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ABSTRACT

Deductive database systems | that is, database systems with a query language based on logical rules | must
allow negated subgoals in rules to express an adequate range of queries. Adherence to classical deductive logic
rarely o�ers the intuitively correct meaning of the rules. Thus, a variety of approaches to de�ning the \right"
meaning of such rules have been developed. In this paper we survey the principal approaches, including
strati�ed negation, well-founded negation, stable-model semantics, and modularly strati�ed semantics.

1. Motivation

Database query languages based on logic in some form are a promising trend in the development of modern
database systems. Building on SQL, a language whose logical nature is hidden by the syntax, logical query
languages preserve the declarative \say what you want, not how to get it" nature of SQL, while extending
the expressiveness of the language beyond what SQL provides. See Ramakrishnan and Ullman [1993] for a
survey of languages and systems based on the logical or \deductive" approach.

Simple forms of logic, such as Horn-clause rules (if-then rules), have a unique natural meaning, which
is the least �xpoint, or minimal model of the rules. However, many interesting queries require us to use
more general forms of rules, such as those in which one or more subgoals appear negatively. It is on these
extensions that we focus.

The problem with logic that involves negative subgoals is that there is rarely a unique minimal model.
In conventional logic, the rules would be said to \mean" whatever can logically be inferred from these rules
and nothing more. That is the same as saying the \meaning" is the intersection of all the minimal models.
However, that intersection is rarely what the programmer intuitively expects the rules to \mean." Thus,
research in deductive databases with negation can be seen as a series of proposals to de�ne one particular
minimal model as the meaning of rules with negation. To some degree, this program of research has been
successful, and there are important classes of logical rules with negation for which there is a widely accepted
meaning. In other cases, the proper choice of meaning is less clear.

The subject of negation in deductive databases is related to the matter of nonmonotonic reasoning
as discussed in the literature of Arti�cial Intelligence. There is a tendency in the database community
to value more the issues of e�ciency, i.e., how fast we can answer queries using a given de�nition of the
\correct" minimal model. The AI approaches, on the other hand, tend to focus on the correctness of the
model, regardless of its tractability. The di�erence will be emphasized when we compare well-founded and
stable-model approaches below.

2. Introduction

Logical rules are usually expressed in the form

Head  Body

where the head is an atomic formula (predicate with arguments) and the body is the logical AND of literals,
i.e., atomic formulas or their negation. Each literal is called a subgoal. A collection of rules is often called a
logic program, or just program.

Predicates are divided into two classes:
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1. EDB (extensional database) predicates are stored as relations in the database. If p is an EDB predicate,
then there will be a corresponding relation, say P , in the database, and p(a1; : : : ; ak) is true if and only
if there is a tuple (a1; : : : ; ak) in relation P . The EDB tuples are sometimes called data.

2. IDB (intensional database) predicates, which are de�ned by the rules. Only IDB predicates can appear
in the head of a rule. Both IDB and EDB predicates can appear in the body.

Example 1: Here are rules for computing the transitive closure of a graph. That is, arc is an EDB predicate,
and arc(a; b) means that there is an arc from node a to node b. IDB predicate path represents path facts;
path(a; b) is intended to be true if and only if there is a path of one or more arcs from node a to node b.

r1: path(X,Y)  arc(X,Y)

r2: path(X,Y)  arc(X,Z), path(Z,Y)

We use Prolog-style notation, where capital letters begin variables and lower-case letters begin constants.
The  operator means \if," and the comma between subgoals in rule r2 is interpreted as \and." Thus, rule
r1 says \there is a path from X to Y if there is an arc from X to Y ," while r2 says \there is a path from X

to Y if there is some node Z such that there is an arc from X to Z and a path from Z to Y .

Given relations for the EDB predicates of a logic program, there are certain models or �xpoints for the
rules. Interpretations are selections of ground atoms or facts for the IDB predicates; the latter consist of an
IDB predicate with constant arguments. An interpretation is a model (with respect to a given selection of
EDB facts) for the program if whenever constants are substituted for the variables, the rules become true.
Since rules are of an if-then form, the only way a rule can become false is if all the subgoals are true but the
head is false. Thus, in Example 1, r1 forces us to include in every model for a given EDB the fact path(a; b)
whenever the fact arc(a; b) is in the EDB. Rule r2 forces us to add path(a; c) whenever our model has a fact
path(b; c) and the fact arc(a; b) is in the given EDB.

