
Chapter 6

Logic and Databases

This chapter discusses the relationship between logic programs and relational data-
bases. It is demonstrated how logic can be used to represent — on a conceptual level
— not only explicit data, but also implicit data (corresponding to views in relational
database theory) and how it can be used as a query language for retrieval of information
in a database. We do not concern ourselves with implementation issues but only
remark that SLD-resolution does not necessarily provide the best inference mechanism
for full logical databases. (An alternative approach is discussed in Chapter 15.) On the
other hand, logic not only provides a uniform language for representation of databases
— its additional expressive power also enables description, in a concise and intuitive
way, of more complicated relations — for instance, relations which exhibit certain
common properties (like transitivity) and relations involving structured data objects.

6.1 Relational Databases

As indicated by the name, the mathematical notion of relation is a fundamental con-
cept in the field of relational databases. Let D1,D2, . . . ,Dn be collections of symbols
called domains. In the context of database theory the domains are usually assumed
to be finite although, for practical reasons, they normally include an infinite domain
of numerals. In addition, the members of the domains are normally assumed to be
atomic or indivisible — that is, it is not possible to access a proper part of a member.

A database relation R over the domains D1, . . . ,Dn is a subset of D1×· · ·×Dn. R
is in this case said to be n-ary. A relational database is a finite number of such (finite)
relations. Database relations and domains will be denoted by identifiers in capital
letters.

Example 6.1 Let MALE := {adam, bill}, FEMALE := {anne, beth} and finally
PERSON := MALE ∪ FEMALE . Then:

101

102 Chapter 6: Logic and Databases

MALE × PERSON =

〈adam, adam〉 〈bill, adam〉
〈adam, bill〉 〈bill, bill〉
〈adam, anne〉 〈bill, anne〉
〈adam, beth〉 〈bill, beth〉

Now, let FATHER, MOTHER and PARENT be relations over the domains MALE ×
PERSON , FEMALE × PERSON and PERSON × PERSON defined as follows:

FATHER := {〈adam, bill〉, 〈adam, beth〉}
MOTHER := {〈anne, bill〉, 〈anne, beth〉}
PARENT := {〈adam, bill〉, 〈adam, beth〉, 〈anne, bill〉, 〈anne, beth〉}

It is of course possible to imagine alternative syntactic representations of these rela-
tions. For instance in the form of tables:

FATHER: MOTHER: PARENT :

C1 C2

adam bill
adam beth

C1 C2

anne bill
anne beth

C1 C2

adam bill
adam beth
anne bill
anne beth

or as a collection of labelled tuples (that is, facts):

father (adam, bill).
father (adam, beth).
mother(anne, bill).
mother(anne, beth).
parent(adam, bill).
parent(adam, beth).
parent(anne, bill).
parent(anne, beth).

The table-like representation is the one found in most textbooks on relational databases
whereas the latter is a logic program. The two representations are isomorphic if no
notice is taken of the names of the columns in the tables. Such names are called
attributes and are needed only to simplify the specification of some of the operations
discussed in Section 6.3. It is assumed that the attributes of a table are distinct. In
what follows the notation R(A1, A2, . . . , An) will be used to describe the name, R, and
attributes, 〈A1, A2, . . . , An〉, of a database table (i.e. relation). R(A1, A2, . . . , An) is
sometimes called a relation scheme. When not needed, the attributes are omitted and
a table will be named only by its relation-name.

A major difference between the two representations which is not evident above, is
the set of values which may occur in each column/argument-position of the represen-
tations. Logic programs have only a single domain consisting of terms and the user is
permitted to write:

father (anne, adam).

6.2 Deductive Databases 103

whereas in a relational database this is usually not possible since anne 6∈ MALE . To
avoid such problems a notion of type is needed.

Despite this difference it should be clear that any relational database can be rep-
resented as a logic program (where each domain of the database is extended to the set
of all terms) consisting solely of ground facts. Such a set of facts is commonly called
the extensional database (EDB).

6.2 Deductive Databases

After having established the relationship between relational databases and a (very
simple) class of logic programs, different extensions to the relational database-model
are studied. We first consider the use of variables and a simple form of rules. By such
extensions it is possible to describe — in a more succinct and intuitive manner —
many database relations. For instance, using rules and variables the database above
can be represented by the program:

parent(X,Y)← father (X,Y).
parent(X,Y)← mother(X,Y).
father (adam, bill).
father (adam, beth).
mother(anne, bill).
mother(anne, beth).

