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Preface

By the development of new fields and applications, such as Automated
Theorem Proving and Logic Programming, Logic has obtained a new and
important role in Computer Science. The traditional mathematical way of
dealing with Logic is in some respect not tailored for Computer Science ap-
plications. This book emphasizes such Computer Science aspects in Logic.
It arose from a series of lectures in 1986 and 1987 on Computer Science
Logic at the EWH University in Koblenz, Germany. The goal of this lec-
ture series was to give the undergraduate student an early and theoretically
well-founded access to modern applications of Logic in Computer Science.

A minimal mathematical basis is required, such as an understanding
of the set theoretic notation and knowledge about the basic mathematical
proof techniques (like induction). More sophisticated mathematical knowl-
edge is not a precondition to read this book. Acquaintance with some
conventional programming language, like PASCAL, is assumed.

Several people helped in various ways in the preparation process of the
original German version of this book: Johannes Kébler, Eveline and Rainer
Schuler, and Hermann Engesser from B.I. Wissenschaftsverlag.

Regarding the English version, I want to express my deep gratitude to
Prof. Ronald Book. Without him, this translated version of the book would
not have been possible.

Koblenz, June 1989 U. Schoéning
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Introduction

Formal Logic investigates how assertions are combined and connected, how
theorems formally can be deduced from certain axioms, and what kind of
object a proof is. In Logic there is a consequent separation of syntactical
notions (formulas, proofs) — these are essentially strings of symbols built up
according to certain rules — and semantical notions (truth values, models)
— these are “interpretations”, assignments of “meanings” to the syntactical
objects.

Because of its development from philosophy, the questions investigated
in Logic were originally of a more fundamental character, like: What is
truth? What theories are axiomatizable? What is a model of a certain
axiom system?, and so on. In general, it can be said that traditional Logic is
oriented to fundamental questions, whereas Computer Science is interested
in what is programmable. This book provides some unification of both
aspects.

Computer Science has utilized many subfields of Logic in areas such
as program verification, semantics of programming languages, automated
theorem proving, and logic programming. This book concentrates on those
aspects of Logic which have applications in Computer Science, especially
theorem proving and logic programming. From the very beginning, edu-
cation in Computer Science supports the idea of strict separation between
syntax and semantics (of programming languages). Also, recursive defini-
tions, equations and programs are a familiar thing to a first year Computer
Science student. This book is oriented in its style of presentation to this
style.

In the first Chapter, propositional logic is introduced with emphasis
on the resolution calculus and Horn formulas (which have their particular
Computer Science applications in later sections). The second Chapter intro-
duces the predicate logic. Again, Computer Science aspects are emphasized,
like undecidability and semi-decidability of predicate logic, Herbrand’s the-
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ory, and building upon this, the resolution calculus (and its refinements)
for predicate logic is discussed. Most modern theorem proving programs
are based on resolution refinements as discussed in Section 2.6.

The third Chapter leads to the special version of resolution (SLD-
resolution) used in logic programming systems, as realized in the logic
programming language PROLOG (= Programming in Logic). The idea
of this book, though, is not to be a programmer’s manual for PROLOG.
Rather, the aim is to give the theoretical foundations for an understanding
of logic programming in general.

Exercise 1: “What is the secret of your long life?” a centenarian was
asked. “I strictly follow my diet: If I don’t drink beer for dinner, then I
always have fish. Any time I have both beer and fish for dinner, then I do
without ice cream. If I have ice cream or don’t have beer, then I never eat
fish.” The questioner found this answer rather confusing. Can you simplify
it?

Find out which formal methods (diagrams, graphs, tables, etc.) you used
to solve this Exercise. You have done your own first steps to develop a
Formal Logic!



Chapter 1

PROPOSITIONAL
LOGIC

1.1 Foundations

Propositional logic explores simple grammatical connections, like and, or
and not, between the simplest “atomic sentences”. Such atomic sentences
are for example:

A = “Paris is the capital of France”

B = “mice chase elephants”

Such atomic components (of possibly more complex sentences) can be either
true or false. (In our understanding of the world, A is true but B is false.)
The subject of propositional logic is to declare formally how such “truth
values” of the atomic components extend to a truth value of a more complex
structure, such as

A and B.

(For the above example, we know that A and B is false because B is
already false.)

That is, we are interested in how the notion of a truth value extends
from simple objects to more complex objects. In these investigations, we
ignore what the underlying meaning of an atomic sentence is; our whole
interest is concentrated on the truth value of the sentence.
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For example, if

A

B = “Charlie is consulting a doctor”

“Charlie is getting sick”

then there is a big difference in colloquial language whether we say “A and B”
or “B and A”.

In the following definition we ignore such aspects occurring in natural
language. All atomic sentences (now called atomic formulas) are thought
of being enumerated as Ay, A3, Az, ... ignoring the possible “meanings” of
such formulas.

Definition (syntax of propositional logic)
An atomic formula has the form A; where i = 1,2,3,.... Formulas are

defined by the following inductive process:

1. All atomic formulas are formulas.
2. For every formula F', =F is a formula.

3. For all formulas F' and G, also (F'V G) and (F' A G) are formulas.

A formula of the form —F is called negation of F. A formula of the form
(F V G) is called disjunction of F' and G, and (F A G) is the conjunction
of F and G. Any formula F' which occurs in another formula G is called a
subformula of G.

Example: F = —((As A Ag) V —A3) is a formula, and all subformulas of
F are:
F, ((A5 A Aﬁ) v _|A3)’ (A5 A AG)) 4s, AGa _'A3; A3

We introduce the following abbreviations which allow a more succinct rep-
resentation of formulas:

A, B,C,... instead of Ay, Ag As, ...
(Fy — F;) instead of (=F;V F))
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(Fy & F») instead of ((Fy A F2)V (—F1 A —~F3))

(\n/ F,) instead of (...((FIVFz)VF3)V~--VFn)

(/n\ F,) instead of (...((FIAFQ)/\F;;)/\"'/\Fn)

Here, Fy, Fs,... can be arbitrary formulas. In particular, that means that
(A « E) is an abbreviation for the formula

((ANE)V(mAAN-E))
which, again, is an abbreviation for

((Al A As) \Y ("Al A ﬂAs)).

Notice that formulas are nothing else but strings of symbols (i.e. syntac-
tical objects). They do not have a “content” or “meaning” at the moment.
Therefore, it would be incorrect (or premature) to read A as “and”, and V
as “or”. Better would be, say, “wedge” and “vee”.

Formulas — and the components occurring in formulas — obtain an as-
sociated “meaning” by the following definition.

Definition (semantics of propositional logic)

The elements of the set {0,1} are called truth values. An assignment is a
function 4 : D — {0,1}, where D is any subset of the atomic formulas.
Given an assignment A, we extend it to a function A’ : E — {0,1}, where
E D D is the set of formulas that can be built up using only the atomic
formulas from D.

1. For every atomic formula A; € D, A'(A;) = A(4;).
1, if A/(F)=1and A(G) =1

0, otherwise

2. A((FAG)) = {

1, ifA(F)=1lor A(G)=1

0, otherwise

3. A((FVQ)) = {

1, ifA(F)=0
0, otherwise

4. A(-F) = {
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Since A’ is an extension of A (A and A’ agree on D), from now on, we
drop the distinction between A and A’ and just write A. (The reason for
this temporary distinction was to be able to define A’ formally.)

Example: Let A(A) =1, A(B) =1 and .A(C) = 0. Then we obtain:

A(-((4A B) Vv C))

i
= Nt I e W s W st

1, f A((AAB)VC)) =0

e

-

-

-

O PO PO =O

-

otherwise

if A((AAB)VC))=1

otherwise

if A((AAB))=1or A(C)=1
otherwise

if A(AAB)) =1 ( because A(C)=0)
otherwise

if A(A) =1and A(B) =1

otherwise

The (semantic) effect of the “operators” A,V, - can be described by the

following tables.

AF) AG) | A(FAG))
0 0 0
0 1 0
1 0 0
1 1 1
AF) AG) | A((FVG))
0 0 0
0 1 1
1 0 1
1 1 1
A(F) | A(-F)
0 1
1 0
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Using these tables, it is easy to determine the truth value of a formula F,
once an assignment of the variables occurring in F is given. As an example,
we consider again the formula F' = —~((A A B) V C), and we represent the
way F' is built up by its subformulas as a tree:

The truth value of F' is obtainable by marking all leaves of this tree with the
truth values given by the assignment 4, and then determining the values of
the inner nodes according to the above tables. The mark at the root gives
the truth value of F' under the given assignment A.
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Exercise 2: Find a formula F containing the three atomic formulas A, B,
and C with the following property: For every assignment A: {4, B,C} —
{0, 1}, changing any of the values .A(A4), A(B), A(C) also changes A(F).

From the definition of A(F) it can be seen that the symbol “A” is
intended to model the spoken word “and”, and similarly, “v” models “or”,
and “~” models “not”. If we add the symbols “—” and “—” (which we
introduced as syntactical abbreviations), then “—” stands for “implies” or
“f ...then”, and “~” stands for “if and only if”.

To make the evaluation easier of formulas which contain the (abbrevi-
ation) symbols — or «, we introduce tables for these symbols as above.

A(F) A@G) | A(F = G)) A(F) AG) | A(F < G))

0 0 1 0 0 1
0 1 1 0 1 0
1 0 0 1 0 0
1 1 1 1 1 1

Remark (induction on the formula structure)

The definition of formulas is an inductive definition: First, the simplest
formulas are defined (the atomic formulas), then it is shown how more
complicated formulas can be built up from simpler ones. The definition of
A(F) is also by induction on the formula structure. This induction principle
can also be used in proofs: If some statement S is to be proved for every
formula F, then it suffices to perform the following two steps.

1. (Induction Base) Show that S holds for every atomic formula A;.

2. (Induction Step) Show under the (induction) hypothesis that S holds
for (arbitrary, but fixed) formulas F and G, it follows that S also
holds for —=F, (F AG), and (F V G).
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Definition (suitable assignment, model, satisfiable, valid)

Let F' be a formula and let A be an assignment, i.e. a mapping from a
subset of {A1, As,...} to {0,1}. If A is defined for every atomic formula
A; occurring in F, then A is called suitable for F.

If A is suitable for F, and if A(F) = 1, then we write A |= F'. In this case
we say F' holds under the assignment A, or A is a model for F'. Otherwise
we write A [£ F, and say: under the assignment A, F' does not hold, or A
is not a model for F'.

A formula F is satisfiable if F has at least one model, otherwise F' is called
unsatisfiable or contradictory. Similary, a set M of formulas is satisfiable
if there exists an assignment which is a model for every formula F' in M.
(Note that this implies that this assignment is suitable for every formula in
A formula F is called walid (or a tautology) if every suitable assignment for
F is a model for F. In this case we write = F', and otherwise [£ F'.

Theorem

A formula F' is a tautology if and only if =F is unsatisfiable.

Proof:

F is a tautology iff every suitable assignment for F' is a model for F
iff every suitable assignment for F' (hence also for
—F) is not a model for —=F
iff —F does not have a model

iff —F is unsatisfiable.

The step from F' to —~F (or vice versa) can be visualized by the following
“mirror principle”:



10 CHAPTER 1. PROPOSITIONAL LOGIC

all formulas in propositional logic

satisfiable, unsatis-
valid | but non-valid fiable
formulas formulas formulas
|
F | -F
-G | G
|
I
|

Application of the negation symbol means a reflection at the broken line.
Hence a valid formula becomes an unsatisfiable formula (and vice versa),
and a formula being satisfiable, but non-valid, again becomes a formula of
this type.

Exercise 3: A formula G is called a consequence of a set of formulas
{F1, F3,..., Fi} if for every assignment A which is suitable for each of
F,, F,,..., Frand G, it follows that whenever A is a model for Fy, F5, ..., F},
then it is also a model for G.

Show that the following assertions are equivalent:

1. G is a consequence of {Fy, Fy,..., F¢}.
2. ((/\:‘=1 F;) — G) is a tautology.
3. ((/\:‘___1 F;) A =G) is unsatisfiable.

Exercise 4: What is wrong with the following argument?

“If I run the 100 meter race faster than 10.0 seconds, I will be admitted to
the Olympic games. Since I am not running the 100 meter race faster than
10.0 seconds, I will not be admitted to the Olympic games.”

The truth value of a formula obviously depends only on the truth assign-
ments to the atomic formulas which occur in the formula. More formally, if
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two suitable assignments A and A’ for F agree on all the atomic formulas
which occur in F, then A(F) = A'(F). (A formal proof of this fact would
be by induction on the formula structure of F).

The conclusion we can draw is, for determining whether a given formula
F is satisfiable or valid, it suffices to test finitely many different assignments
for the atomic formulas occuring in F. If F contains the atomic formulas
A1, ..., A,, then there are exactly 2" different assignments (because there
are 2" different functions from {4,,...,A4,} to {0,1}). This test can be
done systematically by truth-tables:

Ay Ay - Any A.| F
Ai: 0 0 0 0 | A(F)
Ay 0 0 0 1 | A(F)
Azn: 11 1 1 | Axn(F)

It is clear now, that F is satisfiable if and only if the sequence of obtained
truth values for F' (the column below F) contains a 1, and F is valid if and
only if the sequence consists only of 1’s.

Example: Let F = (-A — (A — B)).

It is more convenient to have an extra column for every subformula occuring
in F. Hence we obtain

A B|-A|(A—>B)|F
0 0 1 1 1
0 11 1 1
1 0] 0 0 1
1 1]0 1 1

The column below F consists only of 1’s, therefore F is a tautology.
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Remark: The truth-table method allows us to test formulas for satisfiabil-
ity or for validity in a systematic, i.e. algorithmic way. But note that the
expense of this algorithm is immense: For a formula containing n atomic
formulas, 2™ rows of the truth-table have to be evaluated. For a formula
with (only) 100 atomic formulas, the fastest existing computers would be
busy for thousands of years to determine whether the formula is, say, sat-
isfiable. (Find out how long 2!% microseconds are — supposing that one
line of the truth-table can be constructed in 1 microsecond). This expo-
nential behavior regarding the running time of potential algorithms for the
satisfiability problem in propositional logic does not seem to be improv-
able (except for special cases, see Section 1.3). The satisfiability problem
is “NP-complete”. (This notion cannot be explained here, see any book on
Complexity Theory).

Exercise 5: Show that a formula F of the form
k
F=(\G)
=1

is satisfiable if and only if the set of formulas M = {Gy,-- -, G} is satisfi-
able. Is this also true for formulas F of the form

k
F=(\/G)7?
=1

Exercise 6: How many different formulas F' with the atomic formulas
Ay, ..., A, and with different truth value sequences (columns below F) do
there exist?

Exercise 7: Give an example of a 3-element set M so that M is not
satisfiable, but every 2-element subset of M is satisfiable. Generalize your
example to n-element sets.

Exercise 8: Is the following infinite set of formulas satisfiable?

M= {Al VAz,mA3V A3, A3V Ay, nAgV 0 As,.. .}
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Exercise 9: Construct truth-tables for each of the following formulas.
((AAB)A(-BVC(C))

~(mAV~-(-BV -4))
(A (B e )

Exercise 10: Prove or give a counter example:

(a) If (F — G) is valid and F is valid, then G is valid.

(b) If (F — G) is satisfiable and F is satisfiable, then G is satisfi-
able.

(c) If (F — G) is valid and F satisfiable, then G is satisfiable.

Exercise 11:

(a) Everybody having a musical ear is able to sing properly.
(b) Nobody is a real musician if he cannot electrify his audience.

(c) Nobody who does not have a musical ear can electrify his audi-
ence.

(d) Nobody, except a real musician, can compose a symphony.

Question: Which properties does a person have who has composed a sym-
phony?

Formalize these assertions, and use truth-tables!

Exercise 12: Assume (F — G) is a tautology such that F and G do not
share a common atomic formula. Show that either F is unsatisfiable or
that G is a tautology (or both).

Show that the assumption about not sharing atomic formulas is necessary.
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Exercise 13: (Craig’s interpolation theorem)

Let | (F — G) and let F and G have at least one atomic formula in
common. Prove that there exists a formula H which is only built up from
atomic formulas occurring in both F and G such that | (F — H) and
E(H—G).

Hint: Use induction on the number of atomic formulas that occur in F,
but not in G. Alternatively, construct a truth-table for H.

1.2 Equivalence and Normal Forms

From the way we assign truth values to formulas, we know that (F V G)
and (G V F) “mean the same thing” - but syntactically the two formulas
are different objects. We express this semantic equality or equivalence with
the following definition.

Definition

Two formulas F and G are (semantically) equivalent if for every assignment
A that is suitable for both F' and G, A(F) = A(G). Symbolically we denote
this by F =G.

Remark: Formulas containing different sets of atomic formulas can be
equivalent (for example, tautologies).

Theorem (substitution theorem)

Let F and G be equivalent formulas. Let H be a formula with an occurrence
of F as subformula. Then H is equivalent to H' where H’ is a formula
obtained from H by substituting an occurrence of subformula F by G.

Proof (by induction on the formula structure of H):
Induction Base: If H i1s an atomic formula with an occurrence of F' as
subformula, then H = F. Therefore, H' = G which is equivalent to H.

Induction Step: Let H be a non-atomic formula. In the case that the
subformula F of H is H itself, the same argument as in the induction base
applies. So suppose that F' # H.
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Case 1: H has the form -H;.
The formula F is a subformula of H;. Therefore, by induction hypothesis,
H, is equivalent to H{ where H] is obtained from H; by substituting F' by
G. Thus we have H' = —H{. By the (semantic) definition of “=” it follows
that H and H’ are equivalent.

Case 2: H has the form (H; V Hj).

Then the occurrence of F in H is either in H; or in H,. We assume the
former case in the following (the latter case is analogous). Then again, by
induction hypothesis, H; is equivalent to H; where H] is obtained from
H, by substituting F' by G. Using the semantic definition of “V” it is clear
that H = (H{V Hy) = H'.

Case 3: H has the form (H; A Hy).

This case is proved analogous to Case 2. =

Exercise 14: Let F = G. Show: if F' and G’ are obtained from F
respectively G by substituting all occurrences of V by A (and vice versa)
then F/ = G'.

Theorem

For all formulas F', G, and H, the following equivalences hold.

(FANF) = F
(FVF) = F (Idempotency)
(FAG) = (GAF)
(FVG) = (GVF) (Commutativity)
(FAG)ANH) = (FA(GAH))
(FVG)VH) = (FV(GVH)) (Associativity)
(FA(FVG) = F
(FV(FAG) = F (Absorption)
(FA(GVH)) = (FAG)V(FAH))
(FV(GAH)) = (FVG)A(FVH)) (Distributivity)
-—F = F (Double Negation)
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~(FAG) = (FV-G)

~(FVG) = (-FA-G) (deMorgan’s Laws)
(FVG) = F,if Fisa tautology
(FAG) = G,if F is a tautology (Tautology Laws)
(FVG) = G,if F is unsatisfiable
(FAG) = F,ifF is unsatisfiable (Unsatisfiability Laws)

Proof: All equivalences can be shown easily using the semantic definition
of propositional logic. Also, we can verify them using truth tables. As an
example we show this for the first absorption law.