However, those are all the facts that need to be in the IDB. We can compute the IDB by starting with
the given EDB and adding to the IDB all and only those facts that we are forced to add because of the rules.
This model is minimal in the sense that any proper subset either is missing an EDB fact that is given or it
fails to be a model because there is some substitution of constants for variables that makes all the subgoals
true but makes the head false. In Example 1, the minimal model is the expected set of path facts; path(a; b)
is true exactly when a path from a to b exists in the graph with the set of arcs that are given by the EDB
relation arc.

3. Rules with Negated Subgoals

When we have a collection of Horn clauses (rules without negated subgoals), we are assured of a unique
minimal model, and this model is universally accepted as the meaning of the rules. However, this form of
rule is often too limited, regardless of whether one is interested in logic programming as in Prolog, or in
deductive database systems as is our focus. As soon as we introduce negation in rules, we no longer have a
guarantee of a unique minimal model, and in fact it is normal to have more than one.

Example 2: There are two bus lines, red and blue, each of which runs buses between pairs of cities. The
predicate blue(X;Y ) is true if the blue line runs a bus between city X and city Y , while red(X;Y ) has the
corresponding meaning for the red line. The president of the red line wants to �nd out where red has a
monopoly, that is, a pair of cities such that red runs a bus between them, but on blue buses you cannot even
travel from X to Y through a sequence of intermediate cities. The following rules express the idea.y

(1) bluePath(X,Y)  blue(X,Y)

(2) bluePath(X,Y)  bluePath(X,Z),

bluePath(Z,Y)

(3) monopoly(X,Y)  red(X,Y),

not bluePath(X,Y)

y The bus lines are directed arcs, while we might in practice expect them to be undirected edges. However, this liberty
makes the example clearer and can be carried over to the more realistic case of undirected edges.
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Suppose further that the data (relations) for predicates red and blue are blue(1; 2), red(1; 2), and red(2; 3),
as suggested by Fig. 1.

1 2 3

red red

blue

EDB

Fig. 1. EDB for Example 2.

Interestingly, there are two minimalmodels for the EDB of Fig. 1. The IDB components of these models
are listed below.

(A) (B)

bluePath(1; 2) bluePath(1; 2)

monopoly(2; 3) bluePath(2; 3)

bluePath(1; 3)

(A) makes sense. The only blue path is the one that follows from the data by rule (1). The monopoly fact
then follows by rule (3).

(B) does not \make sense." It involves bluePath facts that do not appear to come from anywhere,
namely bluePath(2; 3) and bluePath(1; 3). However, it is also a minimal model, in that

1. When you make any substitution of constants for X, Y , and (if necessary) Z, rules (1){(3) are true if
the true ground atomic formulas are those listed in (B), plus the given data.

2. If you delete one or more facts from (B), point (1) above no longer holds.

4. Approaches to Selection of Models

As we see from Example 2, the fundamental question of coping with negation, or \nonmonotonic reasoning,"
is to select the appropriate model from all those that satisfy the given logic program and data. That is, we
need to develop a model preference theory (Shoham [1987]).

When the rules involve no negated subgoals, there is no argument whatsoever that the preferred model
is the least �xpoint. But when there are negated subgoals, there is at least some question as to the preferred
model.

All approaches to de�ning a preferred model in the presence of negation eschew \classical negation" in
favor of some version of negation as failure (Clark [1978]). In classical negation, the rules \p  :q" and
\q :p" are each equivalent to p _ q. In negation-as-failure approaches, the direction of the implication is
given signi�cance. For example, from p :q and :q we might readily infer p, but from p :q and :p we
might not infer q.