The part of a logic program which consists of rules and nonground facts is called the
intensional database (IDB). Since logic programs facilitate definition of new atomic
formulas which are ultimately deduced from explicit facts, logic programs are often
referred to as deductive databases. The logic programs above are also examples of a
class of logic programs called datalog programs. They are characterized by the absence
of functors. In other words, the set of terms used in the program solely consists of
constant symbols and variables. For the representation of relational databases this is
sufficient since the domains of the relations are assumed to be finite and it is therefore
always possible to represent the individuals with a finite set of constant terms. In the
last section of this chapter logic programs which make also use of compound terms are
considered, but until then our attention will be restricted to datalog programs.

Example 6.2 Below is given a deductive family-database whose extensional part con-
sists of definitions of male/1, female/1, father/2 and mother/2 and whose intensional
part consists of parent/2 and grandparent/2:

grandparent(X,Z)← parent(X,Y), parent(Y,Z).

parent(X,Y)← father (X,Y).
parent(X,Y)← mother(X,Y).

father (adam, bill). mother(anne, bill).
father (adam, beth). mother(anne, beth).
father (bill, cathy). mother(cathy, donald).
father (donald, eric). mother(diana, eric).

104 Chapter 6: Logic and Databases

female(anne). male(adam).
female(beth). male(bill).
female(cathy). male(donald).
female(diana). male(eric).

In most cases it is possible to organize the database in many alternative ways. Which
organization to choose is of course highly dependent on what information one needs
to retrieve. Moreover, it often determines the size of the database. Finally, in the
case of updates to the database, the organization is very important to avoid inconsis-
tencies in the database — for instance, how should the removal of the labelled tuple
parent(adam, bill) from the database in Example 6.2 be handled? Although updates
are essential in a database system they will not be discussed in this book.

Another thing worth noticing about Example 6.2 is that the unary definitions
male/1 and female/1 can be seen as type declarations. It is easy to add another such
type declaration for the domain of persons:

person(X)← male(X).
person(X)← female(X).

It is now possible to “type” e.g. the database on page 103 by adding to the body of
every clause the type of each argument in the head of the clause:

parent(X,Y)← person(X), person(Y), father (X,Y).
parent(X,Y)← person(X), person(Y),mother(X,Y).

father (adam, bill)← male(adam), person(bill).
father (adam, beth)← male(adam), person(beth).

...

person(X)← male(X).
person(X)← female(X).

...

In this manner, “type-errors” like father (anne, adam) may be avoided.

6.3 Relational Algebra vs. Logic Programs

In database textbooks one often encounters the concept of views. A view can be
thought of as a relation which is not explicitly stored in the database, but which
is created by means of operations on existing database relations and other views.
Such implicit relations are described by means of some query-language which is often
compiled into relational algebra for the purpose of computing the views. Below it
will be shown that all standard operations of relational algebra can be mimicked in
logic programming (with negation) in a natural way. The objective of this section is
twofold — first it shows that logic programs have at least the computational power
of relational algebra. Second, it also provides an alternative to SLD-resolution as the
operational semantics of a class of logic programs.

6.3 Relational Algebra vs. Logic Programs 105

The primitive operations of relational algebra are union, set difference, cartesian
product, projection and selection.

Given two n-ary relations over the same domains, the union of the two relations,
R1 and R2 (denoted R1 ∪R2), is the set:

{〈x1, . . . , xn〉 | 〈x1, . . . , xn〉 ∈ R1 ∨ 〈x1, . . . , xn〉 ∈ R2}

Using definite programs the union of two relations — represented by the predicate
symbols r1/n and r2/n — can be specified by the two rules:

r(X1, . . . , Xn)← r1(X1, . . . , Xn).
r(X1, . . . , Xn)← r2(X1, . . . , Xn).

For instance, if the EDB includes the definitions father/2 andmother/2, then parent/2
can be defined as the union of the relations father/2 and mother/2:1

parent(X,Y)← father (X,Y).
parent(X,Y)← mother(X,Y).

The difference R1 \ R2 of two relations R1 and R2 over the same domains yields the
new relation:

{〈x1, . . . , xn〉 ∈ R1 | 〈x1, . . . , xn〉 6∈ R2}

In logic programming it is not possible to define such relations without the use of
negation; however, using negation it may be defined thus:

r(X1, . . . , Xn)← r1(X1, . . . , Xn), not r2(X1, . . . , Xn).