A(F) AG) | A(FVG)) | A(FA(FVG)))

0 0 0 0
0 1 1 0
1 0 1 1
1 1 1 1

The first column and the fourth column coincide. Therefore, it follows

(FA(FVG) = F.

Example: Using the above equivalences and the substitution theorem (ST)
we can prove that

((AV(BVC)A(CV-A)=((BA-A)VC)

because we have

((A V(BVC)A(CV-A))
= (((AVvB)VC)A(CV-A)) (Associativity and ST)
= ((CV(AVB))A(CV-A) (Commutativity and ST)
= (CV((AVB)A-A)) (Distributivity)
= (CV(—nAA(AVDB)) (Commutativity und ST)
= (CV((nAANA)V(~AAB)) (Distributivity and ST)
= (CV(—~AAB)) (Unsatisfiability Law and ST)
= (CV(BA-A4)) (Commutativity and ST)

((BA-A)VC) (Commutativity)
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Remark: The associativity law gives us the justification for a certain free-
dom in writing down formulas. For example, the notation

F=AANBACAD

refers to an arbitrary formula from the following list.

(((AAB)AC)AD)
((AAB)A(CAD))
((AA(BAC))AD)
(AA((BAC)AD))
(AA(BA(CAD)))

Since all these formulas are equivalent to each other, from the semantic
viewpoint it does not matter which of the formulas is referred to.

Exercise 15: Show that for every formula F there is an equivalent formula
G which contains only the operators - and —. Show that there exists a
formula having no equivalent one containing only the operators Vv, A and

—_,

Exercise 16: Show (by induction) the following generalizations of deMor-
gan’s law and of the distributivity laws.

"(V F;) (/\—‘F;)
ﬂ(/\ F;) (V ~F;)

((V AN G) = (V(VFEAG))

j=1 i=1 j=1

(ARIVAG) = (NAFEVGE))

ij=1 i=1 j=1

Exercise 17: Using the equivalences of the theorem, show that the formula
((AV ~(BAA)A(CV(DAC))) is equivalent to (C Vv D).
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Exercise 18: Formalize the following statements as formulas, and then
show that they are equivalent.

(a) “If the child has temperature or has a bad cough and we reach
the doctor, then we call him.”

(b) “If the child has temperature, then we call the doctor provided
we reach him, and, if we reach the doctor then we call him, if
the child has a bad cough.

In the following we show that every formula — whether it is built up in
a complicated way or not — can be transformed in an equivalent one which
has a certain normal form. Even more, the above equivalences and the
substitution theorem suffice for proving this.

Definition (normal forms)

A literal is an atomic formula or the negation of an atomic formula. (In
the former case the literal is called positive and negative in the latter.)

A formula F is in conjunctive normal form (CNF) if it is a conjunction of
disjunctions of literals, i.e.

F=(AV L) s

i=1 j=1
where L; j € {A1, Az, ...} U{-A1,-4,,...}

A formula F is in disjunctive normal form (DNF) if it is a disjunction of
conjunctions of literals, i.e.

F=(\/(\ L),

i=1 j=1

where L."j € {Al, A, .. } U {"Al, -A,,.. .}
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Theorem

For every formula F' there is an equivalent formula F; in CNF and an
equivalent formula F, in DNF.

Proof (by induction on the formula structure of F):

Induction Base: If F is an atomic formula, then F is already in CNF as
well as in DNF.

Induction Step: We distinguish between 3 cases.

Case 1: F has the form F = -G.
Then, by induction hypothesis, there are formulas G; in CNF and G; in
DNF that are equivalent to G. Let

G = (/\(\/i Li;)) -

=1 j=1

Application of deMorgan’s law to —G; (in the generalized form, see Exercise
16) yields

F=(\ ~(V L)
i=1 j=1
and finally,
F=(\/(A-L)
i=1 j=1

which, by the double negation law, becomes

F=(V(AT)

i=1 j=1

Av W Lij =4

where Lij = { -A if L;; = Ax .

Therefore, we have obtained a formula in DNF equivalent to F. Analo-
gously one can obtain from G, a formula in CNF equivalent to F.

Case 2: F has the form F = (G V H).

By induction hypothesis, there are equivalent formulas to G and to H in
DNF and in CNF. To obtain a formulain DNF equivalent to F, we simply
combine the DINF formulas for G and H by V (and then use associativity.)
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To obtain a formula in CNF equivalent to F, we first choose formulas
G1 and H, in CNF equivalent to G and H. Let

(A6

k
Hi = (/\H])

G,

where G} and Hj are disjunctions of literals. Using the generalized distribu-
tivity law (Exercise 16), we obtain

n k
F=(A(\Giv H)))

i=1 =1

Using associativity, the get the form
n-k
F= (/\ Fy)
i=1

where the F] are disjunctions of literals. Possible double occurrences of
literals within a disjunction, or double occurrences of disjunctions can be
eliminated using the idempotency laws. Also, if some of the disjunctions are
tautologies (because they contain a literal together with its complement)
then these disjunctions can be eliminated by the tautology law. This ulti-
mately gives a formula in CNF.

Case 3: F has the form FF = (GA H)

This case is analogous to Case 2. =

The induction proof of the previous theorem hides a recursive algorithm
to produce equivalent DNF and CNF formulas for a given formula. A
more direct method to transform a formula into equivalent, say, CNF is
the following.

Given: a formula F'.

1. Substitute in F' every occurrence of a subformula of the
form

--G by G,
~(GAH) by (=GV-H),
~(GVH) by (~GA-H),

until no such subformulas occur.
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2. Substitute in F each occurrence of a subformula of the
form

(FV(GAH)) by ((FVG)A(FVH)),
(FAG)VH) by (FVH)A(GVH),

until no such subformulas occur.

The resulting formula is in CNF (it still might contain superfluous, but
permissible occurrences of tautologies).

If a truth-table of a formula F is given or has been constructed, then there
is another method to produce an equivalent formula in DNF or CNF.

To obtain an equivalent formula in DNF proceed as follows. Every line
of the truth-table with the truth value 1 gives rise to a conjunction. The
literals occurring in this conjunction are determined as follows: If for the
assignment A that corresponds to this line we have A(A4;) = 1 then A; is
inserted as literal, otherwise —A;.

To obtain a formula in CNF equivalent to the given formula F' with its
truth-table, one has to interchange the roles of 0 and 1, and of disjunction
and conjunction in the above instruction.

Example: A formula F is given with the following truth-table.

——— -0 OO O
——_— o orm ool
—_ O oMo olq
SO - O OO
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Then we obtain immediately an equivalent formula in DNF
(FAA-BA-C)V(AA-BA-C)V(AA-BAC),
and also a formula in CNF

(AVBV-C)A(AV-BVC)A
(AV-BV-C)A(mAV-BVC)A(mAV-BV-C).

Exercise 19: Given is the following formula
(rA—=B)Vv((AA-C) «~ B)).

Using any of the above methods, construct an equivalent formula in DNF
and an equivalent one in CNF.

Observe that the formulas in DNF or CNF that are produced by the
above methods are not necessarily the shortest possible ones. This problem,
namely producing equivalent formulas in DNF or CNF that are as short
as possible is interesting in digital circuit design. The shorter the formula,
the fewer gates are needed for the circuit which realizes this formula. These
issues are not the theme of this presentation.

Observe also that all the algorithms presented for producing DNF or
CNF might produce an exponential “blow up” in the formula size. This
blow up is caused by the applications of the distributive law. Each ap-
plication roughly doubles the formula size. A formula with a short DNF
presentation in general has a long CNF presentation and vice versa.

Exercise 20: Show that for every formula F there exists a formula G
in CNF which can be constructed efficiently from F and has at most 3
literals per conjunction such that F is satisfiable if and only if G is satisfi-
able. (Note: it is not equivalence between F and G that is claimed here.)
Further, the size of G is linear in the size of F'.

Hint: The atomic formulas of G consist of those of F plus additional
atomic formulas. These additional atomic formulas correspond to the inner
nodes of the “structure tree” of F.
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In this situation, the formula G would contain a subformula (transformed
into CNF') of the form

o A(A (BAC)A:--

The reader is invited to complete the details.

1.3 Horn Formulas

An important special case of CNF formulas which often occurs in practical
applications are the Horn formulas (named after the logician Alfred Horn.)

Definition (Horn formula)

A formula F in CNF is a Horn formula if every disjunction in F contains
at most one positive literal.

Example:
F=(AV-B)A(-CV-AVD)A(mAV-B)ADA-E
G=(AV-B)A(CV-AV D).

F is a Horn formula and G is not.

Horn formulas can be (equivalently) rewritten in a more intuitive way,
namely as implications. (We call this the procedural reading of Horn for-
mulas.) In the above example, F' can be rewritten as

F=(B—AA(CAA—-D)A(AAB—-0)A(1 - D)A(E—0).
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Here, 0 stands for an arbitrary unsatisfiable formula and 1 for an arbitrary
tautology. It is easy to check that this equivalence really holds. The general
rule is this: write the negative literals to the left of the implication sign (and
a 1 if there is no negative literal), and write the positive literal (if any) at
the right of the implication sign (and a 0 if there is no positive literal). Such
an implication says whenever the premises are satisfied, then the conclusion
must be satisfied (and if the conclusion is 0, there is a contradiction). This
informal argument will be made more formal in the following theorem.

A general theme of this book is the search for efficient algorithms which
decide satisfiability (or validity) of formulas. Indeed, it is enough to have a
test for unsatisfiability because a formula is valid if and only if its negation
is unsatisfiable (cf. Exercise 3).

Using truth-tables, it is always possible to find out whether a formula
is satisfiable or unsatisfiable. On the other hand, we have observed already
that the expense of doing this is enormous: an algorithm based on con-
structing the full truth-table of a formula necessarily runs in exponential
time.

In contrast, for Horn formulas there exists an efficient test for satisfia-
bility which works as follows.

Instance: a Horn formula F

1. Mark every occurrence of an atomic formula A in F if there is a
subformula of the form (1 — A) in F.

2. while there is a subformula G in F of the form (A3 A--- A A,
— B) or of the form (A; A--- A A, — 0), n > 1, where
A, ..., Ap are already marked (and B is not yet marked)
do

if G is of the first form
then mark every occurrence of B
else output “unsatisfiable” and halt ;

3. Output “satisfiable” and halt. (The satisfying assignment is given by
the marking: A(A4;) = 1 if and only if A; has a mark.)
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Theorem

The above marking algorithm is correct (for Horn formulas as input), and
stops always after at most n many applications of the while loop (n =
number of atomic formulas in F.)

Proof: It is clear that the algorithm cannot mark more atomic formulas
than there exist. Therefore, the output “satisfiable” or “unsatisfiable” is
reached after at most n applications of the while loop.

Regarding the correctness of the algorithm, we observe that any model
A for the input formula F (if there is any) must satisfy A(A;) = 1, for all
atomic formulas A; that are marked during application of the algorithm.
This is immediate for the marked atomic formulas in step 1 of the algorithm
because a CNF formula F obtains the truth value 1 only if every disjunc-
tion in F' gets the value 1. If such a disjunction, as in step 1, has the form
(1 — A), then A necessarily has to receive the assignment 1. Therefore,
in step 2, it is necessary to mark (i.e. to assign 1 to) an atomic formula
B provided (A3 A---A A, — B) occurs in F and Aj,...A, are already
marked. Also, the decision for “unsatisfiable” is correct in the case that
(A1 A---ANA, — 0) occurs in F and A,,... A, are already marked.

If the marking process successfully ends and step 3 is reached, then the
formula F is satisfiable and the marking provides a model for F. To see
this, let G be an arbitrary disjunction in F. If G is an atomic formula, then
A(G) =1 is already guaranteed by step 1 of the algorithm. If G has the
form (AjA---AA, — B) (i.e., G = (nA;1V:--V-A,V B)), then either every
A; is marked by 1, and by step 2 of the algorithm, also B is marked, or for
at least one of the A;, A(A;) = 0. In both cases we get A(G) = 1. If G has
the form (A3 A---A Ay — 0) (i.e., G = (mA1 V ---V =Ay)), then, by the
assumption that step 3 was reached, for at least one of the A;, A(4;) =0.
Therefore, also in this case, A(G) = 1. n

Observe that the proof shows that the model .A obtained by the marking is
actually the smallest model for the formula F. That is, for every model A’
and all atomic formulas B occuring in F, A(B) < A'(B). (Here, the order
0 < 1 is assumed.)

Another consequence of the proof is that every Horn formula is satisfi-
able if it does not contain a subformula of the form (43 A---A A, — 0).
Exactly these subformulas possibly cause the above algorithm to halt with
the output “unsatisfiable”. Further, a Horn formula is satisfiable if it does
not contain a subformula of the form (1 — A). In this case the while loop
in step 2 will not be entered, and the control immediately reaches step 3.
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Exercise 21: Apply the above marking algorithm to the Horn formula
F=(~AV-BV-D)A-EA(-CVAYACABA(-GV D)AG.

(Notice that a truth-table for this formula would have 26 = 64 lines.)

Exercise 22: Give an example of a formula which does not have an equiv-
alent Horn formula. Why is this so?

Exercise 23: Suppose we have the apparatuses available to perform the
following chemical reactions.

MgO +H; — Mg+ H;0
C+0, — CO,
H,0+CO;, — H,CO;

Further, our lab has the following basic materials available: MgO, H,, O,
and C. Prove (by an appropriate application of the Horn formula algorithm)
that under these circumstances it is possible to produce H,CO3.

1.4 The Compactness Theorem

In this section an important theorem is proved. Perhaps, the reader will
not realize its importance at this time. But in Chapter 2 this theorem will
play an important role.

Recall that a set M of formulas is, by definition, satisfiable if there is
an assignment A such that for every F € M, A(F) = 1. We call such an
assignment a model for M.

Compactness Theorem

A set M of formulas is satisfiable if and only if every finite subset of M is
satisfiable.

Proof: Every model for M is also a model for every subset of M, in
particular, for every finite subset of M. Therefore the direction from right
to left is immediate.
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Conversely, suppose that every finite subset of M is satisfiable, i.e. has
a model. Our task is to construct one uniform model for M from this
variety of models. For every n > 1 let M,, be the set of formulas in M
that contains only the atomic formulas A4;,...,A,. Although M, might
be an infinite set, it contains at most 22" many formulas with different
truth tables. (Note that there are exactly 22" many different truth tables
with the atomic formulas A;,..., A,). Therefore, there is a collection of
formulas {Fy, ..., Fx} C My, k < 22", such that for every F € M,,, F = F;
for some i < k. Hence, every model for {Fi,..., Fi} is also a model for
M,,. By assumption, {Fj,..., Fx} possesses a model because it is a finite
subset of M. Call this model A,,. We further note that A, is also a model
for My,...,M, _; because M; C --- C M,_; C M,,.

We construct the desired model A for M in stages, such that we start
with A = 0 in stage 0 and we declare in stage n how A is defined on A,,.
Furthermore, in the construction appears an index set I which is initially
set to IN, the set of all natural numbers, and modified at each stage. We
find it convenient to use in some places the set theoretic notion for function
and write (A,,1) € A instead A(A4,) = 1. The stage construction follows.

Stage 0: A:=0;
I:=IN;
Stage n > 0: if there are infinitely many indices 7 € I with
A;(A,;) =1 then
begin
A:= AU{(4,,1)};
Ii=1-{i] Ai(An) # 1)
end
else
begin
A:= AU{(4,,0)};
1= I-{i] Ai(dn) #0)

end.

Since in each stage n the assignment A is extended by (A, 0) or by (4,,1),
but not both, A is a well-defined function with domain {4;, 4,, 43,...} and
range {0,1}.

We claim that A is a model for M. Let F be an arbitrary formula in M.
F contains only finitely many atomic formulas, say, Aj,...A;. Therefore, F
is an element of M; C Mj41 C - - - and each of the assignments A;, A;41,...
is a model for F'. It can be seen that the above construction has the property
that in each stage, I is “thinned out” because indices are canceled from I,
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but I will never become finite. Therefore, in stage [ infinitely many indices
remain in I, also such indices 7 with ¢ > I. All these remaining assignments
A; agree with each other and with A on {Ay,...,A;}. Hence, A(F) = 1.

"

Observe that the above proof is non-constructive. That is, the ezistence of
the model A is shown, but the test in the if statement cannot be checked in a
finite amount of time (cf. Section 2.3 about decidability questions.) Rather,
it is a “mental construction”: either the if condition or the else condition
is satisfied, and the construction is supposed to proceed correspondingly,
but we are not able to implement this process algorithmically.

Formulated in different terms, the compactness theorem states that a
set of formulas M is unsatisfiable if and only if there exists a finite subset
of M that is unsatisfiable. In this form the compactness theorem will be
used in Chapter 2. To give an understanding of this application in Chapter
2, suppose the set M can be enumerated by an algorithmic process

M= {Fl,Fz,F;;,...},

that is, there is an algorithm which, on input n, outputs F, in finite
time. To determine whether M is unsatisfiable, we generate successively
F,, F,, F3,... and test each time whether the finite set of formulas gener-
ated so far is unsatisfiable. If so, we know that M is unsatisfiable. On the
other hand, there is no way to confirm satisfiability in a similar manner.

Exercise 24: Let M be an infinite set of formulas so that every finite
subset of M is satisfiable. Suppose, no formula in M contains the atomic
formula A723. Therefore suppose, that none of the assignments A, in the
above construction is defined on A7,3. Find the value of .A(A7,3) given by
the above construction.

Exercise 25: Prove that M = {Fy, F>, F3,...} is satisfiable if and only if
for infinitely many n, (A]_, F;) is satisfiable.

Exercise 26: A set of formulas My is an aziom system for a set of formulas
M if
{A|A is model for Mo} = {A|A is model for M}.
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M is called finitely aziomatizable if M has a finite axiom system. Suppose,
{F1, F2, F3,...} is an axiom system for a set M where for all n > 1,

F (Fay1 — Fa) and £ (Fo — Faya).

Show that M is not finitely axiomatizable.

Exercise 27: Let L be an arbitrary infinite set of natural numbers, pre-
sented in binary notation (e.g., the set of prime numbers: L = {10, 11, 101,
111, 1011, ...}).) Prove there is an infinite sequence of different binary
numbers w;, wz, w3, ... such that w; is prefix of w;4+; and also prefix of
some element of L.