5. Strati�ed Logic

The least controversy surrounds strati�ed negation, where there is no recursion involving negated subgoals.
This idea was arrived at independently (and in the same year) by Van Gelder [1986], Apt, Blair, and Walker
[1988], and Naqvi [1986]. The idea is that when a logic program is strati�ed, we can �nd an order for the
predicates, so we may \solve" for a predicate p only after we have solved for all the predicates on which p

depends negatively.
For instance, the program of Example 2 is strati�ed. Although monopoly depends negatively on blue-

Path, the latter does not depend at all on monopoly. Thus, we can �nd the relation for bluePath using only
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rules (1) and (2) of Example 2, and then use rule (3) to �nd the relation for monopoly. This process, with
the red and blue data mentioned in Example 2, yields model (A), con�rming our intuition that this model
is \right." The result of computing the predicates in this ways is often called the perfect model.

An alternative view of what is going on concerns circumscription (McCarthy [1980]), which is an ap-
proach to coping with negation that allows us to declare that the only facts true for some predicate are those
that follow from given rules. In Example 2, the strati�ed negation approach allows us �rst to circumscribe
the predicate bluePath, in e�ect declaring that bluePath(X;Y ) is true only when it so follows from rules
(1) and (2) and the given blue data. We can then assert that :bluePath(X;Y ) is true for all other pairs of
values X and Y . It is these negated facts that are used in rule (3) to infer monopoly facts.

Przymusinska and Przymusinski [1989] extended the idea of strati�cation to locally strati�ed programs
and data, where predicates may depend negatively on themselves as long as when the rules of the logic
program are instantiated by constants no cycles occur. A program can be locally strati�ed for one EDB but
not for another. Surely every strati�ed logic program is locally strati�ed regardless of the data.

Example 3: Let us introduce an important paradigm problem, the \win" rule:

win(X)  move(X,Y), not win(Y)

This rule describes a board game. We suppose that move(X;Y ) is true if and only if it is legal to move from
position X to position Y in one move. We also suppose that the game is won by stalemating your opponent;
that is, you lose if you are presented with a position from which there is no legal move. The rule says that
position X is a win if there is a choice of move to some position Y , and Y is not a win.

Clearly, win depends negatively, on itself, so this rule is not strati�ed. However, suppose move is acyclic,
i.e., if you can move from X to Y then there is no sequence of moves leading from Y back to X. Then if
we instantiate the rule in all possible ways, there is no way the fact win(a), for a particular board a, can
depend negatively on itself. Put another way, for an acyclic move (Nim is an example of such a game), we
can decide whether win(a) is true by expanding the game tree until we reach stalemate positions. There is
no way a sequence of moves can avoid stalemate, as long as the number of positions is �nite and the move

predicate represents an acyclic graph. Thus, the \win" rule is locally strati�ed provided move is acyclic.

6. Well-Founded Semantics

More recently, there have been two competing thrusts (\well-founded" and \stable" models) that attempt
to provide a sensible preferred model for logic programs that are not locally strati�ed. The well-founded

semantics of Van Gelder, Ross, and Schlipf [1991] (�rst published in 1988) is a 3-valued semantics, where
some ground atoms are declared true, others are declared false, and the remainder are \unknown."

We shall give a de�nition of the well-founded semantics shortly. However, to focus on the importance
of 3-valued models, let us �rst observe that in Example 3, the \win" rule, the well-founded model is the
intuitively correct one, even when move has cycles. That is, for each position a, win(a) is true if best play
yields a win from position a; win(a) is false if a player forced to move from position a is forced to lose with
best play on both sides, and win(a) has truth value \unknown" if best play leads to a draw from position a.

Construction of the well-founded model for a logic program and data proceeds as follows. First, we
in principle instantiate all the rules by constants in all possible ways (in practice, there are more e�cient
approaches, such as those of Przymusinski [1989], Ross [1989], and Van Gelder [1989], Kerasit and Pugin
[1988], and Morishita [1993]. We start with no positive or negative ground atoms in our model, except that
the facts in the EDB, which are positive ground atoms, are in the model. We then add positive and negative
facts in rounds using two kinds of inference.

a) We consider all instantiations of the rules. If each of the subgoals of a rule is true in the current model,
then we add the head of the instantiated rule to the model. This fact is always a positive ground atom.

b) Now we compute the largest unfounded set of ground atoms. Intuitively, an unfounded set U is a
collection of positive ground atoms such that each instantiated rule whose head is in U has either

i) A subgoal whose negation is in the model constructed so far. In this case, we know the instantiated
rule can never be used to infer its head.
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ii) A subgoal in U .