For example, let parent/2 and mother/2 belong to the EDB. Now, father/2 can be
defined as the difference of the relations parent/2 and mother/2:

father (X,Y)← parent(X,Y), not mother(X,Y).

The cartesian product of two relations R1 and R2 (denoted R1 × R2) yields the new
relation:

{〈x1, . . . , xm, y1, . . . , yn〉 | 〈x1, . . . , xm〉 ∈ R1 ∧ 〈y1, . . . , yn〉 ∈ R2}

Notice that R1 and R2 may have both different domains and different arities. More-
over, if R1 and R2 contain disjoint sets of attributes they are carried over to the
resulting relation. However, if the original relations contain some joint attribute the
attribute of the two columns in the new relation must be renamed into distinct ones.
This can be done e.g. by prefixing the joint attributes in the new relation by the
relation where they came from. For instance, in the relation R(A,B) × S(B,C) the
attributes are, from left to right, A, R.B, S.B and C. Obviously, it is possible to
achieve the same effect in other ways.

In logic programming the cartesian product is mimicked by the rule:

r(X1, . . . , Xm, Y1, . . . , Yn)← r1(X1, . . . , Xm), r2(Y1, . . . , Yn).

1In what follows we will sometimes, by abuse of language, write “the relation p/n”. Needless to
say, p/n is not a relation but a predicate symbol which denotes a relation.

106 Chapter 6: Logic and Databases

For instance, let male/1 and female/1 belong to the EDB. Then the set of all male-
female couples can be defined by the rule:

couple(X,Y)← male(X), female(Y).

Projection can be seen as the deletion and/or rearrangement of one or more “columns”
of a relation. For instance, by projecting the F - and C-attributes of the relation
FATHER(F,C) on the F -attribute (denoted πF (FATHER(F,C))) the new relation:

{〈x1〉 | 〈x1, x2〉 ∈ FATHER}

is obtained. The same can be achieved in Prolog by means of the rule:

father (X)← father (X,Y).

The selection of a relation R is denoted σF (R) (where F is a formula) and is the set
of all tuples 〈x1, . . . , xn〉 ∈ R such that “F is true for 〈x1, . . . , xn〉”. How to translate
such an operation to a logic program depends on the appearance of the constraining
formula F . In general F is only allowed to contain atomic objects, attributes, ∧, ∨, ¬
and some simple comparisons (e.g. “=” and “<”). For instance, the database relation
defined by σY≥1,000,000 INCOME (X,Y) may be defined as follows in Prolog:

millionaire(X,Y)← income(X,Y), Y ≥ 1000000.

Some other operations (like intersection and composition) are sometimes encountered
in relational algebra but they are usually all defined in terms of the mentioned, prim-
itive ones and are therefore not discussed here. However, one of them deserves special
attention — namely the natural join.

The natural join of two relations R and S can be computed only when the columns
are named by attributes. Thus, assume that T1, . . . , Tk are the attributes which appear
both in R and in S. Then the natural join of R and S is defined thus:

R 1 S := πA σR.T1=S.T1 ∧ ··· ∧R.Tk=S.Tk (R × S)

where A is the list of all attributes of R×S with exception of S.T1, . . . , S.Tk. Thus, the
natural join is obtained by (1) taking the cartesian product of the two relations, (2) se-
lecting those tuples which have identical values in the columns with the same attribute
and (3) filtering out the superfluous columns. Notice that if R and S have disjoint
sets of attributes, then the natural join reduces to an ordinary cartesian product.

To illustrate the operation, consider the relation defined by F (X,Y) 1 P (Y,Z)
where F (X,Y) and P (Y,Z) are defined according to Figure 6.1(a) and 6.1(b) and
denote the relation between fathers/parents and their children.

Now F (X,Y) 1 P (Y,Z) is defined as πX,F.Y,Z σF.Y=P.Y (F (X,Y) × P (Y,Z)).
Hence the first step consists in computing the cartesian product F (X,Y) × P (Y,Z)
(cf. Figure 6.1(c)). Next the tuples with equal values in the columns named by F.Y
and P.Y are selected (Figure 6.1(d)). Finally this is projected on the X , F.Y and Z
attributes yielding the relation in Figure 6.1(e).