1.5 Resolution

Resolution is a simple syntactic transformation applied to formulas. From
two given formulas in a resolution step (provided resolution is applicable to
the formulas), a third formula is generated. This new formula can then be
used in further resolution steps, and so on.

A collection of such “mechanical” transformation rules we call a calculus.
Mostly, a calculus (like resolution) has an easy algorithmic description,
therefore a calculus is particularly qualified for computer implementation.
In the case of resolution there is just one rule which is applied over and
over again until a certain “goal formula” is obtained.

The definition of a calculus is sensible only if its correctness and its
completeness can be established (both with respect to the particular task
for which the calculus is designed). To be more precise in the case of the
resolution calculus, the task is to prove unsatisfiability of a given formula.
(Remember that many other questions about formulas can be reduced to
unsatisfiability, cf. Exercise 3.)

In this case, correctness means that every formula for which the reso-
lution calculus claims unsatisfiability indeed is unsatisfiable. Completeness
means that for every unsatisfiable formula there is a way to prove this by
means of the resolution calculus.
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A general precondition for the application of resolution to a formula is
that the formula (or set of formulas) is in CNF. That is, if necessary, the
formula has to be transformed into an equivalent CNF formula (see also
Exercise 20.) Let the formula F' be

F:(Ll’lV-'-VLl,nl)/\‘--/\(Lk,lV'--VLk’nk)

where the L; ; are literals, i.e. L;; € {A;,A,,---} U {-A;,-A,,---}. For
the presentation of resolution it is advantageous to represent formulas in
CNF as sets of so-called clauses where a clause is a set of literals:

F= {{Ll,ly"‘le,ﬂl}y“'y{Lk,ly"‘va,nk}}

In this example, {L1,1,...,L1,,} is a clause. Hence a clause corresponds
to a disjunction. A comma separating two literals within a clause can be
thought of V, whereas a comma that separates two clauses corresponds to
a A

The elements in a set do not have an order or priority and multiple
occurrences of an element “melt” together into a single element. There-
fore, simplifications stemming from associativity, commutativity or idem-
potency are “automatically” provided by the set notation. The follow-
ing equivalent CNF formulas all have the same set presentation, namely

{{As},{A1,~42}}:

(A1 V—A2) A (A3 A A))
(Az3 A (mA2V Ar))
(A3 N (("1A2 \Y "IAQ) \Y} Al))

etc.

To keep notation simple, in the following we use the same letter F' to
represent a CNF formula, and also its corresponding clause representation.
Of course, the relationship between clause sets and formulas is not one
to one, as the above example shows. Furthermore, we apply notions like
equivalence and satisfiability also to clause sets.

Definition (resolvent)

Let C;,C, and R be clauses. Then R is called a resolvent of C; and C, if
there is a literal L € Cy such that L € Cy and R has the form

R=(C,—{L})HU(Cy—{L}).
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Here, L is defined as
y —A; ifL=A4;,
- A; ifL=-A4;.

Graphically we denote this situation by the following diagram.

C C,

N

R

The above definition also includes the case that R is the empty set (if
C1 = {L} and C; = {L} for some literal L.) This empty clause is denoted
by the special symbol O. By definition, the empty clause O is unsatisfiable.
Therefore, a clause set which contains O as an element is unsatisfiable.

The following are some examples for resolutions.

{A3,~A4, A1} {A4, A4}

{A3, Al, _'Al}

{43, 44, A1} {Aq, A}
{A3a _'A4, A4}
{As7} {~A17}

Exercise 28: Give the entire list of resolvents which can be generated from
the set of clauses

{{A, E,-B},{-A,B,C},{-A,-D,~E},{A, D}}.
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Exercise 29: If R is a resolvent of two Horn clauses, prove that R is a
Horn clause, too.

Resolution Lemma
Let F be a CNF formula, represented as set of clauses. Let R be a resolvent
of two clauses C; and Cy in F. Then, F and F U {R} are equivalent.

Proof: Let A be an assignment that is suitable for F (and also for FU{R}).
If A E FU{R} then immediately, A | F. Conversely, suppose A | F,
that is, for all clauses C € F, A = C. Assume the resolvent R has the form
R = (C1 — {L})U (C2 - {f}) where CI,CQ €Fand L€ Cl,f € C,.

Case 1: AE L.

Then, by A = Cy and A £ L, it follows A |= (C, — {L}), and therefore
AER.

Case 2: A L.
Then, by A = Ci, it follows A |= (C; — {L}), and therefore A = R. .

Definition
Let F be a set of clauses. Then Res(F) is defined as
Res(F) = FU{R| R is a resolvent of two clauses in F}.

Furthermore, define

ResO(F)
Res"“(F)

F
Res(Res"(F)) forn>0.

and finally, let
Res*(F) = | | Res™(F) .
n>0

Exercise 30: For the following set of clauses,

F= {{Aw—'BvC}w {BvC}’ {—1A,C}, {B’ ﬂC}’ {—'C}}
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determine Res™(F) for n =0, 1,2.

Exercise 31: Prove that for every finite clause set F there is a £ > 0 such
that
Res*(F) = Res*™'(F) = ... = Res*(F).

Estimate k (in terms of, e.g., the number of clauses, the maximum size of
a clause, and and the number of different atomic formulas in F).

Exercise 32: Let F be a set consisting of n clauses that contains the
atomic formulas A;, As, ..., A,. What is the maximum size of Res*(F)?

Now we proceed to the proof of correctness and completeness of the reso-
lution calculus (with respect to unsatisfiability). In this context, resolution
is called refutation complete.

Resolution Theorem (of propositional logic)

A clause set F' is unsatisfiable if and only if O € Res*(F).

Proof: Using the compactness theorem, we may assume that F' is finite,
otherwise we pick an unsatisfiable finite subset of F.

(Correctness) We need to show that O € Res”(F) implies that F is
unsatisfiable. From the Resolution Lemma, we obtain

F = Res'(F) = Res?’(F) = --- = Res"(F) = -

Since O is contained in Res*(F), it is contained in Res"t!(F) for some
n. The empty clause O can only be obtained from two clauses of the
form {L} and {L}. Therefore, {L},{L} € Res"(F). Obviously there is no
assignment which can make all clauses in Res" (F’) true, therefore, Res™ (F')
is unsatisfiable, and by the above equivalence, F' is unsatisfiable.

(Completeness) Suppose that F' is unsatisfiable. We show O € Res*(F)
by induction on the number n of different atomic formulas in F.

Induction Base: If n = 0, then it must be that F' = {0}, and therefore,
O € Res™(F).
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Induction Step: Let n be arbitrary, but fixed. Suppose that for ev-
ery unsatisfiable set of clauses G containing at most the atomic formulas
Ay,...,A,, O € Res*(G). Let F be a clause set with the atomic formu-
las Ay,...,An, Apy1. Without loss of generality we may assume that no
clause contains both A,4; and —A,4; (Why?). From F we obtain two
new clause sets Fy and F; as follows. Fj results from F' by canceling ev-
ery occurrence of the positive literal A,4; within a clause, and for every
occurrence of the negative literal = A, within a clause, the entire clause
is canceled. Analogously Fj is defined where the roles of A,4+1 and —Ap, 41
are interchanged.

Note that Fy (F}) essentially results from F by fixing the assignment of
Ant1to 0 (to 1, resp.) Therefore, both Fy and Fy are unsatisfiable. Assume

to the contrary that Fy has a satisfying assignment A : {A;,...,Ap} —
{0,1}. Then, A’ is a satisfying assignment for F' where

o [ AB) ifBe{Ar,... A}
A(B)‘{ 0 ifB=An.

This contradicts the unsatisfiability of F. Similarly it can be shown that
F is unsatisfiable.

Therefore, by induction hypothesis, O € Res*(Fy) and O € Res*(F}).

This means there is a sequence of clauses Cy,Cs,...,Cy, such that
C'm =0,
and fori=1,...,m, C; € Fy or C; is a resolvent of two clauses

C.,Cy with a,b < i.

An analogous sequence C},Cj, ..., C| exists for Fi. Some of the clauses C;

were obtained from F' by canceling the literal A, ;. By restoring the orig-

inal clauses C; U {A, 41}, and carrying A, along in the resolution steps,

we obtain from Cj,Cs,...,Cyp a new “proof sequence” for F' which wit-

nesses that {A,4,} € Res*(F). Similarly, restoring A4, in the sequence
1,C%,...,C; shows that {—~An41} € Res™(F).

By a further resolution step,

{Ant+1} {=4Ap41}

the empty clause can be derived, and therefore O € Res™(F). L]
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From the resolution theorem the following algorithm can be derived that
decides satisfiability for a given input formula in CNF (or clause set) F
(cf. Exercise 31).

Instance: a formula F in CNF

1. Form a clause set from F' (and continue to call it F);

2. repeat
G:=F;
F := Res(F);

until (O € F) or (F = G);

3. if O € F then “F is unsatisfiable”
else “F is satisfiable”;

In some cases this algorithm can come up with a decision quite fast, but
there do exist examples for unsatisfiable formulas where exponentially many
resolvents have to be generated before the until condition is satisfied (cf.
Urquhart in the references).

In the following we want to distinguish between the clauses which are
generated by the algorithm and those clauses thereof which are really rele-
vant to derive the empty clause. (This might be significantly less clauses.)
Implicitly, we used the following definition already in the proof of the res-
olution theorem.

Definition

A derivation (or proof) of the empty clause from a clause set F is a sequence
C1,Cs,...,Cp of clauses such that

C,, 18 the empty clause, and for every i = 1,...,m, C; either is
a clause in F or a resolvent of two clauses C,, Cp with a,b < 2.

Reformulating the resolution theorem, it should be clear that a clause set
F is unsatisfiable if and only if a derivation of the empty clause from F
exists. To prove that a clause set F' is unsatisfiable it is therefore enough
to present a sequence of clauses according to the above definition. It is not
necessary to write down all the clauses in Res*(F).
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Example: Let F = {{A, B,~C},{-A},{A,B,C},{A,~B}}. F is unsat-
isfiable. This fact is proved by the following derivation Cj,...,C7 where

C
C;
Cs
Cy
Cs
Ce
Cr

{A, B,~C} (clause in F)
{A, B,C} (clause in F)
{A, B} (resolvent of Cy, C5)
{A,-B} (clause in F)
{A} (resolvent of C3,Cy)
{~4} (clause in F)
(] (resolvent of Cs, Cs)

This situation can be visualized by the resolution graph:

Such graphs need not necessarily be trees if the same clause is used in more

C, C;

than one resolution step.

Exercise 33: Using resolution, show that A A B A C is a consequence of

the clause set

F = {{-A4, B}, {-B,C},{4,~C},{4, B, C}}

Exercise 34: Using resolution, show that

F=(-BA-CAD)V(~BA-D)V(CAD)VBEB

is a tautology.
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Exercise 35: Show that the following restriction of the resolution calculus
is complete for the class of Horn formulas (but not for the general case):
Derive a resolvent from two clauses Cy, C> only if one of these clauses is a
unit clause, i.e. it consists of only one literal.

This resolution restriction has the property that the resolvents become
shorter. Therefore, from the completeness of this restriction a similarly
efficient algorithm for Horn formulas can be derived as the one presented
in Section 1.3.

Hint: Show that the process of the marking algorithm for Horn for-
mulas from Section 1.3 can be simulated in a certain way by appropriate
applications of resolution steps with unit clauses.

Second Hint: This exercise will be solved in Section 2.6.

Exercise 36: Let F' be a clause set with the atomic formulas A4,,..., 4,
where each clause contains at most two literals (such clauses are called
Krom clauses). How large can Res*(F) be at most? (From this exercise it
follows that there is an efficient algorithm for determining satisfiability of
Krom formulas.)

Exercise 37: Develop an efficient implementation of the resolution calculus
which uses the following data structure: The example clauses

{A,-B,C,D},{A,B},{—A,~B,~C},{-B}

are represented by the following clause graph,

[A|-B|C|D|

| 24| 2B | ~C |

[=5]
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where an edge indicates a pair of complementary literals (and therefore
the possibility of producing a resolvent.) Each edge can give the cause
for a resolution step. In case a resolution step is performed, a new vertex
representing the resolvent is generated. The edge connections to this new
vertex can be read off from the parent vertices.

Furthermore, it is possible to cancel certain edges from the graph (and
the necessity to produce the corresponding resolvents) by certain locally
checkable conditions. For example, both edges between the second and
third clause can be canceled. Also, under certain conditions, vertices can
be canceled from the graph, and need not be considered. For example, the
first vertex can be canceled.

Exercise 38: Given is the following resolution graph where Cj,...,C7 are
Horn clauses.

Cl Cz C3 C4

Show that this tree can be made linear, such that the clause C; can be
obtained from Cj, Cy,C3,C4 in the following way

¢, C, G, G,
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where {71, 12,173,714} = {1,2,3,4} and C’,C” are certain suitably chosen
Horn clauses.

Exercise 39: A clause is called positive (negative) if it contains only pos-
itive (negative) literals. Show that a clause set is satisfiable if it does not
contain a positive clause. (The same holds if it does not contain a negative
clause.)

Exercise 40: Show that the following restriction of resolution is complete:
A resolvent of two clauses Cy,C5 is only produced if one of the parent
clauses is positive.

Hint: This exercise is solved in Section 2.6.

Exercise 41: Let F' be an unsatisfiable clause set , and let G be a minimally
unsatisfiable subset of F. (That means that G is unsatisfiable, but every
proper subset of G is satisfiable.) Show that every derivation of the empty
clause from F' consists of at least |G| — 1 many resolution steps where |G|
denotes the number of clauses in G.

Remark: We have seen that in some special cases the resolution calculus
leads to an efficient algorithm to determine (un)satisfiablity (cf. Exercises
35,36). But in the case of arbitrary clause sets, it is possible to exhibit
unsatisfiable clause sets such that every derivation of the empty clause
consists of exponentially many resolution steps (cf. Urquhart). That is, the
expense of the resolution algorithm is comparable with the expense of the
truth-table method. Because of the “NP-completeness” of the satisfiability
problem, there does not seem to exist any significantly faster algorithm.

Another peculiarity is worth mentioning: Both satisfiability and unsat-
isfiablity of a given formula F' can be expressed by an ezistential statement.
By definition, F is satisfiable if there ezists a satisfying assignment for F.
On the other hand, F' is unsatisfiable if there ezists a resolution derivation
of the empty clause from F. As discussed above, there is a catch to this
apparent symmetry. Writing down a resolution proof can be much more
expensive than writing down a satisfying assignment. (This non-symmetry
is closely related with the “NP=?co-NP” problem.)






Chapter 2

PREDICATE LOGIC

2.1 Foundations

Predicate logic can be understood as an extension of propositional logic.
The additional new concepts include quantifiers, function symbols and pred-
icate symbols. These new notions allow us to describe assertions which
cannot be expressed with the available tools of propositional logic. For ex-
ample, up to this point it was not possible to express that certain “objects”
stand in certain relations, or that a property holds for all such objects,
or that some object with a certain property ezists. Here is a well known
example from calculus:

For all ¢ > 0 there exists some ng, such that for all n > ng,
abs(f(n) —a) < e.

The main concepts here are the verbal constructs for all and ezists, as well
as the use of functions (abs, f, —) and relations (>, >, <).

As in propositional logic, we start by formalizing the syntactic frame-
work in which we want to discuss formulas in predicate logic. But first we
need to define the syntax of the so-called terms, since terms occur as parts
of formulas in predicate logic.

Definition (syntax of predicate logic)

A wvariable is of the form z; where i = 1,2,3,.... A predicate symbol is of

41
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the form P} and a function symbol of the form f¥ where i = 1,2,3,... and
k =0,1,2,.... Here, 1 is the distinguishability indexr and k is called the
arity. In the case of arity 0, we drop the parentheses, and just write P or
f2. A function symbol of arity 0 will also be called a constant. Next, we
define terms by an inductive process as follows.

1. Each variable is a term.

2. If f is a function symbol with arity k, and if ¢, ..., %, are terms, then
f(ty,...,tg) is a term.

Next, formulas (of predicate logic) are defined inductively as follows.

1. If P is a predicate symbol with arity k, and if ¢;,...,¢; are terms,
then P(ty,...,%x) is a formula.

2. For each formula F, —F is a formula.

3. For all formulas F and G, (F AG) and (F V G) are formulas.

4. If z 1s a variable and F is a formula, then 3z F and Vz F' are formulas.

Atomic formulas are exactly those formulas built up according to rule 1. If
F is a formula, and F occurs as part of the the formula G, then F is called
a subformula of G.

All occurrences of a variable in a formula are distinguished into bound
and free occurrences. An occurrence of the variable z in the formula F
is bound if z occurs within a subformula of F of the form 3zG or VzG.
(Hence, the same variable z can occur both free and bound in a formula F,
see also Exercise 42).

A formula without occurrence of a free variable is called closed. The
symbols 3 and V are called quantifiers where 3 is the ezistential quantifier
and V is the universal quantifier. The matriz of a formula F, denoted
symbolically by F*, is obtained by canceling in F' every occurrence of a
quantifier and the variable that follows the quantifier.
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Example: F = (3z,P2(z1, fi(z2)) V =Vz2P}(z2, f2(f2, f2(z3)))) is a for-
mula. All the subformulas of F' are:

F

3z, P (21, f3(22))

Pi(z1, f3(z2))

~Vz2PY(z2, f7(f3, f3(23)))

V22 P{(z2, f7(f3, £3(23)))

P}(z2, f3(£2, f3(z3)))

All the terms that occur in F are:

1

T2

fi(z2)

f3(f2, £3(=3))

i1

f3(z3)

z3
All occurences of z; in F are bound. The first occurence of z; is free, all
others are bound. Further, z3 occurs free in F. Hence, the formula F is

not closed. The term f? is an example for a constant. The matrix of F is
the formula

F* = (P(z1, f3(22)) V ~Pi (22, f7(£3, f5(23))))

Exercise 42: Let Free(F) be the set of all variables that occur free in F.
Define Free(F) formally (by induction on the term and formula structure).

Again, we allow the same simplifying notations for formulas as in proposi-
tional logic. Additionally, we allow the following abbreviations.
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u,v,w,z,y,z always stand for variables.

a,b,c always stand for constants.

f,9,h stand for function symbols where the arity can
always be inferred from the context.

P,Q,R stand for predicate symbols where the arity

can always be inferred from the context.

Exercise 43: List all subformulas and terms that occur in the formula

F=(Q(z) Vv (3=2Vy(P(f(2),z) A Q(a)) V VzR(z, 2,9(2))))

Which subformulas are closed? Determine for each occurrence of a variable
if it is free or bound. What is the matrix of F?

