
OWL: abstract syntax

For details see http://www.w3.org/TR/owl-semantics/syntax.html#2.3.2.1

Ontology Languages 1

http://www.w3.org/TR/owl-semantics/syntax.html#2.3.2.1


Classes: primitive vs. defined

descriptions definitions
Class(name partial ...) Class(name complete ...)

‘all name ...’ ‘a name is anything that ...’

primitive concepts defined concepts

v ≡

Example:

Class(MargheritaPizza partial
Pizza
restriction(hasTopping

someValuesFrom(Mozzarella))
restriction(hasTopping

someValuesFrom(Tomato)))

Class(CheesyPizza complete
Pizza
restriction(hasTopping

someValuesFrom(Cheese)))

‘All Margherita pizzas have, amongst
other things, some mozzarella topping

and also some tomato topping’

‘A cheesy pizza is any pizza that has,
amongst other things,

some cheese topping’

Ontology Languages 2



Classes: disjointness

PizzaTopping

– Vegetable
– Tomato
– Pepper
– Mushroom

– Meat
– SpicyBeef
– Pepperoni

– Seafood
– Tuna
– Prawn
– Anchovy

– Cheese
– Mozzarella
– Parmesan

“What does such a hierarchy actually mean?”

In OWL, classes are overlapping until
disjointness axiom is entered:

DisjointClasses(class1 ... classn)

Example:

DisjointClasses(
Vegetable Meat Seafood Cheese)

Ontology Languages 3



Property restrictions

existential universal

restriction(prop
someValuesFrom(class))

restriction(prop
allValuesFrom(class))

‘some’, ‘at least one’ ‘only’, ‘no value except’

.

.

∃
.

.

∀
Example:

Class(DogOwner complete
Person
restriction(hasPet

someValuesFrom(Dog)))

‘A dog owner is any person who
has as a pet some dog’

Class(FirstClassLounge complete
Lounge
restriction(hasOccupants

allValuesFrom(FirstCPassenger)))

‘A first class lounge is any lounge where
the occupants are

only first class passengers’

‘A first class lounge is any lounge where
there are no occupants except

first class passengers’
Ontology Languages 4



Property restrictions (cont.)

existential universal

.

.

∃
.

.

∀
Example:

Class(DogOwner partial
Person
restriction(hasPet

someValuesFrom(Dog)))

‘Dog owners are people
and have as a pet some dog’

Class(FirstClassLounge partial
Lounge
restriction(hasOccupants

allValuesFrom(FirstCPassenger)))

‘All first class lounges have
only occupants who are

first class passengers’

‘All first class lounges
have no occupants except

first class passengers’

‘All first class lounges
have no occupants who are

not first class passengers’
Ontology Languages 5



Boolean combinations

union (disjunction) intersection (conjunction)

unionOf(class1 . . . classn) intersectionOf(class1 . . . classn)

‘class1 and/or class2’ ‘both class1 and also class2’

.

.

t
.

.

u
Example:

Class(VegetarianPizza complete
Pizza
restriction(hasTopping

allValuesFrom(
unionOf(Vegetable Cheese))))

‘A vegetarian pizza is any pizza which,
amongst other things, has

only vegetable and/or cheese toppings’

Class(ProteinLoversPizza complete
Pizza
restriction(hasTopping

allValuesFrom(
intersectionOf(Meat Seafood))))

‘A protein lover’s pizza is any pizza that,
amongst other things, has only toppings

that are both meat and also seafood’

NO topping is
both meat and also seafood !
(therefore, the intersection is empty)Ontology Languages 6



Boolean combinations (cont.)

complementOf(class)
.

.

¬

• complementOf(intersectionOf(class1 class2))
— ‘not all of’ / ‘not both class1 and also class2’

• complementOf(unionOf(class1 class2)) — ‘neither class1 nor class2’

• restriction(prop someValuesFrom(complementOf(class)))
— ‘has some prop that are not class’

• complementOf(restriction(prop someValuesFrom(class))))
— ‘does not have any prop that are class’

• restriction(prop allValuesFrom(complementOf(class)))
— ‘has prop no class’ / ‘has only prop that are not class’

• complementOf(restriction(prop allValuesFrom(class))))
— ‘does not have only prop that are class’

Ontology Languages 7



Cardinality constraints

restriction(prop
minCardinality(n))

restriction(prop
maxCardinality(n))

‘at least n (distinct) prop’ ‘at most n (distinct) prop’

.

.

>
.

.

6
Example:

Class(InterestingPizza complete
Pizza
restriction(hasTopping

minCardinality(3)))

‘An interesting pizza is any pizza that,
amongst other things, has

at least 3 (distinct) toppings’

Class(Pizza partial
restriction(hasBase

maxCardinality(1)))

‘Any pizza, amongst other things,
has at most 1 pizza base’

Ontology Languages 8



Object properties

ObjectProperty(name ... domain(classD) range(classR))

Domain and range constraints are actually axioms:

range domain

Class(owl:Thing partial
restriction(name

allValuesFrom(classR)))

SubClassOf(restriction(name
someValuesFrom(owl:Thing))

classD)

‘All things have no name except classR’ ‘Having a name implies being classD’

Ontology Languages 9



Object properties: domain constraints

ObjectProperty(hasTopping
domain(Pizza))

‘Having a topping implies being pizza’

Consider now ice-cream cones:

Class(IceCreamCone partial
restriction(hasTopping

someValuesFrom(IceCream)))

‘All ice-cream cones,
amongst other things,
have some ice-cream topping’

NB: if ice-cream cone is disjoint from pizza
then the definition of ice-cream cone is inconsistent

otherwise ice-cream cone will be classified as a kind of pizza

Ontology Languages 10



Examples:

Ontology Languages 11



Bus Drivers are Drivers

Class(Driver complete
Person
restriction(drives

someValuesFrom(Vehicle)))

‘A driver is any person that
drives a vehicle’

Class(Bus partial Vehicle) ‘All buses are vehicles’

Class(BusDriver complete
Person
restriction(drives

someValuesFrom(Bus)))

‘A bus driver is any person that
drives a bus’

So, a bus driver must be a driver: BusDriver v Driver

(the subclass is inferred due to subclasses being used in existential quantification)
Ontology Languages 12



Drivers are Grown-ups

Class(Driver complete
Person
restriction(drives

someValuesFrom(Vehicle)))

‘A driver is any person that
drives a vehicle’

Class(Driver partial Adult) ‘Drivers are adults’

Class(GrownUp complete
Person Adult)

‘A grown up is any person that is an adult’

So, all drivers must be adult persons (grown-ups): Driver v GrownUp

(an example of axioms being used to assert additional necessary information about a class;
we do not need to know that a driver is an adult in order to recognise one,

but once we have recognised a driver, we know that they must be adult)
Ontology Languages 13



Cat Owners like Cats

Class(CatOwner complete
Person
restriction(hasPet

someValuesFrom(Cat)))

‘A cat owner is any person that
has a cat as a pet’

SubPropertyOf(hasPet likes) ‘Anything that has a pet
must like that pet’

Class(CatLover complete
Person
restriction(likes

someValuesFrom(Cat)))

‘A cat-lover is any person that
likes a cat’

So, a cat owner must like a cat: CatOwner v CatLover

(the subclass is inferred due to a subproperty assertion)

Ontology Languages 14