Since each fact in U can only be inferred by an instantiated rule that has another member of U as a
subgoal, no member of U can ever be the �rst of them to be proved. Thus, we shall never infer any
of the members of the unfounded set using ordinary, body-to-head deduction as described in step (a).
Since we shall never prove a member of U to be in the model, we take a metalogical leap and place each
of their negations in the model. In this manner we infer some negative atoms.

We shall give three examples of this process to give an idea of some of the ways inference proceeds. The
�rst two examples deal with circuits, where the well founded model has a natural interpretation. The third
is an abstract example that shows how the above two types of inference (a) and (b) can alternate several
times before the well-founded model is reached.

Example 4: In this example, we shall represent circuits consisting of an unusual sort of logic gate, with one
positive input and one negative input. If a gate has positive input X and negative input Y , then its output
is 1 or \true" if and only if X is 1 and Y is 0 (\false"). There is an EDB predicate g(X;Y; Z) that says there
is a gate of this type with positive input X, negative input Y , and output Z. We may think of the inputs
and outputs as being terminals or wire nets. There is also an EDB predicate t0 that is true of those input
terminals that are set externally to 1. Input terminals that are set to 0 do not appear in t0.

The IDB predicate is t. The intended signi�cance of the positive ground atom t(a) being in the model
is that the circuit value of terminal a is 1. If :t(a) is in the model, then the value of terminal a is 0. What
if the value that terminal a has is ambiguous; either it depends on a critical race in the circuit or oscillates
in normal circuit operation? Then we expect t(a) to have the third, \unknown" value of the three-valued
well-founded semantics.

The following are the rules that de�ne the operation of the gates.

t(Z)  t0(Z)

t(Z)  g(X,Y,Z), t(X), not t(Y)

The data in the EDB will consist of the following facts: t0(2), g(5; 1; 3), g(1; 2; 4), g(3; 4; 5), representing the
circuit of Fig. 2 with only the second input set to \true."

1

2

3

4

5

Fig. 2. Circuit for Example 4.

Following are all instantiations without a known false subgoal (initially, we can only know that EDB
facts not in the database are false):

t(2)  t0(2)

t(3)  g(5,1,3), t(5), not t(1)

t(4)  g(1,2,4), t(1), not t(2)

t(5)  g(3,4,5), t(3), not t(4)
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For convenience, once a subgoal has been found true, we eliminate it from the body of the instantiated rule.
That way, we know we can make a type (a) inference when the body of the rule becomes empty. If we
eliminate known true subgoals from bodies, we get:

t(2)  
t(3)  t(5), not t(1)

t(4)  t(1), not t(2)

t(5)  t(3), not t(4)

In Round 1(a), we infer heads of rules with an empty body. Thus we infer t(2).
Also for convenience, we can eliminate rules whose head has already been inferred, and we can eliminate

rules with a false subgoal. For Round 1(b) we are thus left with

t(3)  t(5), not t(1)

t(5)  t(3), not t(4)

In Round 1(b), we �nd the maximal unfounded set. In this case, t(1) and t(4) have no rules at all and hence
belong in the maximal unfounded set. Also, t(3) and t(5) are mutually dependent, so they belong in the
unfounded set.

In general, we can �nd the maximal unfounded set by looking for poison positive facts that cannot be
in an unfounded set. One way a fact can be poison is if it is the head of a rule with only negative subgoals
and at least one such subgoal. Recursively, a fact is poison if it is the head of a rule all of whose positive
subgoals are poison. Note that only positive subgoals can be poison.

Thus, another way to �nd the maximal unfounded set is to �nd the poison facts. All other positive
ground atoms, such that neither they nor their negation is in the model, are in the maximal unfounded set.
In our example, there are no \poison" facts, i.e., facts that depend on a body with only negative subgoals.
Hence, all remaining facts belong in the maximal unfounded set: ft(1); t(3); t(4); t(5)g.

Rounds 2(a) and 2(b) have nothing more to add, so we are done. Thus, the well-founded model is

f:t(1); t(2);:t(3);:t(4);:t(5)g

In this case, there are no unknown facts; we have a two-valued well-founded model. In this model, the output
of each of the three gates is 0.