To interpret formulas of predicate logic (i.e. to give them a semantics, i.e.
a “meaning”), we need to associate functions to the function symbols and
predicates to the predicate symbols (in both cases, we also have to fix some
ground set on which the functions and predicates are defined). Furthermore,
variables that occur free in a formula need to be interpreted as elements
of the ground set. If this is done, the formula gets a “meaning”, in this
case, a truth value. This intuitive explanation will be made formal in the
following definition.

Definition (semantics of predicate logic)

A structure is a pair A = (U4, I4) where Uy is an arbitrary, non-empty
set and is called the ground set or universe. Further, I 4 is a mapping that
maps

e each k-ary predicate symbol P to a k-ary predicate on Uy (if I4 is
defined on P).

e each k-ary function symbol f to a k-ary function on Ua (if I4 is
defined on f).

e each variable z to an element of Uy (if 14 is defined on z).
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In other words, the domain of I4 is a subset of {P}, fF,z; | i =1,2,3,...
and £ = 0,1,2,...}, and the range of I4 is a subset of all predicates,
functions, and single elements of U4. In the following, we abbreviate the
notation and write P# instead of I4(P), f# instead of I4(f), and z#
instead of I4(z).

Let F be aformula and A = (U4, I4) be a structure. A s called suitable
for F if I4 is defined for all predicate symbols, function symbols, and for
all variables that occur free in F.

Example: F = VzP(z, f(z)) AQ(g(a, 2)) is a formula. Here, P is a binary
and @Q a unary predicate, f is unary, g a binary, and a a 0-ary function
symbol. The variable z is free in F. An example for a structure A =
(U, I14) which is suitable for F is the following.

Us = {0,1,2,3,...} = N,

I4(P) = P* = {(m,n)|mn€ Uy and m< n},

I4(Q) = Q* := {neUy|nis prime}

IA(f) = fA = the successor function on Uy,
hence fA(n) =n+1,

Ia(9) = g* = the addition function on Uy,
hence g*(m,n) = m +n,

Iq(a) = a? = 2,

I4(2) = z4=3.

In this structure F is obviously “true” (we will define this notion in a
moment), because every natural number is smaller than its successor, and
the sum of 2 and 3 is a prime number.

Of course, for this formula F' one can also define suitable structures in
which F is “false”. That is, F' is not a “valid” formula, i.e. F' is not true in
every suitable structure.

We do not intend to give the impression that the universe of a structure
needs to be a set of numbers. Now we present an example of a structure
which might look a little artificial at first, but this type of structure will
play a crucial role in Section 2.4. Let F be a formula containing at least
one constant (i.e. a function symbol with arity 0), and let A = (U4, I4) be
a structure where U4 consists of all variable-free terms that can be built
from the symbols occuring in F. For the example formula F' above, we get

Ug= {a'v f(a')a g9(a,a), f(g(a" a’))v g(f(a')’ a‘)v .- }
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The crucial point is the interpretation of function symbols. For the function
symbol f in F and for any term t € Uy, let fA(t) be the term f(t) € Uy,
and for the function symbol ¢ in F and for any terms t,,t; € Uy4 let
g*(t1,12) be the term g(t1,t2) € U4. Furthermore, let a* = a. The reader
should see what kind of interaction between syntax and semantics is going
on here. The terms in U4 are interpreted by themselves. For a complete
definition of a structure A, the interpretation of the predicate symbol P
still has to be given (i.e. the definition of 14 has to be extended to P). We
leave it to the reader to do this in such a way that F becomes true (resp.
false) under A.

Definition (semantics of predicate logic — continued)

Let F be a formula and let A = (U4, I4) be a suitable structure for F. For
each term t occurring in F, we denote its value under the structure A as
A(t) and define it inductively as follows.

1. If t is a variable (i.e., t = z), then we let A(t) = z4.

2. If t has the form t = f(t,,...,t;) where t;,...t; are terms and f is a
function symbol of arity k, then we let A(t) = fA(A(t1),..., A(tx)).

The rule 2 also includes the possibility that f has arity 0, that is, ¢ has the
form t = a. In this case we get A(t) = a*.

Similarly, we define the (truth-)value of the formula F', denoted A(F),
under the structure A by an inductive definition.

1. If F has the form F = P(t;,...,t;) where t,,...,t; are terms and P
is a predicate symbol of arity k, then

1, if (A(t1),...,A(tx)) € PA

0, otherwise

A(F) = {
2. If F has the form F = -G, then

A(F):{ 1, if A(G) =0

0, otherwise

3. If F has the form F = (G A H), then
1, if A(G)=1and A(H) =1

0, otherwise

A(F) = {
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4. If F has the form F = (G V H), then

1,if A(G)=1or A(H)=1

0, otherwise

A(F) = {

5. If F has the form F = VzG, then

1, if for all u € Ug, Apz/4)(G) =1
0, otherwise

A(F) = {

Here, Af;/y) is the structure A’, which is identical to A with the

exception of the definition of z4' : No matter whether I 4 is defined
on z or not, we let z4 = u.

6. If F has the form F = 3zG, then

A(F) = 1, if there exists some u € U4 such that Ap;/4)(G) =1
(F) = 0, otherwise

If for a formula F and a suitable structure A we have A(F) = 1, then
we denote this by A |= F (we say, F is true in A, or A is a model for F). If
every suitable structure for F is a model for F, then we denote this by = F
(F is valid), otherwise [ F. If there is at least one model for the formula F
then F is called satisfiable, and otherwise unsatisfiable (or contradictory).

Exercise 44: Consider the following formula
F =Vz3yP(z,y, f(2)) .

Define a suitable structure A = (U4, I4) for F which is a model for F, and
another structure B = (Ug, Ig) which is not a model for F.

Many notions from propositional logic, like “consequence” and “equiva-
lence” can be translated directly into predicate logic. We will use these
notions in the following without giving new definitions.

Remarks:

1. Analogously to propositional logic, it can be shown
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F is valid if and only if = F is unsatisfiable.

2. Predicate logic can be understood as an extension of propositional

logic in the following sense. If all predicate symbols are required
to have arity 0 (then there is no use for variables, quantifiers, and
terms), essentially we get the formulas in propositional logic where the
predicates P? play the role of the atomic formulas A; in propositional
logic.

It even suffices not to use variables (and therefore also no quantifiers)
such that predicate logic “degenerates” to propositional logic. Let

F = (Q(a) V-R(f(b),c)) A P(a,b)

be a formula without variables (but with predicate symbols of arity
greater than 0). By identifying different atomic formulas in F' with
different atomic formulas A; of propositional logic, such as

Qa) «— A
R(f(b),c) «— Az
P(a,b) «— A3
we get
FIZ(AIV"lAQ)/\Aa.

Obviously, a formula obtained like F’ from F is satisfiable (or valid)
if and only if F' is satisfiable (or valid).

. Observe that a formula without occurrences of a quantifier (e.g. the

matrix of a given formula) can be transformed into an equivalent
formula in CNF or DNF where only the tools from propositional
logic are needed.

. Although predicate logic is expressionally more “powerful” than pro-
g g y

positional logic (i.e. more statements in colloquial language can be
expressed formally), it is not powerful enough to express every con-
ceivable statement (e.g. in mathematics). We obtain an even stronger
power if we allow also quantifications that range over predicate or
function symbols, like

F =VP3fVzP(f(z)) .

This is a matter of the so-called second order predicate logic (that
we will not study in this book). What we consider here is the first
order predicate logic. The elements of the universe (symbolized by the
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variables in a formula) are understood as first order objects whereas
predicates and functions defined on the universe are second order
objects.

Exercise 45: Consider the following formulas Fy, F», F3 which express that
the predicate P is reflexive, symmetric and transitive.

F, = VzP(z,z)
F, = VazVy(P(z,y) = P(y,z))
F3 = VazVyV¥z((P(z,y) A P(y,z)) — P(z,2))

Show that none of these formulas is a consequence of the other two by
presenting structures which are models for two of the formulas, but not for
the respective third formula.

Exercise 46: In predicate logic with identity the symbol = is also permit-
ted in formulas (as a special binary predicate with a fixed interpretation)
which is to be interpreted as identity (of values) between terms. How has
the syntax (i.e. the definition of formulas) and the semantics (the definition
of A(F)) of predicate logic to be extended to obtain the predicate logic
with identity?

Exercise 47: Which of the following structures are models for the formula
F = 3z3y32(P(z,y) A P(z,y) A P(z,2) A—P(z,z)) ?

(a) Us =N, PA = {(m,n) | m,n € N, m < n}
(b) Us =N, PA = {(m,m+1) | me N}

(c) Ug=2N (the power set of IN),
PA={(4,B)|A,BCIN, AC B}

Exercise 48: Let F be a formula, and let z,4,...,z, be the variables that
occur free in F. Show:
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(a) F is valid if and only if Vz,Vz; - - -Vz, F is valid,

(b) F is satisfiable if and only if 3z,3z, - -3z, F is satisfiable.

Exercise 49: Find a closed satisfiable formula F, such that for every model
A= (Ua,Ia)of F, [Us| > 3.

Exercise 50: Let F be a satisfiable formula and let .A be a model for F
with |[U4| = n. Show that for every m > n there is a model B,, for F with
|Us,.| = m. Furthermore, there is a model By, for F with |Ug_ | = co.

Hint: Pick some element u from Uy, and add new elements to Ug,,
having the same properties as u.

Exercise 51: Find a satisfiable formula F of predicate logic with identity
such that for every model A of F, |U4| < 2.

This exercise seems to contradict the previous exercise. Convince your-
self that there is no contradiction!

Exercise 52: Find formulas of predicate logic with identity (cf. Exercise
46) which contain a binary predicate symbol P (or a unary function symbol
f) and which express:

(a) P is a anti-symmetric relation.
(b) f is a one-one function.

(c) f is a function which is onto.

Exercise 53: Formulate a satisfiable formula F in predicate logic with
identity (cf. Exercise 46) in which a binary function symbol f occurs such
that for every model A of F it holds:
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(Ua, fA) is a group.

Exercise 54: A stackis a well known abstract data structure in Computer
Science. Certain predicates and functions (better: operations) are defined
to test the status of the stack or to manipulate the stack. E.g., IsEmpty is
a unary predicate expressing the fact that the stack is empty, and nulistack
is a constant that stands for the empty stack. Further, top (giving the top
element of the stack) and pop are unary functions, and push is a binary
function (which gives the new stack after pushing a new element on top of
the given stack).

“Axiomatize” these operations which are allowed on a stack by a formula
in predicate logic in such a way that every model of this formula can be
understood as an (abstract) stack.

Hint: A possible part of such a formula might be the formula

VzVy(top(push(z,y)) = z)

2.2 Normal Forms

The concept of (semantic) equivalence can be translated into predicate logic
in the obvious way: two formulas F' and G of predicate logic are equivalent
(symbolically: F = G) if for all structures A which are suitable for both F
and G, A(F) = A(G).

Also we observe that all equivalences which have been proved for for-
mulas in propositional logic still hold in predicate logic, e.g. deMorgan’s
law:

ﬁ(F A G) = (—lFV ﬂG)

For the purpose of manipulating formulas of predicate logic, to convert
them to certain normal forms etc., we need equivalences which also include
quantifiers.

Theorem

Let F and G be arbitrary formulas.
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1. =VzF = 3z—-F

=3z F =Vz~F
2. If z does not occur free in G, then
(VzFAG) = Vz(FAG)
(VzFVG) = Vz(FVG)
(3zFAG) = 3z(FAG)
(IzFVG) = F(FVG)

3. (VzF AVzG) =Vz(F AG)
(3zF v 3zG) =3z(F VG)

4. VzVyF = VyVz F
3z3yF = Fy3zF

Proof: As an example, we only present the proof for the first equivalence in
2. Let A= (Ua,I4) be astructure, suitable for both sides of the equivalence
to be proved. Then we have:

ANVzFAG) =1
iff A(VzF)=1and A(G)=1
iff for all u € Ua, Az/u)(F) =1 and A(G) =1

iff for all u € Uy, Afz/u)(F) = 1 and Aj;/4)(G) = 1 (because z
is not free in G, we have A(G) = A;z/4)(G) )

iff for all u € Ua, Az/u)((FAG)) =1
iff AVz(FAG))=1.

It is even more interesting to observe which pairs of very similar looking
formulas are not equivalent:

(VzF vVzG) # Vz(FVG)
(FzF A3zG) # F(FAG)

Exercise 55: Confirm this by exhibiting counterexamples (i.e. structures
which are models for one of the formulas, but not for the other).



2.2. NORMAL FORMS 53

Exercise 56: Show that FF = (JzP(z) — P(y)) is equivalent to G =
Vz(P(z) — P(y)).

Exercise 57: Prove that Yz3yP(z, y) is a consequence of JuVvP(v, u), but
not vice versa.

We further observe that the substitution theorem from propositional logic
analogously holds in predicate logic. The induction proof (on the formula
structure) that was given in Section 1.2 can be extended to the cases that
can occur for formulas of predicate logic (Case 4: F has the form F = 3zG,
Case 5: F has the form F = VzG).

This leads over to the next remark. Induction proofs on the formula
structure can be done in predicate logic as well (with more cases). Since
the (inductive) definition of terms precedes the definition of formulas, and
terms are parts of formulas, it is sometimes necessary to prove the assertion
(or an adaptation of the assertion) inductively for terms first, and then for
formulas.

Observe that the equivalences 1-3 in the above theorem, applied from
left to right, “drive the quantifiers in front of the formula”.

Example:

(~B2P(2,4) v V2Q(2)) A FwP(f(a, w)

= ((-3zP(z,y) AV2Q(z)) AJwP(f(a,w))) (de Morgan)

= ((Vz—-P(z,y) AIz-Q(2)) AJwP(f(a,w)) (by 1.)
(AwP(f(a,w)) A (Vz-P(z,y) A 3z-Q(2))) (commutativity)
3u(P(f(a, w) AVE(~P(z, ) A 32-Q(2))) (by 2.
Jw(Vz(32-Q(2) A ~P(z,y)) A P(f(a,w))) (commutativity)
Fuw(V232(-Q(2) A ~P(z,y)) A P(f(a,w))) (by 2.)
= JwVYz3z(~Q(z) A ~P(z,y) A P(f(a,w))) (by 2.)

Several points need to be observed. The order of the quantifiers which re-
sults at the end, is not necessarily uniquely determined from the beginning.
Actually, it depends on the type and the order of the applied equivalences.
In the above example, every permutation of “Jw”, “Vz” and “3z” would
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have been achievable. (It is not always like this). But adjacent quantifiers
of the same type can always be swapped (see 4.).

To make it possible that the equivalences under 2. can always be ap-
plied, we need to rename variables (in such that way that we get an equiv-
alent formula).

Definition (substitution)

Let F be a formula, z a variable, and ¢t a term. Then, F[z/t] denotes the
formula, obtained from F' by substituting ¢ for every free occurrence of z
in F.

By [z/t], a substitution is described. In the following, we treat substitu-
tions as independent objects, describing a mapping from the set of formulas
to the set of formulas. Such substitutions can be concatenated, e.g.

sub = [z/t,][y/t2]

describes the effect of first substituting in a formula all free occurrences of
z by t;, and then, all free occurrences of y by 5. (Note that ¢; can contain
occurrences of y).

Exercise 58: Prove by induction on the formula structure the following
translation lemma. Here, t is a variable-free term.

A(F[z/t]) = Apgyam)(F)

The proof of the following lemma is just as easy.

Lemma (renaming of bound variables)

Let F = QzG be a formula where @ € {3,V}. Let y be a variable that does
not occur free in G. Then, F = QyGlz/y].

By systematic applications of the previous lemma where always new vari-
ables have to be taken for y, the following lemma can be proved. Call a
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formula rectified if no variable occurs both bound and free and if all quan-
tifiers in the formula refer to different variables.

Lemma

For every formula F there is an equivalent formula G in rectified form.

Exercise 59: Find an equivalent and rectified formula for

F =Vz3yP(z, f(4)) AVY(Q(z,9) V R(z)).

The above example already shows that every formula can be transformed
into an equivalent and rectified formula where all quantifiers stand “in
front”. We summarize this situation more formally in the following defini-
tion and theorem.

Definition (prenex form)

A formula is in prenez form if it has the form

Q1y1Q2y2 ... Quyn F,

where Q; € {3,V},n > 0, and the y; are variables. Further, F does not
contain a quantifier.

Theorem

For every formula F there exists an equivalent (and rectified) formula G in
prenex form.

Proof (by induction on the formula structure of F):
If F is an atomic formula, then F already has the desired form. Thus we
choose G = F.

For the induction step we consider the different cases.
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1. Let F have the form = F; and G; = Q1¥1Q2y2 - - Qnyn G’ is the for-

mula, equivalent to Fy, which exists by induction hypothesis. Then
we have

F=Q1v1Q2y2 - Qxys G’

where Q; = 3if Q; =V, and Q; =V if Q; = 3. This formula has the
desired form.

. Let F have the form (F; o F;) where o € {A,V}, then there are, by

induction hypothesis, equivalent formulas G;, G2 in prenex form for
F, and F,, resp. By renaming the bound variables, say in G;, we can
make the bound variables of G; and G, disjoint. Let then G; have the
form Q191Q2¥2 - - - Qx Y« G} and G2 have the form Q121Q%2; - - - Q121G
where Q;, Q; € {3,V}. It follows that F is equivalent to

Qu1Q2yz - QU Q121Q%22 - - Q21 (G 0 GY)

This formula has the desired rectified prenex form.

. If F has the form QzF; where Q € {3,V}, then the formula F; is

equivalent, by induction hypothesis, to a formula of the form

Q1v1Q2y2 - - - Qryx Fy.

By renaming bound variables, we can assume that the variable z is
different from all the variables y;. Then, F is equivalent to

QzQ1v1Q2y2 - - - Qryx Fy.

Exercise 60: Implicit in the above proof, there is an algorithm hidden to
convert formulas into rectified prenex form. Formulate such an algorithm
in a more direct way, using a PASCAL-like notation.

Exercise 61: Convert the formula

F = (Vz3yP(z,9(y, f(z))) VQ(2)) V ~VzR(z,y)

into rectified prenex form.
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From now on, we use the abbreviation RPF for “rectified and in prenex
form”.

Definition (Skolem form)

For each formula F in RPF we define its Skolem formula as the result of
applying the following algorithm to F.

while F contains an existential quantifier do
begin
Let F have the form F = Vy;Vy, - - - Vy, 32G for some for-
mula G in RPF and n > 0 (the block of universal quan-
tifiers could also be empty);

Let f be a new function symbol of arity n that does not
yet occur in F ;

F :=VyVys - -Vyun G2/ f(y1,¥2,- - 1 Yn)};

(i.e. the existential quantifier in F is canceled and each
occurence of the variable z in G is substituted by

f(yliyZy“-’yn) )
end.