If we assume that father/2 and parent/2 are used to represent the database rela-
tions F and P then the same relation may be defined with a single definite clause as
follows:

6.4 Logic as a Query-language 107

X F.Y P.Y Z
adam bill bill cathy
bill cathy cathy dave

(d)

X F.Y Z
adam bill cathy
bill cathy dave

(e)

X Y
adam bill
bill cathy

(a)

Y Z
adam bill
bill cathy
cathy dave

(b)

X F.Y P.Y Z
adam bill adam bill
adam bill bill cathy
adam bill cathy dave
bill cathy adam bill
bill cathy bill cathy
bill cathy cathy dave

(c)

Figure 6.1: Natural join

grandfather (X,Y, Z)← father (X,Y), parent(Y,Z).

Notice that the standard definition of grandfather/2:

grandfather (X,Z)← father (X,Y), parent(Y,Z).

is obtained by projecting X,F.Y, Z on X and Z, that is, by performing the operation
πX,Z(F (X,Y) 1 P (Y,Z)).

6.4 Logic as a Query-language

In the previous sections it was observed that logic provides a uniform language for
representing both explicit data and implicit data (so-called views). However, deductive
databases are of little or no interest if it is not possible to retrieve information from
the database. In traditional databases this is achieved by so-called query-languages.
Examples of existing query-languages for relational databases are e.g. ISBL, SQL,
QUEL and Query-by-Example.

By now it should come as no surprise to the reader that logic programming can be
used as a query-language in the same way it was used to define views. For instance,
to retrieve the children of Adam from the database in Example 6.2 one only has to
give the goal clause:

← parent(adam,X).

108 Chapter 6: Logic and Databases

To this Prolog-systems would respond with the answers X = bill and X = beth, or put
alternatively — the unary relation {〈bill〉, 〈beth〉}. Likewise, in response to the goal:

← mother(X,Y).

Prolog produces four answers:

X = anne, Y = bill
X = anne, Y = beth
X = cathy, Y = donald
X = diana, Y = eric

That is, the relation:

{〈anne, bill〉, 〈anne, beth〉, 〈cathy, donald〉, 〈diana, eric〉}

Notice that a failing goal (e.g. ← parent(X, adam)) computes the empty relation as
opposed to a succeeding goal without variables (e.g← parent(adam, bill)) which com-
putes a singleton relation containing a 0-ary tuple.

Now consider the following excerpt from a database:

likes(X,Y)← baby(Y).
baby(mary).

...

Informally the two clauses say that “Everybody likes babies” and “Mary is a baby”.
Consider the result of the query “Is anyone liked by someone?”. In other words the
goal clause:

← likes(X,Y).

Clearly Prolog will reply with Y = mary and X being unbound. This is interpreted
as “Everybody likes Mary” but what does it mean in terms of a database relation?
One solution to the problem is to declare a type-predicate and to extend the goal with
calls to this new predicate:

← likes(X,Y), person(X), person(Y).

In response to this goal Prolog would enumerate all individuals of type person/1. It is
also possible to add the extra literal person(X) to the database rule. Another approach
which is often employed when describing deductive databases is to adopt certain as-
sumptions about the world which is modelled. One such assumption was mentioned
already in connection with Chapter 4 — namely the closed world assumption (CWA).
Another assumption which is usually adopted in deductive databases is the so-called
domain closure assumption (DCA) which states that “the only existing individuals are
those mentioned in the database”. In terms of logic this can be expressed through the
additional axiom:

∀X(X = c1 ∨X = c2 ∨ · · · ∨X = cn)

where c1, c2, . . . , cn are all the constants occurring in the database. With this axiom
the relation defined by the goal above becomes {〈t,mary〉 | t ∈ UP }. However, this
assumes that the database contains no functors and only a finite number of constants.

6.5 Special Relations 109

6.5 Special Relations

The main objective of this section is to show how to define relations that possess
certain properties occurring frequently both in real life and in mathematics. This
includes properties like reflexivity, symmetry and transitivity.

