Ch. 4 Query rmsm:@mmm_

4.1 Path Expressions
Semistructured Data Model: edge-labeled graph
Path Expression: 11.12. ... 1n a sequence of edge labels
A path expression may be viewed as a simple query whose
result is a set of nodes in the edge-labeled graph where
the path expression ends.
Consider the data in Figure 4.1 (Page 56)

biblio.book results in the set of nodes {nl, n2}

biblio.book.author results in the nodes associated
with the strings: {"Combalusier", "Roux", "Smith"}

In general, the result of the path expression 11.12.1n
on a data graph is the set of nodes vn such that there exists
edges (r,11,v1), (vi,12,v2), ..., (vn-1,1n,vn) where r is the root.
The path expressions can be expressed in terms of some properties
they satisfy; To accomplish this, we use Regular Expressions
(both on the alphabet of edge labels and on the alphabet of
characters that form the edge labels) to describe such properties.
ex. biblio.(book | paper).author
-- biblio followed by book or paper followed by author
biblio._.author

—-- biblio followed by any one edge followed by author

biblio._*.author

-- biblio followed by zero or more edges followed by author

The general syntax for regular expressions on paths is
_lee | (e) | (ele) | ex | e+ | e7

To specify more complex label patterns, we use grep patterns,
for example

((slS)ection|paragraph) (s)?

matches any one of six patterns:
section, Section, sections, Sections, paragraph, paragraphs

To avoid ambiguity between regular expressions for labels

and those for path expressions, the regular expressions on
labels are enclosed within quotes:

biblio._*.section. ("[tT]itle" | paragraph.".*heading.*")

matches any path that starts with a biblio label and ends
with a section label followed by either title or Title edge

or paragraph edge followed by an edge whose label contains
the string "heading"

For data graphs that have cycles in them, it is possible to
specify path expressions of arbitrary length. For example,

cities.state-of.capital.state-of.capital.state-of

4.2 A Core Language

Path expressions produce as their result a set of
nodes of the Data Graph.

They cannot produce semi-structured data
(which requires joining ability).

Query language features will be necessary for this.

4.2.1 The Basic Syntax

based on OQL (Object Query Language)
% Query ql
select author: X

from biblio.book.author X

computes the set of book authors and forms a
ssd-expression out of the nodes:

{author: "Roux", author: "Combalusier", author: "Smith"}

% Query g2

select row: X

from biblio._ X

where "Smith" in X.author

computes the answer:

{row: {author: "Smith", date: 1999, title: "Database Systems"},
+

The "in" predicate tests for set membership.
Here X.author is a path expression whose root is taken to

be the node represented by X.

Assume a matches predicate exists which matches
strings to regular expressions.

The following query collects all authors of publications
whose title consists of the word "database".

select author:Y
from biblio._ X,
X.author Y,
X.title Z
where matches(".*x(D|d)atabase.*", Z)

Semantics of query

select E from B where C

Step 1:

Step 2:

Step 3:

Find the set of all bindings of the variables

that appear in B (assume 3 variables X, Y, Z)

Each binding maps the variables to oids in the
data graph.

Filter the bindings that satisfy C; Let the resulting
set of bindings be (x1,y1,z1), ..., (xn,yn,zn)

Construct the ssd-expression
{ E(x1,y1,z1), ..., E(xn,yn,zn) } where
E(xi,yi,zi) denotes the expression E in which the

variables X, Y, Z are replaced by xi, yi, zi

Some queries create more than one new node:

select row: { title:Y, author:Z}
from biblio.book X, X.title Y, X.author Z

The result will be constructed as follows:

{ row: {title:yl, author:zil}, ...,
row: {title:yn, author:zn} }

Another means of creating many new nodes is by
nesting subqueries in the select clause.

% Query g3
select row: (select author: Y

from X.author Y)
from biblio.book X

The output of this query is:

{row: {author: "Roux", author: "Combalusier"},
row: {author: "Smith"}}

See Figure 4.1 (d) for a graphical representation

of the query output; Compare with 4.1 (b), answer to query ql.

Another nested-select query.

% Query q4
select row: (select author:Y, title: T
from X.author Y, X.title T)
from biblio.book X
where "Roux" in X.author

Output of qg4:

{row: {author: "Roux", title: "Database Systems"},
row: {author: "Combalusier", title: "Database Systems"}}

shown in graphical form in Figure 4.1 (e)

Join Examples:
ri(a,b) 1r2(b,c)

{r1: {row: {a:1, b:2}, row: {a:1, b:3}},
r2: {row: {b:2, c:4}, row: {b:2, c:3}} }

project(a,c) (rl join r2)

% Query q-join

select a:A, c:C

from rl.row X, r2.row Y, X.a A, X.b B, Y.b B’, Y.c C
where B=B’

Observation: If multiple B values were allowed in rl and r2,
join will take place if the two sets of B values in the

rows have at least one common value.

Another Join example:

Get authors who are referred to at least twice in some
paper with "Database" in the title.

select row: W
from biblio.paper X, X.refers-to Y,
Y.author W, X.refers-to Z
where NOT (Y=Z) and
W in Z.author and
matches(".*Database.*", X.title)

4.3 More on Lorel (Lore Language; Query Language for Lore)
Lore: Lightweight Object REpository

Core language plus syntactic shortcuts.
Omission of labels:

select X
from biblio.book.author X

default label in Lore is answer

S0, the answer to above query will be

{answer: "Roux", answer: "Combalusier", answer: "Smith" }

Use of Path Expressions in select clause:

% Query g3’
select X.author
from biblio.book X

X.author can be understood as the nested query
(select author: Y
from X.author Y)

In general, an expression of the form:
X.p.1,

where p 1s an arbitrarily complex path expression,
is understood as the nested query

select 1:Y
from X.p.1Y