Exercise 62: Find the Skolem form of the formula

Vz3yVz3w(-~P(a, w) V Q(f(z),y))-

Theorem

For each formula F in RPF, F is satisfiable if and only if the Skolem form
of F is satisfiable.

Proof: We show that after each application of the while-loop a formula
results which is satisfiable if and only if the original formula is satisfiable.

Hence, let
F =Vy, Yy, - - -Vy,32G .

After one application of the while-loop we obtain the formula

FI = Vylvy2 i -Vy,.G[z/f(yl, Y2, . “iyn)] .
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Let us suppose first that F’ is satisfiable. That is, there is a structure .A,
suitable for F’, with A(F’) = 1. Then A is also suitable for F, and we get

for all uy,uz,...,u, € U4 ,

Aly, Jurllyz/uzl-lyn Juad (G2 f(Y1, 92, -2 9n)]) = 1.

By the translation lemma,

for all uy, ug,...,un € Ug ,
Aly, Jurllyz/ual-[yafuallz/0)(G) = 1,

where v = f'A(ul,uz, -++,un). Hence we get

for all w3, us,...,u, € Uy there exists a v € U4 such that
Ay, furllya/ua)-lya/uallz/0](G) = 1 -

Therefore,
AVy1Vyz - -Vyp32G) =1.
In other words, A is also a model for F.

Conversely, suppose F has the model A = (Ugq,14). We can assume
that I4 is undefined on function symbols that do not occur in F. Hence,
I4 is not defined on f and not (yet) suitable for F’. Since A(F) = 1, we
have

for all w3, uz,...,u, € Uy there exists a v € Uy (*)
such that 'A{yx/u1]~-'[y,./u,.][z/v](G) =1.

Now we define a new structure .A’ which is an extension of A such that I4
is additionally defined on f. We let f4 be defined as

fAl(ul, ceyUn) =,

where v € U4 = Uy is chosen according to (x). (At this point of the
proof, the aziom of choice is used which guarantees the existence of such
a “non-constructively” defined function). Using this definition of f4', we
obtain :

for all uy,...,u, €Uy,
Ay, fus)lym funliz 14" (ur,un))(G) = 1.
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Using the translation lemma,

for all uy,...,u, €Uyq ,
A'lys jurllyn fual(GL2/ f (W1, - ¥2)]) = 1,

and therefore,

A'(Yyy -+ Yy Glz/f(y1, - 9a)]) = 1.

Hence, A’ is a model for F”. =

Notice that the transformation of a formula to Skolem form does not
preserve equivalence (because of the new function symbol(s) occurring in
the Skolem formula). What we have shown is a weaker type of equivalence
with respect to satisfiability: F is satisfiable if and only if F’ is satisfiable.
In the following, we call this situation s-equivalence.

Exercise 63: Apply all transformational steps introduced in this chapter
(rectification, prenex form, Skolem form) to the formula

Vz3y(P(z,9(y),z) V "VzQ(z)) A ~Vz3z-R(f(z, 2), 2).

Exercise 64: If we modify the algorithm to produce the Skolem form such
that the roles of V and 3 are swapped, then we obtain an algorithm which
transforms a formula F' in RPF into a formula F’ with no occurrences of
universal quantifiers. Prove that F is valid if and only if F” is valid.

Exercise 65: Construct an algorithm that produces a Skolem form of a
rectified formula directly, i.e. without the intermediate step of producing a
prenex form.

Hint: It is important to distinguish between existential (universal) quan-
tifiers in the original formula that lie within the “scope” of an even (odd,
resp.) number of negation signs.

Finally, we want to summarize all the transformations which should be
applied to a general formula to obtain an s-equivalent formula which is in
appropriate form for the various algorithms considered in the next sections.
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Given : A formula F in predicate logic (with possible occurrences of free
variables).

1. Rectify F' by systematic renaming of bound variables. The result is
a formula F; equivalent to F'.

2. Let y1,...,yn be the variables that occur free in F;. Substitute F; by
Fy =3y;3y, ... 3yn F1. Then, F; is s-equivalent to F; (cf. Exercise 48)
and also to F'. Further, F; is closed.

3. Produce from F3 a formula F3 in prenex form. Fj is equivalent to Fs,
hence s-equivalent to F.

4. Eliminate the existential quantifiers in F3 by transforming F3 into
a Skolem formula Fy. The formula Fy is s-equivalent to F3, hence
s-equivalent to F'.

5. Convert the matrix of Fy into CNF (and write the resulting formula
F5 down as a set of clauses).

We demonstrate the above procedure with an example. Let
F = (-32(P(z,2) VVyQ(z, f(¥))) V VyP(9(z,9), 2))
be given. Renaming y to w in the second disjunct gives a rectified form
Fy = (~3z(P(z, 2) V VyQ(z, f(y))) V YwP(g(z, ), 2))
The variable z occurs free in F;. Hence we let
Fy = 32(~32(P(x, 2) V V¥Q(z, F(1))) V YwP(g(z, w), 2))).
Converting to prenex form gives (for example)
Fs = 3:¥23y¥u((~(P(z, 2) A —Q(z, (3))) V Plg(z, w), 2)).

Now we produce the Skolem form. A new function symbol a of arity 0 (i.e.
a constant) is substituted for z and h(z) is substituted for y.

Fy = VaVw((~(P(z,a) A=Q(z, f(h(z)))) V P(g(z,w),a)).

Transforming the matrix of F4 into CNF yields

Fy = VaVu((~(P(z,a) V P(g(z, w),a)) A (-Q(z, f(h(2)))) V P(9(z, w), a)).
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Now, F5 can be written as a clause set:

{{-(P(z,a), P(¢(z,w),a)}, {=Q(=, f(h(z)))), P(9(z, w),a)}}.

Every variable is understood as universally bounded. Hence we do not need
to write down the universal quantifiers explicitly.

This clause presentation of formulas in predicate logic is the starting
point for several algorithms, based on resolution, to be presented in Sections
2.5 and 2.6.

Finally we remark that all the transformational steps can be done algo-
rithmically.

2.3 Undecidability

A general theme of this book is the search for an algorithmic test for sat-
isfiability or validity of formulas. We will see in this section that general
algorithms of this type cannot exist for formulas in predicate logic. Briefly,
predicate logic is undecidable. (More precisely, the satisfiability problem
and the validity problem for formulas in predicate logic are undecidable).
We must be content with so-called semi-decision algorithms which will be
presented in the next section.

The truth table method for testing satisfiability or validity of formulas
discussed in the chapter on propositional logic could be derived from the
insight that it is enough to test a finite (although exponential) number
of truth assignments. In predicate logic we have to deal with structures
instead of truth assignments. The question is whether we can restrict our
attention to a selection of finitely many structures, and also, to structures
of finite size. As already suggested, this kind of direct adoption of the truth
table method does not work.

Observation: There exist formulas in predicate logic which are satisfiable,
but have no models of finite size (i.e. with a finite universe).

Consider the formula
F = VzP(z, f(z))

AVy=P(y,y)
AVuVoVw((P(u,v) A P(v,w)) — P(u,w)).
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This formula F is satisfiable, because it has for example the following model
A = (Ua, I4) where

Usq = {0,1,2,3,...} = N
P4 = {(mn)|m<n},
fAn) = n+1.

But this formula does not possess a finite model. Suppose, B = (Ug, Ig) is
such a model for F. Then let u be an arbitrary element of Ug. Consider
the sequence

Ug, U1, Uz, ... € Ug where up = u and u;41 = fB(u.-).

Since Up is finite, there exist natural numbers 7 and j, ¢ < j, such that
u; = uj. By the first subformula of F we have:

(U.o, ul) € PB, (ul, ’u,z) € PB, (uz, ‘U.3) € PB, ves

Further, the third subformula of F says that P® must be a transitive re-
lation. This implies that (ui,u;) € PB. Since u; = uj, we have found an
element v of the universe Us with (v,v) € PB. But this contradicts the
second subformula of F' which says that PB® must be non-reflexive. This
shows that F' has only infinite models.

It should be said that the above argument is not yet a formal proof of
undecidability of predicate logic. The existence of satisfiable formulas which
have only infinite models just shows that there is no direct translation of
the truth table method into predicate logic to yield a decision procedure.
The possible existence of totally different algorithms is not touched by the
above argument.

For a formal presentation of an undecidability proof, it is necessary
to clarify and formally define the notions “computation” and “algorithm”
first. After all, we need to show that there is no algorithm that is able
to compute (in a finite amount of time) whether a given formula is, say,
satisfiable. These issues are subject of a different field, computability the-
ory, which is not the subject of this book (see, for example, the books by
Manna or Hopcroft and Ullman). Therefore we proceed with some informal
explanations, and then use a result from computability theory, namely that
a specific well known problem is undecidable. Relying on this fact, we can
proceed formally.

In computability theory, a function is called computable (or a problem
is called decidable) if there is an abstract mathematical machine (Turing-
machine) which, started with an input which is in the function domain
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(which is a syntactically correct instance for the problem, resp.) halts after
a finite number of steps and outputs the correct function value (answers
correctly “yes” or “no”, according to the problem definition). If no such

machine exists, then the function (problem) is called non-computable (un-
decidable).

We have to deal with problems in the following. Such a problem is given
by specifying the form of a syntactically correct instance for the problem,
and what the question to be solved is.

In particular, we will show that the following problem is undecidable.

Instance: A formula F in predicate logic.
Question: Is F valid?
In what follows, we use a result from computability theory: the following

problem, called Post’s Correspondence Problem (PCP for short), is unde-
cidable (see Hopcroft and Ullman).

Instance: A finite sequence (z1,y1),...,(Zk, yk) of pairs of non-
empty strings over the alphabet {0, 1}.
Question: Does there exist a finite sequence of indices i1, 12,...,1, €

{1,...,k}, n > 1, such that z;,z;, ... i, = ¥, Yi,-.-¥i, 7

In the case that i,,...,1, exists, we call it a solution of the PCP.

Example: The correspondence problem for
K = ((1,101),(10,00),(011,11)),

that is
1:1:1 22:10 33:011
y1 =101 y, =00 y3=11

has the solution (1,3,2,3) because:

T1T3T2T3 = 101110011 = Y1Y3yY2Y3

Exercise 66: Show that the following instance of PCP has a solution:

1:1"—'001 1:2:01 .'1:3:01 .'1:4‘—‘10
y1 =0 y2 =011 y3 =101 y4 = 001.
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(Warning: the shortest solution consists of 66 indices. Without using a
computer, the solution can be found if constructed “from behind”).

We use the proof method of reduction to show that the validity problem is
undecidable. That is, from a hypothetical decision algorithm for the validity
problem we derive the existence of a decision algorithm for the PCP — which
is in contradiction to the result stated above. Hence, a decision algorithm
for the validity problem does not exist, this means that the problem is
undecidable.

Many known undecidability results have been shown by reduction. Also,
it is very common to use the undecidability of the PCP - in particular, for
undecidability proofs in Formal Language Theory.

Theorem (Church)

The validity problem for formulas of predicate logic is undecidable.

Proof: As discussed above, the task is to define an algorithmic method that
transforms arbitrary instances K for the PCP into certain instances, i.e.
formulas, F' = Fg for the validity problem, such that K has a solution if
and only if the formula F is valid. If this can be shown then the hypo-
thetical existence of a decision algorithm for the validity problem implies
the existence of a decision algorithm for the PCP. Hence, let

K = ((z1,%), (22, 92), - -, (Tk, k)

be an arbitrary correspondence problem. The desired formula F' = F¢ con-
tains a constant a and two unary function symbols fy, fi. Furthermore, a
binary predicate symbol P occurs in F'. For a more succinct representation
of the formula, we use the following abbreviation. Instead of

fjl(fj:(' .- fjl(z) .. )) with j; € {Ov 1}

we write
fir32a (%)
(The indices now stand in reverse order).

Our formula F = F has the form

F = ((Fy A Fy) — F3).
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The subformulas are

k
Fl = A P(fz.'(a)’f!/-'(a))

i=1

k
F, = Vqu(P(u, v) — A P(fz;(u), fya(”)))

i=1
F3 =32P(z,z).
Obviously, for given K, F can be computed from K in a finite amount

of time. We have to show that the formula F is valid if and only if the
correspondence problem K has a solution.

Let us assume first that F is valid. Then every suitable structure for F
is a model. In particular, the following structure A = (U4,I4) must be a
model for F.

Ua = {0,1},

a* = ¢ (the empty string),
ff(@) = a0 (the concatenation of & and 0),
ff{(a) = al (the concatenation of « and 1),

PA = {(a,B) | @,8 € {0,1}* and there are indices
3,12,...,% such that a = z;,z;,...z;, and
B = Yi,Yis - Yir )}

That is, a pair of strings (c,3) is in P# if @ can be built up from the z;
by the same sequence of indices as 8 from the y;. It is easily seen that A
is suitable for F'. Hence A |= F. Further, it can be checked that A = F;
and A = F;. Since F has the form of an implication ((F1 A F2) — F3),
it follows that A = F3. This means that there exists some a such that
(e, @) € PA. Hence K has a solution.

Conversely, suppose that K has the solution %;,12,...,7,. Let A be
an arbitrary structure suitable for F. We have to show that A | F. If
A [£ F; or A [£ Fs, then, by the form of F, A = F follows immediately.
Hence let us assume that A |= F; and A | Fs, thus A = (F1 A F;). We
now define a mapping (an embedding) u : {0,1}* — U4 by u(e) = a** and
w(z) = A(fz(a)) for z # e.

Because A = Fj, we have for i = 1,2,...,k: (u(zi),u(y:)) € PA.
Because of A |= Fy, we have for i = 1,2,...,k, that (u(u), u(v)) € PA
implies (p(uz;), u(vy;)) € PA. By induction, it follows that

(@i, Tiy - - i, )y Y3y Wi - - - i) € P2
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In other words, for v = p(z;,zi, ... i) = p(¥i, Y, - - - Yi, ) it is true that
(u,u) € PA. From this, we get A |= 3zP(z,2), that is, A | F3, and
therefore, A = F. =

Corollary
The satisfiability problem of predicate logic

Instance: A formula F of predicate logic.

Question: Is F satisfiable?

is undecidable.

Proof: A formula F is valid if and only if =F is unsatisfiable. There-
fore, the hypothetical existence of a decision algorithm for the satisfiability
problem leads to a decision algorithm for the validity problem, and we have
shown above that such an algorithm does not exist. =

The reader will have noticed that the proof of this corollary is another
example of the reduction method.

Exercise 67: Prove that the validity problem (and therefore also the sat-
isfiability problem) is undecidable even for formulas without occurrences of
function symbols.

Exercise 68: Prove that the following variation of the PCP is decidable:

Instance: A finite sequence of pairs (z1,y1),...,(Zk,yx) where
Zi,Yi € {O) 1}+
Question: Do there exist finite sequences of indices 3, i3,.. ., i,,

n > 1, and j1,J2,...,Jm, m > 1, such that z; z;, ... z; =
- .9
Yir¥jz - Yjm -~
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Exercise 69: In monadic predicate logic all the predicate symbols are
unary (i.e. monadic) and no occurrences of function symbols are allowed.

Prove: If some closed formula F of monadic predicate logic with the
unary predicate symbols P, ..., P, is satisfiable, then there is already a
model of cardinality 2". From this, conclude that satisfiability (and also
validity) for formulas in monadic predicate logic is decidable.

Hint: Show that the universe of every model A = (Uy,I4) for F can
be partitioned into at most 2" equivalence classes where two elements
u,v € Uy are equivalent if they have the same truth value under each
of P{‘, ceny P,f‘. Then, a new model B can be defined for F' whose universe
consists of these equivalence classes.

Exercise 70: Show that the following problem is undecidable:

Instance: The description of an algorithm A.

Question: If A is started with its own description as input, does
A stop?

Excursion (mathematical theories)

At this point, some important notions in Formal Logic shall be discussed.
What is a formal mathematical theory? These issues play an important
role in standard presentations of logic, but in this book with its emphasis
on Computer Science and algorithmic aspects of logic, it is more a fringe
area.

A theory is a non-empty set T of formulas — very often restricted to
formulas obeying certain syntactical restrictions (e.g. only a given finite set
of function symbols or predicate symbols may be allowed) — which is closed
under consequence. More precisely, T is a theory, if for all Fy, Fy, ..., F, €
T and formulas G, if G is a consequence of Fy, F5, ..., F, then G € T. The
formulas which are elements of a theory T are called theorems of T.

Every theory T necessarily has to include all valid formulas (possibly
only those obeying the syntactical restriction as above). Furthermore, a
theory either contains all formulas, or it is disjoint from the set of unsat-
isfiable formulas. The former situation is the degenerate case of an incon-
sistent theory. A theory is called inconsistent if it contains some closed
formula F' together with its negation —F. The following diagram indicates
the situation of a non-degenerate theory T.
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7,
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)/ T

valid satisfiable, but not unsatisfiable
formulas valid formulas formulas

There are two different methods to define a particular theory.

The model theoretic method is to define a structure A first, and then
take the theory of A (in symbols: Th(A)) as the set of all formulas for
which A i1s a model. That is,

Th(A) = {F | A E F).

It is clear that a set of formulas of the form Th(A) is really a theory, i.e.
it is necessarily closed under consequence. Such a theory is automatically
consistent. Further, such a theory is always complete, which means that for
every closed formula F', either F' € T or =F € T holds (but not both).

Examples for such model theoretically defined theories are Th(IN,+)
and Th(IN,+,#). Here, (IN,+) and (IN,+,*) are the structures obtained
by taking as universe IN and interpretation of + as usual addition and * as
usual multiplication. These theories are called Presburger arithmetic and
(full) arithmetic, respectively. The formulas of the theories are restricted
to consist of the function symbols + and * (and possibly further constant
symbols and identity) only. For example,

VaVy ((z+y)x(z+y) = (z*x2) + 2+ 2xy) + (y*+y))
is an element of Th(IN, +, *).

The aziomatic method is to define a set of formulas M, the azioms, and
then take as the theory associated with M the set of formulas which are
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consequences of M. Formally,

Cons(M) = {G | there are formulas Fy,...,F, € M,
such that G is a consequence of {Fy,..., F,} }.

Again, the formulas in Cons(M) can be restricted to consist only of symbols
which occur in M. It is required that such an axiom set M is decidable, i.e.
for every formula F it should be possible to decide whether FF € M or not.
In particular this is the case if M is finite.

A theory T is called (finitely) aziomatizable if there exists a (finite)
axiom set M such that T = Cons(M). For example, the set of valid
formulas of predicate logic is finitely axiomatizable, because

Cons(0) = {F | F is valid }.