Example 5: Our next example, the circuit is more complicated and we get some unknown values. We also
see how to deal with the possibility that there may be several instantiated rules for one ground atom. The
gates are di�erent; now g(X;Y; Z) means that the output Z is 1 if either input X is 1 or input Y is 0. The
rules describing the operation of the circuit are:

t(Z)  t0(Z)

t(Z)  g(X,Y,Z), t(X)

t(Z)  g(X,Y,Z), not t(Y)

The data is:

t0(1), g(1; 2; 3), g(2; 5; 4), g(2; 4; 5), g(5; 3; 6)

representing the circuit of Fig. 3.
Following are all instantiations without a known false subgoal:

t(1)  t0(1)

t(3)  g(1,2,3), t(1)

t(3)  g(1,2,3), not t(2)

t(4)  g(2,5,4), t(2)

t(4)  g(2,5,4), not t(5)

t(5)  g(2,4,5), t(2)

t(5)  g(2,4,5), not t(4)

t(6)  g(5,3,6), t(5)

t(6)  g(5,3,6), not t(3)
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1

6

5

Fig. 3. Circuit for Example 5.

When we eliminate known true subgoals from bodies we get:

t(1)  
t(3)  t(1)

t(3)  not t(2)

t(4)  t(2)

t(4)  not t(5)

t(5)  t(2)

t(5)  not t(4)

t(6)  t(5)

t(6)  not t(3)

Round 1(a): Infer heads of rules with empty bodies. Thus, t(1) is true. Then, we can eliminate t(1) from
rule t(3)  t(1) and infer t(3). No further inferences of this type are possible.

We now eliminate rules whose heads have been inferred, and we eliminate rules with a false subgoal (the
last rule, above), leaving the following instantiated rules for t(2), t(4), t(5), and t(6):

t(4)  t(2)

t(4)  not t(5)

t(5)  t(2)

t(5)  not t(4)

t(6)  t(5)

Round 1(b): t(4) and t(5) are \poison," because they have rules with only negated subgoals remaining. Also,
t(6) has a rule with a poison subgoal, so it is poison. ft(2)g is the maximal unfounded set. Infer :t(2).

Round 2(a): Eliminate rules with false subgoals.

t(4)  not t(5)

t(5)  not t(4)

t(6)  t(5)

No remaining rules have empty bodies, so there are no more inferences to make.

Round 2(b): t(4) and t(5) are poison, and t(6) depends on t(5), so again we make no inferences.

The well-founded model is ft(1);:t(2); t(3)g. Ground atoms t(4), t(5), and t(6) have \unknown" truth-value.
Notice that the eventual value for terminals 4, 5, and 6 depends on unknowable conditions when the circuit
is \turned on." That is, one of gates 4 and 5 will arrive at a \true" output and the other will have output
\false." However, we cannot tell which from the circuit, and the answer depends on physical phenomena not
modeled by the circuit. Then, the output of gate 6 will be the complement of the output of gate 5.
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Example 6: In the following example, where several rounds are necessary, we shall use propositional rather
than �rst-order logic. Well-founded semantics applies to propositional logic as well as �rst-order logic, but
we may also imagine that the following are instantiated �rst-order rules, in which the letters p through u

stand for ground atoms.

p :q
q r

r q

s p

t :s
t u

u t

Round 1(a): Infer heads with empty bodies (none).

Round 1(b): p, t are \poison"; u and s depend on these. The remaining set of propositional variables, fq; rg,
is the maximal unfounded set. Infer :q;:r.

Round 2(a): Eliminate rules with false subgoals q and r, and eliminate true subgoal :q from body of �rst
rule. The result is:

p 
s p

t :s
t u

u t

Now, p can be inferred, and s follows from p.

Round 2(b): Eliminate rules with inferred heads and the rule with false subgoal :s, leaving:

t u

u t

Now, ft; ug is maximal unfounded set. Infer :t and :u.

