A Paraconsistent Relational Data Model

Rajiv Bagai and Rajshekhar Sunderraman
Department of Computer Science
The Wichita State University
Wichita, KS 67260-0083
U.S.A.

Tel: +1-316-689-3156
Fax: +1-316-689-3984
Email: {bagai,raj} @cs.twsu.edu

Abstract

We present a generalisation of the relational data model based on a 4-valued paraconsis-
tent logic. Our data model is capable of manipulating incomplete as well as inconsistent
information. For this model, we define algebraic operators that are generalisations of the
usual operators, such as union, selection, join, on ordinary relations. Our data model
can underlie any database management system that deals with incomplete or inconsistent
information. As another application of our model and its algebra, we present a bottom-
up method for constructing the weak well-founded model of general deductive databases.
This method can be very simply extended to construct the well-founded model.

Keywords: Paraconsistent relations, Relational algebra, General deductive databases,
Weak well-founded model.

C.R. Categories: H.2.1, F.3.2, F.4.1, 1.2.3.

1 Introduction

Two important features of the relational data model [5] for databases are its value-oriented
nature and its rich set of simple, but powerful algebraic operators. Moreover, a strong
theoretical foundation for the model is provided by the classical first-order logic [21].
This combination of a respectable theoretical platform, ease of implementation and the
practicality of the model resulted in its immediate success, and the model has enjoyed
being used by many database management systems. Even nonrelational systems are often
described, for commercial purposes, as supporting relational features.

One limitation of the relational data model, however, is its lack of applicability to
nonclassical situations. These are situations involving incomplete, or more importantly,
even inconsistent information.

Representing and manipulating various forms of incomplete information in relational
databases has been a concern of researchers since the very introduction of the relational
model. Null values in relational databases [18] have been studied extensively. Codd
[6] distinguished between applicable and inapplicable null values. Grant [12] generalised
the concept of applicable nulls by introducing partial values. Imielinski and Lipski [13]
explored marked nulls in relations that allow equating two null values. Disjunctive infor-
mation has been studied in [15, 16, 23]. Maybe information in the context of null values
was the focus of [3]. Lipski [14] distinguished between definite and maybe knowledge in
the context of partial information. A study of fuzzy and uncertain information has been
conducted in [11, 20].

However, unlike incomplete information, inconsistent information has not enjoyed
enough research attention. While it may be argued that true knowledge systems should
contain no inconsistent information, contradictions are very common in belief systems.
Even experts of a domain often disgaree with each other, sometimes strongly.

Logics dealing with inconsistent information are called paraconsistent logics, and were
studied in detail by de Costa [7] and Belnap [2]. Blair and Subrahmanian [4] proposed
logic programming based on paraconsistent logic and Subrahmanian [22] extended the
work to disjunctive deductive databases.

In this paper, we present a generalisation of the relational data model. Our model
is based on the 4-valued paraconsistent logic of [2] and is capable of manipulating in-
complete as well as inconsistent information. The incompleteness is at the tuple level,
in that whether or not a particular tuple belongs to a relation may not be known. This
notion of incompleteness is different from the other null-values related notions mentioned
earlier. Similarly, inconsistency is also at the tuple level, in that a particular tuple may
be considered to be both in and out of a relation.

We introduce paraconsistent relations, which are the fundamental mathematical struc-
tures underlying our model. A paraconsistent relation essentially contains two kinds of

tuples: ones that definitely belong to the relation and others that definitely do not belong
to the relation. These structures are strictly more general than ordinary relations, in that
for any ordinary relation there is a paraconsistent relation with the same information
content, but not wvice versa. We define algebraic operators over paraconsistent relations
that extend the standard operators, such as selection, join, union, over ordinary relations.

In addition to answering queries in databases, we show another application of our
algebra on paraconsistent relations. We present a bottom-up method to construct the
weak well-founded model of general deductive databases; this model was proposed by
Fitting in [9].

The rest of the paper is organised as follows. Section 2 introduces paraconsistent
relations and two notions of generalising the usual relational operators, such as union,
join, projection, for these relations. Section 3 presents some actual generalised algebraic
operators for paraconsistent relations. These operators can be used for specifying queries
for database systems built on such relations. As another interesting application of these
operators, Section 4 gives a method for costructing the weak well-founded model of general
deductive databases. An important step in the construction is to translate the database
clauses into expressions involving the algebraic operators on paraconsistent relations.
Finally, Section 5 contains some concluding remarks and directions for future work.

2 Paraconsistent Relations

In this section, we construct a set-theoretic formulation of paraconsistent relations. Unlike
ordinary relations that can model worlds in which every tuple is known to either hold a
certain underlying predicate or to not hold it, paraconsistent relations provide a framework
for incomplete or even inconsistent information about tuples. They naturally model
belief systems rather than knowledge systems, and are thus a generalisation of ordinary
relations. The operators on ordinary relations can also be generalised for paraconsistent
relations. However, any such generalisation of operators should maintain the belief system
intuition behind paraconsistent relations. This section also develops two different notions
of operator generalisations.