Let R be a binary relation over some domain D. Then:

• R is said to be reflexive iff for all x ∈ D, it holds that 〈x, x〉 ∈ R;

• R is symmetric iff 〈x, y〉 ∈ R implies that 〈y, x〉 ∈ R;

• R is anti-symmetric iff 〈x, y〉 ∈ R and 〈y, x〉 ∈ R implies that x = y;

• R is transitive iff 〈x, y〉 ∈ R and 〈y, z〉 ∈ R implies that 〈x, z〉 ∈ R;

• R is asymmetric iff 〈x, y〉 ∈ R implies that 〈y, x〉 /∈ R.

To define an EDB which possesses one of these properties is usually a rather cumber-
some task if the domain is large. For instance, to define a reflexive relation over a
domain with n elements requires n tuples, or n facts in the case of a logic program.
Fortunately, in logic programming, relations can be defined to be reflexive with a single
clause of the form:

r(X,X).

However, in many cases one thinks of the Herbrand universe as the coded union of
several domains. For instance, the Herbrand universe consisting of the constants bill,
kate and love may be thought of as the coded union of persons and abstract notions.
If — as in this example — the intended domain of r/2 (encoded as terms) ranges over
proper subsets of the Herbrand universe and if the type predicate t/1 characterize this
subset, a reflexive relation can be written as follows:

r(X,X)← t(X).

For instance, in order to say that “every person looks like himself” we may write the
following program:

looks like(X,X)← person(X).
person(bill).
person(kate).
abstract(love).

In order to define a symmetric relation R it suffices to specify only one of the pairs
〈x, y〉 and 〈y, x〉 if 〈x, y〉 ∈ R. Then the program is extended with the rule:

r(X,Y)← r(Y,X).

However, as shown below such programs suffer from operational problems.

Example 6.3 Consider the domain:

{sarah, diane , pamela, simon , david , peter}

110 Chapter 6: Logic and Databases

The relation “. . . is married to . . . ” clearly is symmetric and it may be written either
as an extensional database:

married(sarah , simon).
married(diane , david).
married(pamela , peter).
married(simon , sarah).
married(david , diane).
married(peter , pamela).

or more briefly as a deductive database:

married(X,Y)← married(Y,X).
married(sarah , simon).
married(diane , david).
married(pamela , peter).

Transitive relations can also be simplified by means of rules. Instead of a program P
consisting solely of facts, P can be fully described by the clause:

r(X,Z)← r(X,Y), r(Y,Z).

together with all r(a, c) ∈ P for which there exists no b (b 6= a and b 6= c) such that
r(a, b) ∈ P and r(b, c) ∈ P .

Example 6.4 Consider the world consisting of the “objects” a, b, c and d:

d

c

b

a

The relation “. . . is positioned over . . . ” clearly is transitive and may be defined either
through a purely extensional database:

over(a, b). over(a, c).
over(a, d). over(b, c).
over(b, d). over(c, d).

or alternatively as the deductive database:

over(X,Z)← over(X,Y), over(Y,Z).
over(a, b).
over(b, c).
over(c, d).

6.5 Special Relations 111

The definitions above are declaratively correct, but they suffer from operational prob-
lems when executed by Prolog systems. Consider the goal ← married(diane , david)
together with the deductive database of Example 6.3. Clearly married(diane , david)
is a logical consequence of the program but any Prolog interpreter would go into an
infinite loop — first by trying to prove:

← married(diane , david).

Via unification with the rule a new goal clause is obtained:

← married(david , diane).

When trying to satisfy married(david , diane) the subgoal is once again unified with
the rule yielding a new goal, identical to the initial one. This process will obviously
go on forever. The misbehaviour can, to some extent, be avoided by moving the rule
textually after the facts. By doing so it may be possible to find some (or all) refutations
before going into an infinite loop. However, no matter how the clauses are ordered,
goals like ← married(diane , diane) always lead to loops.

A better way of avoiding such problems is to use an auxiliary anti-symmetric
relation instead and to take the symmetric closure of this relation. This can be done
by renaming the predicate symbol of the EDB with the auxiliary predicate symbol
and then introducing two rules which define the symmetric relation in terms of the
auxiliary one.

Example 6.5 The approach is illustrated by defining married/2 in terms of the aux-
iliary definition wife/2 which is anti-symmetric:

married(X,Y)← wife(X,Y).
married(X,Y)← wife(Y,X).

wife(sarah, simon).
wife(diane, david).
wife(pamela , peter).

This program has the nice property that it never loops — simply because it is not
recursive.