The resulting well-founded model is

fp;:q;:r; s;:t;:ug

7. Stable Models

At about the same time as well-founded semantics was proposed, Gelfond and Lifschitz [1988] proposed the
stable model semantics. In its original form, this is a two-valued model; i.e., every ground atom is either true
or false. A model M is stable for a logic program and some data if:

1. The true EDB ground atoms in M are exactly the given data, and

2. When the rules are instantiated in all possible ways and the resulting bodies are evaluated according to
the model, the set of heads of the rules with true bodies is exactly the set of true IDB ground atoms in
M .

Example 7: Let us return to the \win" rule of Example 3. If move is acyclic, then there is a two-valued
well-founded model, in which win(a) is true or false depending on whether or not the player to move can
force a win from position a. Call this model M .

We claimM is a stable model when move is acyclic. For if win(a) is true in M , then there is a position
b such that move(a; b) is true, and win(b) is false in M . Thus, in the instantiated rule

win(a)  move(a,b), not win(b)
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the body is true according to M , and therefore win(a) is proved.
On the other hand, if win(a) is false in M | that is, :win(a) is inM | then for every position (if any)

c such that move(a; c) is true, it must be that c is a win for the player whose move it is. That is, win(c) is
true in M . It follows that there cannot be an instantiation with head win(a) and a true body.

A logic program may or may not have a stable model, and it may have more than one. If there is
a unique stable model, then this model is taken to be the preferred model; otherwise, the stable-model
semantics is mute on the question of a preferred model.

If there is a two-valued well-founded model, i.e., no ground atom is assigned value \unknown," then
this model is the unique stable model (Van Gelder, Ross, and Schlipf [1991]). Example 7 is an illustration
of this phenomenon. Moreover, both the stable and well-founded approaches are generalizations of local
strati�cation, in the sense that whenever the program is locally strati�ed, the resulting model is the well-
founded model, which is thus two-valued and therefore also the unique stable model.

However, if the well-founded model is not two-valued, then it is still possible that there is a unique
stable model.

Example 8: An example, taken from propositional logic, is

p :q q :p
r  p r :r

Here, the only stable model makes p and r true, and q false. That is, assuming p, r, and :q, the rule p :q
lets us infer p, and the rule r p lets us infer r, but q cannot be inferred. Thus, we get the model we started
back again, proving it is stable. However, the well-founded model leaves all three of p, q, and r unknown.

An important di�erence between the well-founded and stable approaches is tractability. Well-founded
models can be computed in time that is polynomial in the size of the database. However, unless the well-
founded model is two-valued (so the stable model is the same), there is no polynomial time algorithm for
�nding a stable model or even telling if one exists.

There have been a number of developments modifying and relating the stable and well-founded seman-
tics. For example, Sacca and Zaniolo [1990] look at intersections of stable models. Baral and Subrahmanian
[1992] consider sets of stable models as a meaning for programs. Przymusinski [1990] gives a three-valued
extension to the original two-valued de�nition of stable models, and shows that these coincide with the
well-founded model.

8. Modularly Strati�ed Semantics

Modular strati�cation was an idea of Ross [1990] that attempts to �nd a subset of logic programs for which
the well-founded semantics could be implemented e�ciently. Here, e�ciency concerns the \magic-sets" rule
transformation that allows queries with bound arguments to be answered without looking at parts of the
database that are irrelevant. For instance, in Example 3 we would like to answer the query whether win(a)
is true for some particular board a without looking at the move data for positions not reachable from a. We
shall not go into magic-sets techniques here; see Ullman [1989] for the motivation.

Here, let us de�ne modularly strati�ed programs and give examples. In order for a logic program and
data to be modularly strati�ed, it must be possible to divide the predicates into modules with the following
properties.

1. It is possible to order the modules so that predicates in a module depend only on predicates in that
module and previous modules. Put another way, there may be recursion among predicates, but it takes
place solely within modules.

2. Each module has a locally strati�ed (\perfect") model when we instantiate its rules and treat all subgoals
whose predicates are in previous modules as true or false according to the well founded model for its
module.