Another example is the theory of groups. This is Cons(M) where

M = {VaVyVz(f(f(z,v),2) = f(z, (3, 2))),
Vz(f(z,e) = z),
Vz3y(f(z,y) =€)}

It can be shown that any axiomatizable theory is semi-decidable (which
is the same as recursively enumerable; for an explanation of these notions
see Section 2.4). Furthermore, every complete and axiomatizable theory is
decidable. Now there are two main questions that can be investigated.

1. Are certain (axiomatizable) theories decidable? For example, we have
seen in Section 2.3 that the finitely axiomatizable theory Cons(0) is
undecidable (and hence, it cannot be complete).

2. Are certain model theoretic theories axiomatizable — or even decid-
able? It can be shown that Th(IN,+,*) is not axiomatizable (hence
not decidable). In other words, every arithmetically correct axiom
system M (for example: Peano arithmetic) necessarily is incomplete:

Cons(M) # Th(IN, +, *).

Arithmetical correctness means that M (and therefore also Cons(M))
is included in Th(IN, *,+). (This is Godel’s famous incompleteness
theorem). This is in contrast to the fact that Th(IN,+) is decidable
(and therefore axiomatizable).

Exercise 71: Why is every complete and axiomatizable theory decidable?
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2.4 Herbrand’s Theory

One problem with dealing with formulas in predicate logic is that the defi-
nition of structures allows arbitrary sets as possible universes. It seems that
there is no systematic way to find out the “inner structure” and cardinality
of a potential model of a given formula. Can one enumerate all potential
structures to test them for being a model? If so, how?

Indeed, in the last section it was shown that the problem of determining
whether a given formula has a model or not is undecidable. This indicates
a borderline which we will not be able to pass: We cannot expect to devise
a decision algorithm. Nevertheless, in this section we will investigate the
remaining positive aspects, insofar as they are not in contradiction to the
undecidability result of the last section.

The (algorithmic) search for potential models of a formula can be re-
stricted to certain canonical structures. This theory which we will develop
in the following goes back to the work of Jacques Herbrand, Kurt Godel
and Thoralf Skolem. In particular, Herbrand’s work is important for the
approach taken here.

The starting point of our investigations are closed formulas, i.e. formulas
without occurrences of free variables, which are in Skolem form (hence also
in RPF). In section 2.3 it was shown how every formula of predicate logic
can be transformed into a s-equivalent formula of this kind.

Definition (Herbrand universe)

The Herbrand universe D(F') of a closed formula F in Skolem form is the
set of all variable-free terms that can be built from the components of F'.
In the special case that F' does not contain a constant, we first choose an
arbitrary constant, say a, and then build up the variable-free terms. More
precisely, D(F) is defined inductively as follows.

1. Every constant occurring in F' is in D(F). If F does not contain a
constant, then a is in D(F).

2. For every k-ary function symbol f that occurs in F', and for all terms
t1,ta,...,t already in D(F), the term f(t5,%2,...,t) is in D(F).

Example: Consider the following formulas F' and G.
F = VYaVyVzP(z, f(y),9(,2))
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G = VaVyQ(c, f(z), h(y,b))
The formula F' does not contain a constant. Therefore we get

D(F) = {a,f(a),9(a,a), f(9(a,a)), f(f(a)), 9(a, f(a)),9(f(a), ),
9(f(a), f(a)),...}

and

D(G) = {c,b,f(c), f(b),h(c,c), h(c,b), h(b,c), h(b,b),
F(£(€)), F(£(8)), F(h(c, ), f(R(e,b)), F(h(b,c)), -}

In the following, for a given formula F', D(F') will be used as the “standard”
universe to search for potential models for F' — and we will show that this
results in no loss in generality.

Definition (Herbrand structures)

Let F be a closed formula in Skolem form. Then every structure 4 =
(Ua, I4) is called a Herbrand structure for F if the following hold:

1. Ua= D(F),

2. For every k-ary function symbol f occurring in F', and for all terms
t1,t2,...,tx € D(F), fA(t1,t2,...,tk) = f(t1,t2,...,tk).

Example: A Herbrand structure A = (Ug4,I4) for the above example
formula F' would have the following properties.

Ua = D(F) = {a, f(a),9(a,a),...}

and
@) = fa)
Af@) = f(f(a)
fA(9(a,0)) = f(g(a,a))
etc.

The choice of P# is still free. For example, we could define
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(tl,tz,t;«;) € PA if and only if g(tl,tz) = g(tz,f(t;;)).

This Herbrand structure A would not be a model for F', because for ¢; = a,

t2 = f(a), t3 = g(a,a) we have that g(a, f(a)) # 9(f(a), f(9(a, a))).

Exercise 72: Define a Herbrand structure for this example formula which
is a model (i.e. modify the definition of P4).

In Herbrand structures the choice of the universe and the interpretation of
the function symbols is fixed by definition. What can be chosen freely is
the interpretation of the predicate symbols.

At this point, the reader should not proceed before the subtle meaning
of clause 2 in the definition of Herbrand structures is understood. There,
in a sense, syntax and semantics of terms are synchronized. Terms are
interpreted by “themselves”. That is, in a Herbrand structure A, for every
variable-free term t we have A(t) =t.

Therefore, for Herbrand structures the translation lemma (see Exer-
cise 58) gets the following simplified form

A(Flz/t]) = Apzyy(F)
that we will use in the following.

We call a Herbrand structure of a formula F' a Herbrand model for F,
simply if it is a model for F.

Theorem

Let F be a closed formula in Skolem form. Then F is satisfiable if and only
if F has a Herbrand model.

Proof: It is clear that a formula with a Herbrand model is satisfiable.

Conversely, let A = (Ua,I4) be an arbitrary model for F. If there is
no occurrence of a constant symbol in F' (this is the special case in the
definition of D(F')), then we extend A by the commitment

aA:m,
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where m is an arbitrary element of U4. This modification of A does not
change the property of being a model. Now, we define a Herbrand structure
B = (Ug, Ig) for F. By the definition of Herbrand structures, it remains to
define how to interpret the predicate symbols of F' as predicates over the
Herbrand universe D(F). Let P be any n-ary predicate symbol in F, and
let ¢;,t5,...,t, € D(F). (Observe that by the above modification of A,
A(ty),...,A(t,) are well defined elements of Uy). Now we define

(t1,t2,...,t,) € PP if and only if
(A(t1), A(ts), ..., A(t,)) € PA

Hence, the definition of P “imitates” the definition of P4, by first trans-
forming the arguments t;,...,t, € D(F) = Up into the universe of A, and
then applying P4.

Now we claim that B is a model for F. Actually, we show a stronger
statement: For every closed formula G in prenex form without existential
quantifiers that is built up from the same components as F' (function sym-
bols and predicate symbols), if A = G then B |= G. Then the first claim is
the special case F' = G in the the second claim. The proof is by induction
on the number n of universal quantifiers in G.

In the case n = 0, G does not contain a universal quantifier. Then G
does not contain a variable. Therefore, immediately from the definition of

B, we even get A(G) = B(G).

If n > 0, then let G be a closed formula in prenex form with n universal
quantifiers in the prefix (and no existential quantifiers). Then G has the
form Vz H where H has only n — 1 universal quantifiers. We cannot apply
the induction hypothesis to H directly because H is not necessarily closed
(z could occur free in H). By hypothesis, A = G, therefore, for all u € U4,
Alz/u)(H) = 1. In particular, for all u € U4 of the special form u = A(t) for
some t € D(G), we have A[;/y)(H) = 1. In other words, for all t € D(G),
we have A/ 41))(H) = A(H[z/t]) = 1 (by translation lemma). Using the
induction hypothesis, B(H[z/t]) = 1 for all t € D(G). Using the translation
lemma again, we have that for all t € D(G), By/y(H) = B(H[z/t]) = 1.
Hence, B(VzH) = B(G) = 1. ]

The reader should convince himself that it is relevant for the proof that the
formula F is closed, and that F' does not contain an existential quantifier.
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Corollary (Lowenheim — Skolem)

Every satisfiable formula in predicate logic has a model which is countable
(i.e. it has a countable universe).

Proof: Using the methods of Section 2.2, every formula F' in predicate
logic can be transformed into a s-equivalent closed formula G in Skolem
form. Furthermore, these transformations are such that every model of G
is also a model of F. Since F is satisfiable, G is satisfiable. Therefore, G
possesses a Herbrand model which is, by the above, also a model for F.
This Herbrand model has the universe D(G) which is countable. =

Definition (Herbrand expansion)
Let F =Vy,Yy2 - - -Vyn F* be a closed formula in Skolem form. Then E(F),

the Herbrand ezpansion, is defined as

E(F) = {F*[n/tilly2/t2] - - - [yn/ta] | t1, 22, .. ., 1t € D(F)}

That is, the formulas in E(F) are obtained by substituting the terms in
D(F) in every possible way for the variables occurring in F*.

Example: For the above mentioned formula
F =VaVyV2P(z, f(y),9(z, ))

we obtain the following first elements of E(F),

P(a, f(a),9(a,a)) using [z/d][y/a][2/d],
P(f(a),f(a),9(a,f(a))) vusing [z/f(a)][y/a][2/a],
P(a, f(f(a)),9(a,a)) using [z/a][y/f(a)][2/d],
P(a, f(a),9(f(a),a)) using [z/a][y/d][z/f(a)],
P(g(a,a), f(a),9(a,9(a,a))) using [z/g(a,a)][y/a][2/a],

etc.

One should observe that the formulas in E(F) can be treated as formulas
in propositional logic because they do not contain variables. In a sense,
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instead of Aj,As,... another vocabulary is used. To define a structure
suitable for all formulas in E(F) it suffices to specify the truth values of
the atomic formulas in E(F). The terms (occurring within the atomic
formulas) play no role here, and need not be interpreted.

Theorem (Goédel — Herbrand — Skolem)

For each closed formula F' in Skolem form, F' is satisfiable if and only if
the set of formulas E(F) is satisfiable (understood as a set of formulas in
propositional logic).

Proof: It suffices to show that F has a Herbrand model if and only if E(F')
is satisfiable. Let F' have the form F = Vy;Vy; ...Vy, F*. Then we get:

A is a Herbrand model for F

iff for all ¢1,t,,...,t, € D(F),

Aly /ta)lya/ta). fya/ta) () = 1
iff for all ¢,t2,...,t, € D(F),

A(F*[n1/t1][y2/t2] - - - [yn/tn]) =1  (translation lemma)
iff for all G € E(F), A(G) =1
iff A is a model for E(F).

This theorem says, in a sense, that predicate logic can be “approximated”
by propositional logic. The formula F in predicate logic is associated with
E(F), a collection of formulas in propositional logic. The cardinality of
E(F) in general is infinite. But by enumerating bigger and bigger finite
subsets of E(F), F can be approximated (or better: the question of F’s
satisfiablity can be approximated).

The issue of finite subsets of infinite sets of formulas in propositional
logic brings up the possibility of applying the compactness theorem proved
in Section 1.4. This is done in the following theorem.

Herbrand’s Theorem

A closed formula in Skolem form is unsatisfiable if and only if there is a
finite subset of E(F) which is unsatisfiable (in the sense of propositional
logic).
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Proof: A direct combination of the previous theorem and the compactness
theorem for propositional logic (Section 1.4). =

Based on Herbrand’s theorem, so-called semi-decision procedures for
predicate logic can be formulated. A semi-decision procedure for a problem
(as introduced in Section 2.3) is understood as a program that stops exactly
for those instances after finitely many steps for which the question has to
be answered “yes”.

The following is a semi-decision procedure for the unsatisfiability prob-
lem. Its correctness follows immediately from Herbrand’s theorem. For the
presentation of the program, we think of the formulas in E(F) as being
enumerated:

E(F):{Fl,Fz,...,Fn,...}

Because Gilmore was one of the first to implement a simple semi-decision
procedure for predicate logic based directly on Herbrand’s theorem, we call
the following procedure Gilmore’s procedure.

Gilmore’s Procedure

Instance: A closed formula F in Skolem form (every formula
in predicate logic can be transformed into a s-equivalent
formula of this kind, cf. Section 2.2).

n := 0;
repeat n:=n+1;

until (FiAF;A---AF,) is unsatisfiable (this can be tested with
the tools of propositional logic, e.g. using truth tables) ;

output “unsatisfiable” and halt;

This program has the property that it stops after finitely many steps on
every unsatisfiable formula as input, and for satisfiable formulas, it does
not stop. This is exactly what is needed for semi-decidability: on the “yes-
instances” the program stops, but not on the “no-instances.” By testing
—F for unsatisfiability, we obtain a semi-decision procedure for validity.
Therefore, we can summarize:
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Theorem

1. The unsatisfiability problem for formulas in predicate logic is semi-
decidable.

2. The validity problem for formulas in predicate logic is semi-decidable.

Exercise 73: Show that the notion of semi-decidability introduced here
is equivalent to the notion of recursive enumerability. A set M (the set of
yes-instances of a given problem) is recursively enumerable if M = 0 or if
there is a total function f which is effectively computable such that M =
{f(1), £(2), £(3),...}. In the example above, the set M would be the set of
unsatisfiable formulas in predicate logic.

Exercise 74: Show that a problem is decidable if and only if it is recursively
enumerable (see last exercise) in such a way that the enumerating function
is nondecreasing: f(n) < f(n + 1) for all n.

Exercise 75: Show that the PCP (see Section 2.3) is semi-decidable.

Combining the unsatisfiability test and the validity test, we can obtain a
procedure which stops on the unsatisfiable formulas and on the valid formu-
las (with respective output “unsatisfiable” or “valid”). Furthermore, one
could patch a third procedure which on a given input formula F system-
atically searches for models of finite cardinality n = 1,2,3,.... Combined
this gives a procedure that stops after finitely many steps when applied to
formulas in the marked areas — with corresponding output.
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all formulas in predicate logic

satisfiable,but not

valid formulas
with infinite models

7707

satisfiable, but not

valid valid formulas unsatisfiable
formulas with finite models formulas

DA

-

The white area in the diagram could be reduced further somewhat (e.g. for
formulas of certain syntactical properties), but it can never be eliminated or
become finite. This would be in contradiction to the undecidability result
proved in Section 2.3.

2.5 Resolution

The tests for unsatisfiability on the finite subsets of E(F) which have to
be performed in Gilmore’s procedure could as well be implemented by res-
olution. For this, we have to presuppose that the matrix of F is in CNF.
(This can always be achieved, see Sections 1.2 and 2.2). All formulas in
E(F) result from certain substitutions for the variables in F*. Therefore,
all formulas in E(F) are in CNF provided that F* is in CNF.

If a formula G results from certain substitutions from a formula F', then
G is called an instance of F. Substitutions which make a formula variable-
free (like in the definition of E(F)) are called ground substitutions, and the
result of applying a ground substitution to a formula is a ground instance
of that formula. Thus, the following modification of Gilmore’s procedure is
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called the ground resolution procedure. Its correctness follows immediately
from the correctness of Gilmore’s procedure.

In the following, we assume again that E(F) is enumerated as Fy, Fy, .. ..
(Remember that Res*() was defined in Section 1.5.)

Ground Resolution Procedure

Instance: a closed formula F' in Skolem form
with its matrix F* in CNF

1:=0;
M = 0;
repeat
i:=1i+1;
M := MU{F};
M := Res*(M);
until 0 € M;

Output “unsatisfiable” and halt;

Combining Herbrand’s Theorem and the resolution theorem of propo-
sitional logic, we obtain the following theorem.

Theorem

Using as input any closed formula F' in Skolem form where the matrix F*
is in CNF, the ground resolution procedure stops after a finite number of
steps if and only if F is unsatisfiable.

Similar to the resolution algorithm in propositional logic, it is usually the
case that more elements are generated in M than are really needed for
the “demonstration” of unsatisfiability of the input formula F' (and in the
case of a satisfiable formula as input, in general infinitely many elements
are generated in M). Relevant for the demonstration of unsatisfiability are
such formulas occurring in the resolution graph of the first finite subset of
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E(F) which is unsatisfiable. For such a “demonstration” of unsatisfiability
of F, it suffices to specify certain ground substitutions for F* first (leading
to certain elements of E(F)) and then to present a resolution proof based
on these ground instances.

Example: Consider the following unsatisfiable formula
F =Vz(P(z) A ~P(f(z))).
Here we have,
F* = (P(z) A ~P(f(2))),
which is written in clause form,
F* = {{P(z)}, {-~P(f(=))}}.

Furthermore,

E(F) = {(P(a) A =P(f(a))), (P(f(a)) A=P(f(f(a)))),---}-

Already the first two ground substitutions [z/a] and [z/f(a)] lead to a finite
unsatisfiable clause set. This corresponds to the first two formulas in E(F),
which form four clauses as listed below.

{P(a)} {~P(f(a))} {P(f(a))} {=P(f(f(a)))}

In this example, already two clauses are generated (as part of the first and
second formulas in E(F')) which are not needed for the resolution refutation.
Therefore, we conclude that it suffices to consider ground substitutions that
are applied individually to the clauses of the original formula F*.

We express this situation by the following diagram where vectors are
used to express (ground) substitutions.
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clauses in F'* {P(z)} {ﬁP(f(z))}

ground substitutions [z/ f(a)] [z/a]

certain ground instances

of the clauses in F* {P(f(a))} {ﬂP(f(a))}

resolution of the
empty clause

Let us consider a more complex example. Let
F = VzVy((~P(z) vV =~P(f(a)) V Q(y)) A P(y) A (=P(g(b, z)) V =Q(b))).
Then we obtain the following clause representation of F*,

F* = {{~P(z),~P(f(a)),Q)}, {P(v)}, {~P(4(b, 2),~Q(b)}}-

This formula F is unsatisfiable. A proof for the unsatisfiability of F is given
by the following diagram.

{-P(z),~P(f(a)), Q(v)} {P(y)} {=P(9(b,2)), ~Q(b)}
/1) v/ #(@)] [w/a(b,a)] [e/a]

{=P(f(a),Q(®)} {P(f(a))} {P(9(ba))} {-P(g(ba)),~Q(b)}

{-9()}

Again, vectors denote ground substitutions. In this example two new as-
pects occur. First, it might be necessary to use the same clause in F*
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to derive several ground instances from it to enable the resolution refuta-
tion. (This is the case for the clause {P(y)}). Second, from an n-element
clause an m-element clause can be obtained after the ground resolution step
(m < n). We get m < n if certain literals in the original clause become
identical after the substitution, and by the set representation melt into a
single element. (This is the case for the clause {~P(z),-P(f(a)),Q(y)}
and the substitution [z/f(a)][y/?]).

We summarize our observations in the following theorem.

