lat min = 16
  lat_hem = N |
  lon_deg = 11
  lon min = 23
  lon_hem = E |
  postal_code = 6010-6080 |
  area_code = 0512 |
  licence = I |
  mayor = Hilde Zach
  website = (http://innsbruck.at) |
}}
```


Wikipedia Data Gathering

- DBpedia gathers data using an automated extractor
 - o pulls all infobox data from all articles in Wikipedia
 - o pulls multiple languages
- Very little clean-up is done to the data
 - o "June 2009 changed to 2009-06"
 - xml friendly
- Downside:
 - o over 8000 property types exist
- Mapping of Wikipedia Infoboxes to DBpedia classes is done by hand to correct weaknesses the Wikipedia model
 - more than 1 infobox may exists for the article

ACCESSING DATA

- Browse Data:
 - o either looking through RDF manually
 - o using tool like RelFinder
 - hard to get value
- Third Party Tools:
 - use underlying SPARQL queries
 - Display search results in html format with to resource information
 - SPARQL queries require an intimate of data set
 - Not practical for a wide web use

QUERY EXAMPLES

```
DBpedia SPARQL (http://dbpedia.org/snorql/):
All "Things" about Atlanta:
SELECT * WHERE {
   <a href="http://dbpedia.org/resource/Atlanta">http://dbpedia.org/resource/Atlanta</a> ?p ?o .
   FILTER (LANG(?o)='en').
```

QUERY EXAMPLES (SPARQL)

People who were born in Germany before the year 1800, but died in Paris:

PREFIX dbo: http://dbpedia.org/ontology/>

```
SELECT * WHERE {
  ?person dbo:birthDate?birth.
  ?person dbo:deathPlace :Paris.
  ?person dbo:birthPlace:Germany.
  ?person foaf:name ?name.
  ?person rdfs:comment ?description.
  FILTER (LANG(?description) = 'en').
  FILTER (?birth < "1800-01-01"^^xsd:date)
ORDER BY ?name
```

QUERY EXAMPLES (SPARQL)

```
Schools within 10km of Atlanta:
SELECT DISTINCT ?Link ?SchoolName ?EstablishedDate ?lat ?long
WHERE
  <a href="http://dbpedia.org/resource/Atlanta">http://dbpedia.org/resource/Atlanta</a> geo:geometry?sourcegeo.
  ?resource geo:geometry?matchgeo.
  ?resource geo:lat ?lat.
  ?resource geo:long?long.
  FILTER (bif:st_intersects (?matchgeo, ?sourcegeo, 5)).
  ?Link?somelink?resource.
  ?Link <a href="http://dbpedia.org/property/established">http://dbpedia.org/property/established</a> ?Established
  ?Link rdfs:label ?SchoolName.
  FILTER (lang (?SchoolName) = "en")
order by ?SchoolName
```

THIRD PARTY TOOLS

- Third Party Search Engines:
 - Text based searching
 - Facet based searching
 - Similar to Web Stores "filtering" results.
 - can also use text searching
 - Very powerful method of searching

QUERY EXAMPLES

Faceted Searching: (http://dbpedia.neofonie.de/browse)

Large High Elevation Cities

SUMMARY

- Very powerful and meaningful results are produceable
- · Relies heavily on crowd sourcing data and manual mapping
 - categorization of classes, wiki to dbpedia mapping, error correction.
- Data needs to be pre-formatted and stored in a place where accessing the data set is fast. (too big to cache)
- Error in data set makes searching difficult

Questions?