Thus, we can compute the locally strati�ed model for each module, in order, using the results from previous
modules to determine the truth or falsehood of subgoals that are outside the module. Since each module is
thus given a two-valued model, there is no ambiguity as to the truth value of subgoals outside the module.
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Example 9: Consider the following rules which augment the rule of Example 3 by introducing an IDB
predicate move1 that is really the same as the EDB predicate move.

win(X)  move1(X,Y), not win(Y)

move1(X,Y) :- move(X,Y)

Unlike Example 3, an acyclic move relation does not make these rules modularly strati�ed. The reason is
that when we instantiate the rules we get rules like

win(1) :- move1(1,2) & not win(2)

win(2) :- move1(2,1) & not win(2)

If move is acyclic, we cannot have both move1(1:2) and move1(2; 1) true, so the apparent cycle will be
resolved when we compute move1. However, the de�nition of \locally strati�ed" fails, because we cannot
immediately place win(1) and win(2) in strata.

On the other hand, the rules are modularly strati�ed. We place move and move1 in one module and
win in a higher module. Then, the �rst module lets us compute move1 to be a copy of move. When we work
on the win module, move1 behaves like an EDB predicate, and if it is acyclic we can compute the locally
strati�ed model for win just as we did in Example 3.

9. Beyond Well-Founded Models

There has been a perception, shared by the author, that well-founded models (or stable models, depending
on your beliefs), are the \right" interpretation to put on logic programs with negation. However, as the
subject has received more exploration, anomalies have surfaced for both approaches. Perhaps the clearest
expression of the problem is from Torres [1992], the example below.

Example 10: The designers of a complex of buildings wish to put either a cafeteria or a lounge (but
not both) in each building. To reduce the number of cafeterias, they will not put two cafeterias in adjacent
buildings, but will make sure that there are enough cafeterias that each building either has one, or is adjacent
to a building with a cafeteria. The following logic program expresses the situation.

lounge(A)  adjacent(A,B), cafeteria(B)

cafeteria(A)  not lounge(A)

This program is equivalent to the \win" program introduced in Example 3, although here we expect that
adjacent will be symmetric, and games with a symmetric move relation are uninteresting. The similarity
may be clearer if we introduce into the \win" program the intermediate predicate loss, as:

win(A)  move(A,B), loss(B)

loss(A)  not win(A)

While the \win" problem seems to need the well-founded semantics, the logically identical (but semantically
di�erent) \cafeteria" problem is really solved by the set of stable models (pointed out by V. S. Subrahmanian),
which correspond in this case to the maximal independent sets of the undirected graph with edges given by
adjacent.

In another direction, Ge�ner [1991] and Torres [1994] generalize the notions of stable and well-founded
models by considering assumption sets, which are sets of negative literals. Such a set is a candidate for
assumption if, when we

1. Instantiate the rules in all possible ways by substituting constants for the variables (needed if the rules
are of predicate logic rather than propositional logic),

2. Delete from the bodies of the instantiated rules all negated subgoals that are in the assumption set
(instances of the assumption set in the case of predicate logic),

3. Remove those rule instances that still have negated subgoals in the body,

the resulting rules do not logically imply the negation of any (negative) literal in the assumption set. Note
that
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� Deduction is used only after we delete certain negated subgoals from the instantiated rules and delete
certain of the rule instances themselves, and therefore applies to a set of rules di�erent from the original
rules.

Example 11: Consider the following rules of propositional logic

p :q;:s
q :p;:s
r :p;:q

f:p;:q;:sg is not an argument, since when we delete these from the bodies, all the bodies become empty
and the rules reduce to their heads, i.e., fp; q; rg. We can thus prove p (and q also), contradicting a member
of the assumption set.

On the other hand, f:p;:sg is an argument, since when we delete these from the bodies, we get

p :q
q

r :q

Now, the �rst and third of these have remaining negated subgoals, so they go away, leaving only the trivial
rule

q

When we use these \rules" to infer facts, we prove only q. The implication is that a possible model for our
original rules is fq;:p;:r;:sg

The Ge�ner/Torres approach generalizes the well-founded and stable semantics in that the previous
approaches always treat all negative subgoals in a uniform way. In the newer approach, we are free to
assume any subset of the negative ground atoms are true and leave the others open.

10. Summary

Figure 4 shows the relationship between the principal classes of logic programs that we have considered. A
line directed downward from class A to class B means that

1. Every program/data pair of class B is also a program/data pair of class A, and

2. If a program/data pair is in both classes A and B, then the selected models are the same in both classes.
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