A similar approach can be applied when defining transitive relations. A new auxiliary
predicate symbol is introduced and used to rename the EDB. Then the transitive
closure of this relation is defined by means of the following two rules (where p/2
denotes the transitive relation and q/2 the auxiliary one):

p(X,Y)← q(X,Y)
p(X,Y)← q(X,Z), p(Z, Y).

Example 6.6 The relation over/2 may be defined in terms of the predicate symbol
on/2:

over(X,Y)← on(X,Y).
over(X,Z)← on(X,Y), over(Y,Z).

112 Chapter 6: Logic and Databases

on(a, b).
on(b, c).
on(c, d).

Notice that recursion is not completely eliminated. It may therefore happen that the
program loops. As shown below this depends on properties of the auxiliary relation.

The transitive closure may be combined with the reflexive closure of a relation. Given
an auxiliary relation denoted by q/2, its reflexive and transitive closure is obtained
through the additional clauses:

p(X,X).
p(X,Y)← q(X,Y).
p(X,Z)← q(X,Y), p(Y,Z).

Actually, the second clause is superfluous since it follows logically from the first and
third clause: any goal,← p(a, b), which is refuted through unification with the second
clause can be refuted through unification with the third clause where the recursive
subgoal is unified with the first clause.

Next we consider two frequently encountered types of relations — namely partial
orders and equivalence relations.

A binary relation is called a partial order if it is reflexive, anti-symmetric and
transitive whereas a relation which is reflexive, symmetric and transitive is called an
equivalence relation.

Example 6.7 Consider a directed, acyclic graph:

a

b d f

c e g

It is easy to see that the relation “there is a path from . . . to . . . ” is a partial order
given the graph above. To formally define this relation we start with an auxiliary,
asymmetric relation (denoted by edge/2) which describes the edges of the graph:

edge(a, b). edge(c, e).
edge(a, c). edge(d, f).
edge(b, d). edge(e, f).
edge(b, e). edge(e, g).

Then the reflexive and transitive closure of this relation is described through the two
clauses:

path(X,X).
path(X,Z)← edge(X,Y), path(Y,Z).

6.5 Special Relations 113

← path(a, f).

← edge(b, Y2), path(Y2, f).

← path(b, f).

← edge(a, Y0), path(Y0, f).

← path(a, f).

.....

Figure 6.2: Infinite branch in the SLD-tree

This program does not suffer from infinite loops. In fact, no partial order defined in
this way will loop as long as the domain is finite. However, if the graph contains a
loop it may happen that the program starts looping — consider the addition of a cycle
in the above graph. For instance, an additional edge from b to a:

edge(b, a).

Part of the SLD-tree of the goal← path(a, f) is depicted in Figure 6.2. The SLD-tree
clearly contains an infinite branch and hence it may happen that the program starts
looping without returning any answers. In Chapter 11 this problem will be discussed
and a solution will be suggested.

Example 6.8 Next consider some points on a map and bi-directed edges between the
points:

a c e

b f d

This time the relation “there is a path from . . . to . . . ” is an equivalence relation. To
define the relation we may start by describing one half of each edge in the graph:

114 Chapter 6: Logic and Databases

edge(a, b).
edge(a, c).
edge(b, c).
edge(d, e).

Next the other half of each edge is described by means of the symmetric closure of the
relation denoted by edge/2:

bi edge(X,Y)← edge(X,Y).
bi edge(X,Y)← edge(Y,X).

Finally, path/2 is defined by taking the reflexive and transitive closure of this relation:

path(X,X).
path(X,Z)← bi edge(X,Y), path(Y,Z).

Prolog programs defining equivalence relations usually suffer from termination prob-
lems unless specific measures are taken (cf. Chapter 11).

6.6 Databases with Compound Terms

In relational databases it is usually required that the domains consist of atomic ob-
jects, something which simplifies the mathematical treatment of relational databases.
Naturally, when using logic programming, nothing prevents us from using structured
data when writing deductive databases. This allows for data abstraction and in most
cases results in greater expressive power and improves readability of the program.