Theorem (ground resolution theorem)

A closed formula F in Skolem form F = Vy;Vy,...Vyr F* with its matrix
F* in CNF is unsatisfiable if and only if there exists a finite sequence of
clauses Cy,Cj,...,Cy, with the properties

C,, is the empty clause, and for z = 1,...,n,

either C; is a ground instance of some clause C € F*,
i.e. C; has the form C; = C[y1/t1][y2/t2] - - - [uk/tk]
where t,13,...,tx € D(F),

or C; is a resolvent (in the sense of propositional logic)
of two clauses C,; and Cj with a,b < 1.

Exercise 76: Formalize the following statements 1 and 2 as formulas in
predicate logic

(a) The professor is happy if all his students like logic.

(b) The professor is happy if he has no students.

and show, by ground resolution, that (b) is a consequence of (a).

The algorithmic selection of ground instances of F'* which allows one to per-
form a resolution refutation afterwards, does not seem to be programmable
in a “controlled” way, just by exhaustive search. The problem is that cer-
tain decisions for substitutions have to be done in a “lookahead” manner
to enable resolution steps further “down” in the resolution graph. This



2.5. RESOLUTION 83

difficulty suggests a modification, namely not to perform all substitutions
in the beginning, but rather in a successive “on demand” manner. Here,
the demand comes from the resolution step that directly follows. But this
requires that resolution steps be performed with clauses in predicate logic.

Now we introduce the predicate logic version of resolution which was
invented by J. A. Robinson. The new idea is to resolve clauses in predicate
logic to clauses in predicate logic where each resolution step is accompa-
nied by a substitution. These substitutions are performed in a guarded
manner. For example, in the case of the two clauses {P(z),~Q(¢(z))} and
{=P(f(y))}, it suffices to use the substitution [z/f(y)] to obtain the resol-
vent {—~Q(g(f(y))}. There is no need at this point to substitute anything
for the variable y.

Central for the following investigations is the search for a substitution
which unifies two or more literals, i.e., makes them identical. In the above
example, [z/f(y)] unifies the two literals P(z) and P(f(y)). The substitu-
tion [z/ f(a)][y/a] would also be a unifier but does not satisfy the definition
of a most general unifier. In a sense (defined formally below), this substi-
tution makes more substitutions than necessary.

Definition (unifier, most general unifier)

A substitution sub is a unifier for a (finite) set of literals L = {L, Lo, ..., Lt },
if Lysub = Laysub =...= Lysub.

That is, by applying sub to every literal in the set L, one and only one
literal is obtained. If Lsub expresses the set obtained by applying sub to
every literal in the set L, then this situation can be formally expressed by
|Lsub| = 1. If a substitution sub exists with the property that |Lsub| = 1,
then we say L is unifiable.

A unifier sub for some literal set L is called a most general unifier if for
every unifier sub’ there is a substitution s such that sub’=subs. (Here, the
equality sub’=sub s means that for every formula F, Fsub'=Fsub s).

The following diagram describes the situation.
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sub

!
sub

Unification Theorem (Robinson)

Every unifiable set of literals has a most general unifier.

Proof: We prove this theorem constructively in the sense that an algorithm
is presented, which takes as input a set of literals L, and terminates after
finitely many steps either with the output “unifiable” or “non-unifiable”.
Further, in the case of unifiability, it also outputs a most general unifier. A
proof of correctness of such an algorithm is also a proof for the assertion of
the theorem. Now we describe this algorithm.

Unification Algorithm

Instance: A non-empty set of literals L.

sub := []; (this is the empty substitution)
while |Lsub| > 1 do
begin
Scan the literals in Lsub from left to right, until the first
position is found where in at least two literals (say, L; and

L,) the corresponding symbols are different ;
if none of these symbols is a variable then

output “non-unifiable” and halt
else
begin
Let = be the variable, and let t be a term that is
different from z and which starts at this position
in another literal (this can also be a variable) ;
if z occurs in ¢t then
output “non-unifiable” and halt ;
else sub := sub[z/t];
(this means the composition of the sub-
stitutions sub and [z/t])
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end
end,

output sub as a most general unifier of L ;

For the correctness of this algorithm, we first observe that it always ter-
minates, because in each application of the while loop another variable
z is substituted by a term ¢ (in which z does not occur). Therefore the
number of different variables occurring in Lsub decreases by 1 in each step.
Hence there are at most as many applications of the while loop as there
are different variables in L in the beginning.

If the algorithm terminates successfully and leaves the while loop, then
the output sub must necessarily be a unifier for L, because the while loop
is only left if |Lsub| = 1. Since we have shown that the algorithm always
terminates, in case of a non-unifiable clause set L as input, the algorithm
necessarily has to stop inside the while loop and outputs correctly “non-
unifiable”.

It remains to show that in case of a unifiable set of literals L as input,
indeed a most general unifier is produced. Let sub; be the substitution
which is obtained after the ith application of the while loop. Then we
have subp=[]. We show by induction on ¢ that in case of a unifiable set of
literals L, for every unifier sub’ of L, there is a substitution s; such that
sub’ = sub; s;, and that the while loop is either successfully left in the i-th
step, or both else branches in the while loop are entered (in which case
the while loop can be executed for another time.) From this, it follows
that the while loop is finally left successfully, say after the n-th loop, and
the output sub, satisfies the definition of a most general unifier.

If i = 0, then we let sy = sub’. Then we have sub'=so=[]so=subg so.

For i > 0, let s;_; be the substitution which exists by induction hypoth-
esis with sub’ = sub;_;s;_,. Now, either |[Lsub;_;| = 1, and the while loop
is left successfully, or |Lsub;_;| > 1 and the while loop is entered for the
i-th time. By the fact that |Lsub;_;| > 1 and since sub;_; can be extended
to a unifier of L by applying s;_,, there must exist some variable £ and
a different term ¢ (at a position where two literals L; and Ly in Lsub;_;
differ) so that z does not occur in ¢. Therefore both else branches will be
entered. Hence, s;_; unifies £ and ¢, i.e. zs;_; = ts;_;. Furthermore, sub;
is then set in the i-th loop to sub;_;[z/t]. Now we modify the substitution
si—1 so that we take out any replacement for the variable z (but all other
substitutions in s;_; remain.) Let the result of this restriction be s;. We
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claim that s; has the desired properties. We have

subis; = subi_ji[z/t]s;
= sub;_1s;[z/ts;] because z is not substituted in s;
= sub;_1s;[z/tsi_1] because = does not occur in ¢
= sub;_1%_1 because rs;_; = ts;_1
and the definition of s;
= sud by induction hypothesis
This completes the proof of the unification theorem. ]

Example: We want to apply the unification algorithm to the set of literals

L= {ﬂP(f(z, 9(a,9)), h(2)), ~P(f(f(u, v), w), h(f(a,b)))}.

Then we obtain in the first step

_‘P(f(z) g(a, y))’ h(z))
_'P(f(é(u’ v), w), h(f(a,b)))

which results in the substitution sub = [2/f(u, v)]. In the second step, after
applying sub, we obtain:

~P(f(f(u,v),9(a,y)), h(f(u,v)))
_‘P(f(f(u, ‘U), }U)’ h(f(av b)))

Therefore, the substitution is extended by [w/g(a,y)]. Next, we obtain

~P(f(f(u,v), 9(a,9)), h(f(u,v)))
~P(f(f(u,v),9(a,9)), h(f(f? b))

Now sub is extended by [u/a]. In the fourth step

-P(f(f(a,v),9(a,y)), h(f(a,v)))
ﬁP(f(f(a': v), g(a’ y)), h(f(a" IT))))

we obtain the final substitution sub = [z/f(u, v)][w/g(a, y)][u/a][v/b]. This
is a most general unifier for L, and we have

Lsub = {“P(f(f(a’ b)), g(a, y)), h(f(a’ b)))}
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Observe that sub is not a ground substitution for L since the variable y still
occurs in Lsub.

In some situations, it is desirable to write down substitutions in a “disen-
tangled” way so that all partial substitutions can be applied in any order —
or in paralle]l — without changing the result. A disentangled version of the
above substitution sub is

sub = [2/f(a,b)][w/g(a, y)][u/a][v/b].

Exercise 77: Show how for two disentangled substitutions sub and sub’,
their concatenation sub sub’ can be disentangled again.

Exercise 78: Apply the unification algorithm to the set of literals

L = {P(z,y), P(f(a), g(2)), P(f(2),9(f(2)))}-

Exercise 79: Show that the unification algorithm (implemented in a
straightforward way) can have exponential running time.

Hint: Consider the example

L= {P(131,l'2,...,J:n),P(f(.’L'(),:l)o),f(:l)l,:ltl),...,f(.’l?n-l,:l)n__l))}.

Think of a data structure for literals and sets of literals which allows a more
efficient implementation of the unification algorithm.

Exercise 80: In some implementations of the unification algorithm (e.g.
in interpreters for the programming language PROLOG), by efficiency rea-
sons, the test “does z occur in t” is left out (the occurrence check).

Give an example of a 2-element set L = {L;, Ly} which is not unifiable.
Let L; and L, have no variables in common, and (still!) a unification
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algorithm without occurrence check gets into an infinite loop (or erroneously
outputs that L is unifiable — depending on the implementation).

Using the unification principle, we are now in a situation to formulate
the resolution principle for predicate logic.

Definition (resolution in predicate logic)

Let C1,C> and R be clauses (in predicate logic). Then R is called a resolvent
of Cy, C; if the following holds.

1. There exist certain substitutions s; and s, which are variable renam-
ings so that Cys; and Css2 do not contain the same variable.

2. There is a set of literals Ly, ..., Lm € C151 (m > 1) and Li,..., Ly, €
Cys5 (n > 1), such that L = {Ly, L,,..., Ly, L}, LY, ..., L} is unifi-
able. Let sub be a most general unifier for L.

3. R has the form

R= ((Clsl bt {Ll, . ..,Lm})U(Czsz - {L,l) ,L:,}))sub .

We express the situation described by the definition by the following dia-

gram.

For better legibility, the literals L,..., Ly, L),..., L}, can be underlined,
and the substitutions used can be noted beside the diagram.
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Example:

{P(f(2)), ~Q(2), P(2)} {=P(2), R(9(2), a)}

81 =]
32 = [z/u]

sub = (z/f(z)][u/ f(2)]
{-Q(f(2)), R(¢(f(2)), a)}

Remark: The resolution calculus in propositional logic can be understood
as a special case of resolution in predicate logic where 383 = s2 = sub =[]
and m = n = 1. Therefore, we adopt the notation introduced for the
resolution in the propositional calculus, and extend the notion Res(F) also
for clause sets in predicate calculus:

Res(F) = FU{R| Ris a resolvent
of two clauses Cy,C, € F},
Res®(F) = F,
Res"t(F) = Res(Res™(F)) for n >0,
and
Res*(F) = U Res"(F).
n>0

As in propositional logic, it is clear that O € Res*(F') if and only if there is a
sequence C1, Cy, ..., Cy, of clauses such that C, = 0, and for: =1,2,...,n,
C; is either element of F or C; is resolvent of two clauses C, and Cj with
a,b<i.

Exercise 81: Find all resolvents of the following two clauses C; and Cs.

Cc, = {—1P(:c, y)’ -1P(f(a), g(u, b))’ Q(:B, u)}
Cy .= {P(f(z)v g(a., b)), ﬁQ(f(a')’ b)v -Q(a, b)}

As preparation for the proof of the resolution theorem, we show how
resolutions in propositional calculus (for ground instances of clauses in pred-
icate logic) can be “lifted” to certain resolutions in predicate logic. This
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“Lifting-Lemma” allows us to transform a resolution refutation on clauses
in propositional logic to a resolution refutation on clauses in predicate logic.

Lifting-Lemma

Let Cy, C; be two clauses in predicate logic und let C}, Cj be two arbitrary
ground instances thereof which are resolvable (in the sense of propositional
logic). Let R’ be a resolvent of C{, Cj. Then there exists a clause R which
is resolvent of C1, C; (in the sense of predicate logic) so that R’ is a ground
instance of R.

The following two pictures demonstrate the situation.

Assumption of the Lifting-Lemma

(o C,
R
:

Conclusion of the Lifting-Lemma
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Proof: First, let s; and s, be variable renamings such that C;s; and Css;
do not have a variable in common. Since C{ and C} are ground instances
of C; and C3, they are also ground instances of C13; and C33;. Let suby,
subs be ground substitutions such that Cj=C1s1sub; and C}=C,s;sub,.
Since there is no variable which is replaced in both substitutions sub; and
subs, we let sub=sub;sub;, and we get C;=C131sub and C},=C3s;sub. By
assumption, C; and Cj have some resolvent R’ (in propositional logic).
Therefore, there must be a literal L € C} such that L € C} and R’ =
(C, = {L})u(Ch — {L}). The literal L results from one or more literals in
C13; by the ground substitution sub. The same holds for L and C3s,. Hence
there are literals Ly, ..., Ly € C181(m > 1)and Lj,..., L}, € C3s2(n > 1),
such that L = Lysub = ... = Lysub and L = Lisub = ... = L/ sub.
Therefore, Cy31, C232 (and also Cj, C;) are resolvable, because sub is a
unifier for the set of literals

L={Ly...,Ln,L},...,I}.

Let suby be a most general unifier for L provided by the unification algo-
rithm. Then,

R=((C1s1 — {L1, .., Lm}) U (Casz — {L, ..., L'}))subo

is a (predicate logic) resolvent of C131, C23; (and also of Cy, C3). Since subg
is a most general unifier and sub is a unifier of L, there exists a substitution
s such that subg s=sub. Therefore, we get

R = (Ci-{Lhu(C;—-{L})

(Cys13ub — {L}) U (Casz5ub — {L})

= ((C181 —{L1,...,Ln})U(C282 — {L,..., L }))sub
= ((C181 = {L1,..-, Lin})U(C282 — {LY,..., L}, }))subos
= Rs

This shows that R’ is a ground instance of R (via the substitution s). =

Exercise 82: Consider the following ground resolution.
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{P(z,v), P(f(a),2)} {~P(f(z),9(¥), Q(z,9)}
(=/£(a)] (z/a)
(y/9(b)] b
(2/9(8)] Wit
{P(f(a),9(b))} {-~P(f(a),9())),Q(a,b)}
{Q(a,d)}

Follow the proof of the Lifting Lemma, and find out which (predicate logic)
resolution step is constructed from this.

Resolution Theorem (of predicate logic)

Let F be a closed formula in Skolem form with its matrix F* in CNF.
Then, F is unsatisfiable if and only if O € Res*(F*).

Proof: (Correctness) First we show that O € Res*(F*) implies that F is
unsatisfiable. For a formula H with the free variables z1,z5,...,z, let VH
denote its universal closure. This is the formula VH = Vz,Vz,...Vz, H.
Note that F = A;cp. VC. Now we show that for every resolvent R of two
clauses Cy, C2, VR is a consequence of VC; AVC,. Then, it follows that the
empty clause is a consequence of F, and therefore, F' is unsatisfiable.

Let A be a structure such that A(VC;) = A(VC3) = 1. Let the resolvent
R have the form

R = ((Ci181 —{L1,...,Ln})U(Cas8z — {L},..., L. }))sud
= (Clslsub - {L}) U (CzSzS‘ub - {f}),

where sub is a most general unifier of L = {Ly,..., L, L}, ..., L. },and L
= Lysub =...= Ly,sub = L}sub = ... = L], sub. Assume that A(VR) = 0.
Then there exists a structure A’ with A’(R) = 0, where A’ is the same as
A, but additionally has suitable interpretations for the variables that occur.
Then we have A’(Cy3;sub—{L}) = 0 and A’(Czs,5ub—{L}) = 0. Because
of 1 = A'(Cysysub) = A'(Csszsub), it follows that A'(L) = A'(L) = 1.
This is a contradiction which shows that A(VR) = 1.
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(Completeness) Suppose that F is unsatisfiable. Using the ground res-
olution theorem, there is a sequence of clauses (Cy,Cj3,...,C}) such that
C} =0, and for i = 1,2,...,n, C] either is ground instance of some clause
in F* or C} is a (propositional logic) resolvent of two clauses C; and Cj
with a,b < ¢. For : = 1,2,...,n we now construct a sequence C; of pred-
icate logic clauses where C,, = O which demonstrates that O € Res*(F).
If C! is a ground instance of some clause C € F*, then we choose C; = C.
If C! is resolvent of two clauses C., and Cj with a,b < ¢, then we have
already determined the clauses C, and Cp such that C}, and Cj are ground
instances thereof. By the Lifting Lemma, we can find a clause C; which
is resolvent of C, and Cj, and such that C/ is ground instance of C;. The
sequence (Cy,C3,...,Cy) that is obtained shows that O € Res*(F). n

Example: The clause set

F = {{-P(2),Q(=), R(z, f(2))}, {~P(z), Q(=), S(f(2))}, {T(a)},
{P(a)}, {~R(a, 2), T(2)}, {~T (=), ~Q(2)}, {-T(y), ~S(v)}}

is unsatisfiable. A deduction of the empty clause is given by

(1) {T(a)} clause in F
) {-T(=),~Q(=)} clause in F
3) {-Q(a)} resolvent of (1) and (2)
(4) {-P(z),Q(=), 5(f(=))} clause in F
(5) {P(a)} clause in F
(6) {Q(a),S(f(a))} resolvent of (4) and (5)
(1) {s(f(a))} resolvent of (3) and (6)
(8) {~P(z),Q(z), R(=, f(=))} clause in F
(9) {Q(a), R(a, f(a))} resolvent of (5) and (8)
(10) {R(a, f(a))} resolvent of (3) and (9)
(11) {=R(a,2),T(2)} clause in F
(12) {T(f(a))} resolvent of (10) and (11)

(13) {-~T(y),~S(y)} clause in F
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(14) {~S(f(a))} resolvent of (12) and (13)

(15) O resolvent of (7) and (14)

Exercise 83: For finite clause sets F' in propositional logic, Res*(F) is
always a finite set. Show that there are finite clause sets F' in predicate
logic such that for all n,

Res™(F) # Res"(F).

Example: To demonstrate the use of the resolution calculus for automated
theorem proving, we consider the following example from group theory. Let
o be the group operation. By P(z,y, z) we express that z oy = z. Then
the axioms of group theory can be expressed by the following formulas.

(1) VzVy3zP(z,y,2)
(closure under o)

(2) YuVoVwVzVyVz((P(z,y, u)AP(y, 2,v)) = (P(z, v, w) « P(u, z,w)))

(associativity)
(3) 32(VyP(z,y,y) AVyIzP(z,y,2))

(existence of a left-neutral element
and existence of left-inverses)

Now we want to prove that the existence of right-inverses follows from (1),
(2), and (3). This is expressed by the following formula (4).