Example 6.9 Consider a database which contains members of families and the ad-
dresses of the families. Imagine that a family is represented by a ternary term family/3
where the first argument is the name of the husband, the second the name of the wife
and the last a structure which contains the names of the children. The absence of
children is represented by the constant none whereas the presence of children is rep-
resented by the binary term of the form c(x, y) whose first argument is the name of
one child and whose second argument recursively contains the names of the remain-
ing children (intuitively none can be thought of as the empty set and c(x, y) can be
thought of as a function which constructs a set by adding x to the set represented by
y). An excerpt from such a database might look as follows:

address(family(john,mary, c(tom, c(jim, none))),main street(3)).
address(family(bill, sue, none),main street(4)).

parent(X,Y)←
address(family(X,Z,Children), Street),
among(Y,Children).

parent(X,Y)←
address(family(Z,X,Children), Street),
among(Y,Children).

6.6 Databases with Compound Terms 115

husband(X)←
address(family(X,Y,Children), Street).

wife(Y)←
address(family(X,Y,Children), Street).

married(X,Y)←
address(family(X,Y,Children), Street).

married(Y,X)←
address(family(X,Y,Children), Street).

among(X, c(X,Y)).
among(X, c(Y,Z))←

among(X,Z).

The database above can be represented in the form of a traditional database by intro-
ducing a unique key for each family. For example as follows:

husband(f1, john).
husband(f2, bill).

wife(f1,mary).
wife(f2, sue).

child(f1, tom).
child(f1, jim).

address(f1,main street, 3).
address(f2,main street, 4).

parent(X,Y)← husband(Key, X), child(Key, Y).
...

However, the latter representation is less readable and it may also require some extra
book-keeping to make sure that each family has a unique key.

To conclude — the issues discussed in this chapter were raised to demonstrate the
advantages of using logic as a uniform language for representing databases. Facts, rules
and queries can be written in a single language. Moreover, logic supports definition of
relations via recursive rules, something which is not allowed in traditional databases.
Finally, the use of structured data facilitates definition of relations which cannot be
made in traditional relational databases. From this stand-point logic programming
provides a very attractive conceptual framework for describing relational databases.
On the other hand we have not raised important issues like how to implement such
databases let alone how to handle updates to deductive databases.

116 Chapter 6: Logic and Databases

Exercises

6.1 Reorganize the database in Example 6.2 so that father/2 and mother/2 be-
come part of the intensional database.

6.2 Extend Example 6.2 with some more persons. Then define the following pred-
icate symbols (with obvious intended interpretations):

• grandchild/2

• sister/2

• brother/2

• cousins/2

• uncle/2

• aunt/2

6.3 Consider an arbitrary planar map of countries. Write a program which colours
the map using only four colours so that no two adjacent countries have the same
colour. NOTE: Two countries which meet only pointwise are not considered
to be adjacent.

6.4 Define the input-output behaviour of AND- and inverter-gates. Then describe
the relation between input and output of the following nets:

y
x

z

v
z

y
x

w

6.5 Translate the following relational algebra expressions into definite clauses.

• πX,Y (HUSBAND(Key , X) 1 WIFE(Key , Y))

• πX(PARENT (X,Y) ∪ πX σY≤20,000 INCOME (X,Y))

6.6 The following clauses define a binary relation denoted by p/2 in terms of the
relations q/2 and r/2. How would you define the same relation using relational
algebra?

p(X,Y)← q(Y,X).
p(X,Y)← q(X,Z), r(Z, Y).

Exercises 117

6.7 Let R1 and R2 be subsets of D × D. Define the composition of R1 and R2

using (1) definite programs; (2) relational algebra.

6.8 Let R1 and R2 be subsets of D × D. Define the intersection of R1 and R2

using (1) definite programs; (2) relational algebra.

6.9 An ancestor is a parent, a grandparent, a great-grandparent etc. Define a
relation ancestor/2 which is to hold if someone is an ancestor of somebody
else.

6.10 Andrew, Ann, and Adam are siblings and so are Bill, Beth and Basil. Describe
the relationships between these persons using as few clauses as possible.

6.11 Define a database which relates dishes and all of their ingredients. For instance,
pancakes contain milk, flour and eggs. Then define a relation which describes
the available ingredients. Finally define two relations:

• can cook(X) which should hold for a dish X if all its ingredients are
available;

• needs ingredient(X,Y) which holds for a dish X and an ingredient Y if
X contains Y .

6.12 Modify the previous exercise as follows — add to the database the quantity
available of each ingredient and for each dish the quantity needed of each
ingredient. Then modify the definition of can cook/1 so that the dish can be
cooked if each of its ingredients is available in sufficient quantity.

118 Chapter 6: Logic and Databases