(4) 3z(VyP(z,y,y) AVyIzP(y,z,z))
Converting (1) A (2) A (3) A —(4) into clause form gives
(a) {P(z,y,m(z,y)}
(b) {=P(z,y,4),~P(y,2v), ~P(2,v,w), P(u,2,w)}
(¢) {=P(z,y,u),~P(y, 2,v),~P(u, 2, w), P(z,v,w)}
(d) {P(e,v,9)}
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(e) {P(i(y),y,¢)}
(f) {=P(z,j(2),j(=)), ~P(k(z),2,2)}

Here, m (2-ary), e (0-ary), ¢ (1-ary), and k (l-ary) are newly introduced
Skolem functions. A resolution refutation from (a)-(f), and therefore, a
proof of unsatisfiablity is given by the following diagram (which happens
to be a linear chain).

#)  (d)

{=P(k(e), 2,€)}
(b)

{~P(z,y,k(e)),~P(y, 2,v),~P(z,v,€)}
(e)

{-P(i(v), w, k(e)), " P(w, z,v)}
(d)

{=P(i(v), e, k(e))}
(c)

{_'P(i(t)’ y,u), " P(y, z,€), 7 P(u, z, k(e))}
(d)

{ﬂp(i(t)’ y,€), ~P(y, k(e)’ e)}
()

{=P(i(2), i(k(e)), €)}

/ ()

a

Exercise 84: Show that the following are consequences of the above men-
tioned axioms of group theory.
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(a) There exists a right-neutral element.

(b) If G is an Abelian group, then for all z,y in G, zoyoz~! = y.

Exercise 85: Express the following facts by formulas in predicate logic.

(a) Every dragon is happy if all its children can fly.
(b) Green dragons can fly.

(c) A dragon is green if it is a child of at least one green dragon.

Prove by resolution that the conjunction of (a),(b) and (c) implies: all green
dragons are happy.

Exercise 86: Given are the following facts.

(a) Every barber shaves all persons who do not shave themselves.

(b) No barber shaves any person who shaves himself.

Formalize (a) and (b) as formulas in predicate logic. Use B(z) for “z is
barber”, and S(z,y) for “z shaves y”. Convert into clause form and show
by resolution that (c) is a consequence of (a) and (b).

(¢) There are no barbers.

2.6 Refinements of Resolution

Although the predicate logic version of resolution constitutes a great im-
provement as compared to the straightforward ground resolution procedure,
there is a tremendous combinatorial explosion with which one has to deal.
The problem is that, in general, there are many possibilities to find two
resolvable clauses for producing new resolvents. Among this huge number
of possible resolution steps, only a few might lead to the derivation of the
empty clause (in case the clause set is unsatisfiable). Additionally, while
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the resolution process proceeds, the number of clauses (and their lengths)
increases further, which causes still more choices to be tried.

We now present some possibilities of improving the efficiency of the
general resolution algorithm. We call these refinements of resolution. We
distinguish between strategies and restrictions.

Strategies are just heuristic rules which prescribe the (deterministic)
order through which the (nondeterministic) search space has to be explored.
Hence, the size of the search space is not affected by a strategy. But for a
clever strategy, there is some hope that only a small portion of the space
has to be searched until a solution (a derivation of the empty clause) is
found. In the worst case, the entire space has to be searched.

An example is the unit preference sirategy where, whenever possible,
resolution steps are performed when one of the parent clauses is a unit, i.e.
consists of one literal only.

These strategies seem to work quite well in the examples studied, but
there is little theoretical work which can be reported here. We just mention
that such strategies can be combined with the resolution restrictions which
will be discussed next.

The resolution restrictions however simply forbid certain resolution
steps if the clauses involved do not have a certain syntactic form, depending
on the type of restriction. Therefore, the number of possible choices for the
next resolution step is smaller as compared to the general case. Of course,
the question to be investigated is whether such restrictions go “too far”,
so that the calculus loses the completeness property. (This would be the
case if there is an unsatisfiable clause set such that the empty clause is not
derivable under the respective restriction).

We now present the different resolution restrictions that we will study
in the following.

The P-restriction (or just P-resolution) requires that at least one of
the parent clauses has to be positive, i.e., consists of positive literals only.
Analogously, the N-restriction (N-resolution) requires that at least one par-
ent clause is negative. We will later show that P-resolution as well as N-
resolution are complete.

The empty clause is linearly resolvable from a clause set F, based on a
clause C € F, if there is a sequence of clauses (Cp, Cy,...,Cy) such that
Co=C,C,=0,andfori=1,2,...,n,
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C;

where the clause B;_; (the so-called side clause) is either an element of F
(i.e. an input clause) or B;_; = C; for some j < i.

We will show in this section that linear resolution is complete, that is,
for every unsatisfiable clause set F there is a clause C € F (called the base

clause) such that the empty clause is linearly resolvable from F based on
C.

Example: Consider the unsatisfiable clause set
F = {{A, B},{A,-B},{-A, B},{~4A,~B}}.

The usual resolution refutation is given by the following diagram and takes
3 resolution steps.

{4, B} {A,-B} {-A,B} {-A,-B}

{4} {-4}

A linear resolution of the empty clause from F, based on {4, B}, is
given by the following diagram (this is also an example for a P-resolution).
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{4, B} {4,-B} {-A4, B} {-A,-B}

Observe that this resolution refutation consists of 4 resolution steps. This
suggests that the price to be paid for the restriction in the number of
nondeterministic choices is an increase in the proof length. This effect is
not yet theoretically explored (cf. Exercise 87).

For the set-of-support restriction of resolution one needs to know (e.g.
from the context) a subset T of the clause set F such that F — T is satis-
fiable. A resolution deduction of the empty clause from F, relative to the
set-of-support T, has to satisfy the requirement that it is never the case
that two clauses from F' — T are being resolved. This restriction can bring
an advantage if T is relatively small (e.g. |T| = 1) and therefore, F' — T is
relatively big. Many potential resolution steps (between clauses in F — T')
can be avoided this way. A typical example is to test whether a given
formula G follows from the “data base” {Fi, F>,...,F,}. We know that
this is the case if and only if the set {Fy, Fs,..., F,,~G} is unsatisfiable
(Exercise 3). If it is known from the context that {Fy, F,,..., F,} is satis-
fiable, i.e., the data base (or axiom system, if you prefer) is consistent — or
if this consistency is just assumed, then one can choose as set-of-support
T = {Gy,...,Gi} where {Gy,...,Gg} is the clause representation of —G.
We will see later that the set-of-support restriction of resolution is complete.
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The input-restriction of resolution (or just input resolution) requires
that in each resolution step, one of the parent clauses has to be an “input”,
i.e. an element of the original clause set F. It is easy to see that an input
resolution proof necessarily is a linear resolution proof. But in contrast to
linear resolution, input resolution is not complete. The above discussed
unsatisfiable clause set

F = {{4, B}, {A’ —'B}’ {ﬁA’B}) {-4,-B}}.

is a simple counter example. In this example, the first resolution step
produces a clause with a single literal. Each further step produces then, by
the input restriction, single element clauses. Therefore, the empty clause
is not derivable by input resolution. But, we will later see that input
resolution is complete when restricted to clause sets which contain only
Horn clauses.

Another incomplete resolution restriction is unit resolution. Unit reso-
lution is also complete for Horn clauses (see also Exercise 35). It is only
allowed to produce a resolvent if at least one of the parent clauses is a unit,
i.e. contains only a single literal. This resolution restriction has the advan-
tage that the size of the produced resolvents decreases as compared with
the parent clauses. Hence, unit resolution is working towards producing the
empty clause which has size 0. The incompieteness of unit resolution can
be seen by the same counter example as for input resolution, and this is not
mere accident: It can be shown that a clause set has an input resolution
refutation if and only if it has a unit resolution refutation (cf. Exercise 91).

We finally proceed to the SLD-resolution (SLD = linear resolution with
selection function for definite clauses). This restriction is only defined for
Horn clauses. This resolution restriction plays an important role in logic
programming which will be discussed in more depth in the next chapter.
SLD-resolutions are both input and linear resolutions which have a special
form. The base clause must be a negative clause (a so-called goal clause),
and in each resolution step, the side clause must be a non-negative input
clause. (A non-negative Horn clause is also named a definite clause or a
program clause).

For example, let F = {C1,C3,...,Cpn, N1,..., Ny} be a set of Horn
clauses where Cy,C,,...,C, are the definite clauses and N,,..., N,, are
the goal clauses. An SLD-resolution of the empty clause must then have the
form, for a suitable j € {1,...,m} and for a suitable sequence i1,12,...,%4 €

{1,...,n}.



2.6. REFINEMENTS OF RESOLUTION 101

Ci, N;

C;

2

[/

The clauses represented by dots, i.e. the “intermediate results”, can only be
negative clauses, because they result from resolution of a negative and a def-
inite Horn clause. That means, SLD-resolutions are always N-resolutions.
Furthermore, SLD-resolutions are set-of-support resolutions where the set-
of-support is {N1,..., N} (cf. Exercise 39). We will show that SLD-
resolution is complete for Horn clauses.

Remark: In the abbreviation SLD (linear resolution with selection func-
tion for definite clauses), the additional aspect of a selection function is
mentioned. In our present definition, we ignore this aspect of selection,
but come back to this point in the investigations of Section 3.3. There,
the presence of a selection function (which selects the next definite clause
to be resolved with) is treated as combination of SLD-resolution with a
special strategy (see the discussion at the beginning of this section). Here,
we treat SLD-resolution as identical with LUSH-resolution (LUSH = linear
resolution with unrestricted selection for Horn clauses).

All of the completeness proofs for these resolution restrictions are shown
for the propositional case first, that is, for the ground instances of the pred-
icate logic clauses. Just as in the proof of the general resolution theorem
of the last section, the Lifting Lemma is used to convert resolution refuta-
tions for ground instances to resolution refutations for the original clauses
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in predicate logic. We have to check that the Lifting Lemma does not
change the structure of a resolution proof. It is easily seen that a P-, N-
etc. resolution is still a P-; N- etc. resolution after application of the Lifting
Lemma. To prove completeness of a resolution restriction, we have to mod-
ify the proof of the resolution theorem in propositional logic (see Section
1.5) according to the respective restriction.

As preparation for the following proofs, we introduce the following no-
tation. For a (propositional logic) clause set F' and a literal L occurring
in F, we let Fp-o be the clause set which is obtained from F by canceling
every occurrence of L within the clauses of F', and for every occurrence
of L in a clause in F, the whole clause is eliminated from F. Similarly,
Fr_, is defined by interchanging the roles of L and L. In other words,
Fp—,, a € {0,1}, is obtained from F by fixing the assignment A(L) = a
and performing obvious simplifications. From this, it is clear, that the
unsatisfiability of F' implies the unsatisfiability of F—¢ and of Fr—;.

Theorem

The P-restriction of resolution is complete.

Proof: Asobserved above, it suffices to prove the theorem for propositional
logic. Let F' be an unsatisfiable set of clauses. By the compactness theorem,
we can assume that F is finite. We show by induction on the number of
different atomic formulas occurring in F', that the empty clause is deductible
from F by P-resolution.

If n =0, then F = {0}, and there is nothing to prove.

Now let n > 0 and assume that F' contains n atomic formulas. Pick any
one of those, say A. Then both clause sets Fy—o and F4—; are unsatisfi-
able and contain at most n — 1 atomic formulas. By induction hypothesis,
there are resolution refutations for Fsy—o and for F4—; satisfying the P-
restriction. Now we insert the literal A in all those clauses in Fi4—¢ again,
where it was canceled before, and also in all the respective resolvents. The
above resolution of the empty clause from F4—o then turns into a resolu-
tion of {A} from F. This is still a P-resolution since A is a positive literal.
Next, we add resolution steps which resolve the so-obtained clause {A}
with every clause in F' which contains —A. These resolution steps are also
P-resolutions. Now we have all clauses from F4_; available. Therefore,
we attach the P-resolution refutation building upon F4—;, which exists by
induction hypothesis, and obtain altogether a P-resolution refutation of F'.

.
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Theorem

The N-restriction of resolution is complete.

Proof: Swap in the above proof all occurences of “positive” by “negative”,
of A by —A, of Fa=o by Fa=1 (and vice versa). =

Theorem

Linear resolution is complete. (More precisely: For every unsatisfiable
clause set F' there is a clause C' € F such that the empty clause is lin-
early resolvable from F, based on C).

Proof: Let F be unsatisfiable. By the compactness theorem, we can as-
sume that F is finite. Let F’ be a minimally unsatisfiable subset of F (i.e.
F' is an unsatisfiable subset of F', and every proper subset of F’ is satisfi-
able. F’ can be constructed from F' by successively canceling clauses from
F until any further canceling of a clause causes satisfiability of the resulting
clause set).

Now we show that every clause in F’ can be used as base clause to allow
a linear resolution refutation. The proof is by induction on the number n
of atomic formulas occurring in F’. Let C be an arbitrary clause in F’. If
n =0, then F’ = {0} and C = O. There is nothing to show.

Now we come to the induction step. If F’ contains n > 0 atomic for-
mulas, then we consider two cases.

Case 1: |C| = 1.
In this case, C = {L} for some literal L. Then the clause set Fj_, is
unsatisfiable and contains at most n — 1 different atomic formulas. Let
F” be a minimally unsatisfiable subset of Fj_,. Then we claim that F”
must contain a clause C’ such that C' U {L} € F’. That means, C’ was
obtained from a clause in F by canceling L. Such a clause C’ must exist
in F" because otherwise F” would be a subset of F’ — {C}, and therefore
would be satisfiable (because F” was chosen minimally unsatisfiable). By
the induction hypothesis, there is a linear resolution of the empty clause
from F”, based on C’. From this linear resolution proof we construct the
desired linear resolution of the empty clause from F’, based on C' = {L}, as
follows. The first resolution step resolves the base clause C = {L} with C'U
{L}. Therefore, the resolvent is C’. Then we attach the above resolution
refutation, but take the original clauses from F' instead, i.e. possibly with
the literal L which was canceled in F’. The literal L also appears in the
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respective resolvents, and instead of deducing the empty clause, we obtain
{L} at the end of the linear chain. A final resolution step resolving {L}
with the base clause C = {L} gives the empty clause.

Case 2: |C| > 1.

In this case, we choose an arbitrary literal L € C and let C' = C — {L}.
Then, F[_, is unsatisfiable and C” is a clause in Fj_,. We claim that Fj_,
is satisfiable. To see this, let A be a model for F/ — {C}. Then, A(C) = 0,
because A(F') = 0, by unsatisfiability of F’. Therefore, A(L) = 0, because
L € C. From this, we obtain A(F;_, — {C}) = 1.

Now let F” be a minimally unsatisfiable subset of Fj_,. As we have
Jjust seen, F"' must contain C’ (because canceling C’ from F" would cause
satisfiability). We can apply the induction hypothesis on F”. Therefore
there exists a linear resolution of the empty clause from F”, based on C’.
In this resolution proof, we add the literal L at every place where it was
canceled before (also in the respective resolvents). Then we obtain a linear
resolution of {L} from F’, based on C.

Now we observe that (F' — {C})U {{L}} is unsatisfiable and F’ — {C}
is satisfiable. Using Case 1, there exists a linear resolution of the empty
clause from (F' — {C}) U {{L}}, based on {L}. Attaching this resolution
proof behind the above constructed resolution which yields {L}, we obtain
the desired resolution of the empty clause from F’, based on C. ]

Exercise 87: Let F be the unsatisfiable clause set built up from the atomic
formulas A;,..., A, such that F contains all m = 2" clauses of the form
{B1,Bay,...,B,} with B; € {A;,~A;}. The usual resolution refutation (in
form of a complete binary tree) has m — 1 resolution steps. Find recursions
for the number of resolution steps constructed by the induction proofs for
completeness of linear and of P-resolution. Compare this number with
m—1.

Theorem
The set-of-support restriction of resolution is complete.
Proof: This follows from the completeness of linear resolution. Let F be

an unsatisfiable clause set, and let T C F be a set-of-support, i.e., F — T
is satisfiable. A minimally unsatisfiable subset of F' has to contain at least
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one clause C € T, because F — T is satisfiable. Using the previous proof, it
follows that there is a linear resolution of the empty clause from F, based
on C. This is also a set-of-support resolution with set-of-support {C}, and
therefore also with set-of-support T'. ]

Exercise 88: Show that by combining two complete resolution restrictions,
in general, one loses completeness. Give an example of an unsatisfiable
clause set and two complete resolution restrictions (e.g. P-resolution and
N-resolution) such that the empty clause cannot be derived by satisfying
both restrictions.

Now we turn to the resolution restrictions which are incomplete in the gen-
eral case. Here we obtain immediately the following theorem (cf. Exercise
35).

Theorem

Unit resolution is complete for the class of Horn clauses.

Proof: Since P-resolution is complete in the general case, it is also complete
for the special case of Horn clauses. But positive Horn clauses must be units
(i.e. consist of a single literal). Therefore, it immediately follows that unit
resolution is complete for Horn clauses. u

Theorem

SLD-resolution is complete for the class of Horn clauses.

Proof: Let F be an unsatisfiable set of Horn clauses. Such a set must
contain a negative clause (otherwise let LA(A) = 1 for every atomic formula
Ain F, then A would be a model for F). Furthermore, if F’ is a minimally
unsatisfiable subset of F, then there must be a negative clause C in F’'. By
completeness of linear resolution, there is a resolution of the empty clause
from F' (hence from F'), based on C. This linear resolution chain must
have the form of an SLD-resolution. First, it is based on a goal clause,
namely C. Further, all resolvents must be negative clauses, therefore the
side clauses can only come from F, and must be definite clauses. n
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Exercise 89: Prove the completeness of SLD-resolution for the class of
Horn clauses directly, i.e. without referring to the completeness of linear
resolution.

Hint: Imagine the process of the marking algorithm for Horn clauses
discussed in Section 1.3. and “simulate” it backwards in terms of SLD-
resolution steps. Another possibility is to use (a generalization of) Exer-
cise 38.

Theorem

Input resolution is complete for the class of Horn clauses.

Proof: SLD-resolutions are also input resolutions. ]

Exercise 90: Show that the completeness of input resolution follows just
as easily from the completeness of N-resolution. ]

Exercise 91: Show that for every clause set F', F has an input resolution
refutation if and only if F' has a unit resolution refutation.

Exercise 92: Show that resolution remains complete if no resolution step
is allowed where one of the parent clauses is a tautology. A clause is a
tautology if and only if it contains an atomic formula together with the
complement of this atomic formula.

Exercise 93: If, in a resolution step, only one literal in each parent clause
is used for unification, then we call this binary resolution. (In other words,
in the definition of a resolvent in predicate logic, m = n = 1).

Show by a counter example that binary resolution in general is incom-
plete. Show further that binary resolution is complete for Horn clauses.
Furthermore, for Horn clauses it remains complete if combined with any of
the other complete resolution restrictions for Horn clauses.
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