Let a relation scheme (or just scheme) X be a finite set of attribute names, where for
any attribute name A € 3, dom(A) is a non-empty domain of values for A. A tuple on
Y is any map t : ¥ — Ugexdom(A), such that t(A) € dom(A), for each A € . Let 7(%)
denote the set of all tuples on X.

Definition 1 An ordinary relation on scheme X is any subset of 7(3). We let O(X) be
the set of all ordinary relations on . O

The above is the usual definition of relations. We call them ‘ordinary’ relations to distin-
guish them from other kinds of relations introduced below.

Definition 2 A paraconsistent relation on scheme ¥ is a pair R = (R™, R™), where RT
and R~ are any subsets of 7(3). We let P(X) be the set of all paraconsistent relations
on Y. O

Intuitively, Rt may be considered as the set of all tuples for which R is believed to
be true, and R~ the set of all tuples for which R is believed to be false. Note that
since contradictory beliefs are possible, we do not assume Rt and R~ to be mutually
disjoint, though this condition holds in an important class of paraconsistent relations. As
paraconsistent relations may contain contradictory information, they model belief systems
more naturally than knowledge systems. Furthermore, R™ and R~ may not together cover
all tuples in 7(X).

Definition 3 A paraconsistent relation R on scheme ¥ is called a consistent relation if
RT* N R~ = 0. We let C(X) be the set of all consistent relations on X. Moreover, R is
called a complete relation if RT U R~ = 7(X). If R is both consistent and complete, i.e.
R~ =7(X)—R™, then it is a total relation, and we let T (X) be the set of all total relations
on X. O

[t should be observed that (the positive parts of) total relations are essentially the ordinary
relations. We make this relationship explicit by defining a one-one correspondence Ay, :
T(X) = O(X), given by Ax((R*, R™)) = RT. This correspondence is used frequently in
the following discussion.

Operator Generalisations

It is easily seen that paraconsistent relations are a generalisation of ordinary relations, in
that for each ordinary relation there is a paraconsistent relation with the same information
content, but not wvice versa. It is thus natural to think of generalising the operations
on ordinary relations, such as union, join, projection etc., to paraconsistent relations.
However, any such generalisation should be intuitive with respect to the belief system
model of paraconsistent relations. We now construct a framework for operators on both
kinds of relations and introduce two different notions of the generalisation relationship
among their operators.

An n-ary operator on ordinary relations with signature (X1, ..., %,41) is a function
©:0(%) x---x 0%, = O,41), where Xy, ..., %, are any schemes. Similarly,
an n-ary operator on paraconsistent relations with signature (3q,...,3,11) is a function

U P(E) X X P(S0) = P(Snpn)-

Definition 4 An operator ¥ on paraconsistent relations with signature (3, ...,3,,1) is
totality preserving if for any total relations R, ..., R, on schemes Y, ..., Y, respectively,
U(Ry,...,Ry,) is also total. O

Definition 5 A totality preserving operator ¥ on paraconsistent relations with signature

(31,...,5,41) is a weak generalisation of an operator © on ordinary relations with the
same signature, if for any total relations Ry, ..., R, on schemes ¥,...,Y,, respectively,
we have

A (U(Ry, .. Ry)) = O(Asn, (Ry), ..., As, (Ry)). O

The above definition essentially requires W to coincide with © on total relations (which are
in one-one correspondence with the ordinary relations). In general, there may be many
operators on paraconsistent relations that are weak generalisations of a given operator
O on ordinary relations. The behavior of the weak generalisations of © on even just
the consistent relations may in general vary. We require a stronger notion of operator
generalisation under which, at least when restricted to consistent relations, the behavior
of all the generalised operators is the same. Before we can develop such a notion, we need
that of ‘completions’ of a paraconsistent relation.

We associate with a consistent relation R the set of all (ordinary relations correspond-
ing to) total relations obtainable from R by throwing in the missing tuples. Let the map
compsy, : C(X) — 2°%) be given by

compsy(R) ={Q € O(X) | R" CQC7(¥) - R }.

The set comps,,(R) contains all ordinary relations that are ‘completions’ of the consistent
relation R. Observe that compsy, is defined only for consistent relations and produces
sets of ordinary relations. The following observation is immediate.

Proposition 1 For any consistent relation R on scheme ¥, compsy,(R) is the singleton

set {R*} iff R is total.

Figure 1 gives a pictorial view of the different kinds of relations and the maps Ay, and
compssy..

We now need to extend operators on ordinary relations to sets of ordinary relations.
For any operator © : O(X;) x --- x O(%,) = O(X,41) on ordinary relations, we let
S(0) : 20071) x ... x 20B) 5 20(2n+1) he a map on sets of ordinary relations defined as
follows. For any sets My, ..., M,, of ordinary relations on schemes ¥y, ..., 3, respectively,

SO)(My,...,M,) ={O(R,,...,R,) | R € M;, foralli,1<i<n}.

In other words, S(©)(My,..., M,) is the set of ©-images of all tuples in the cartesian

product M; x --- x M,. We are now ready to lead up to a stronger notion of operator
generalisation.

Definition 6 An operator ¥ on paraconsistent relations with signature (X,...,%,,1)
is consistency preserving if for any consistent relations Ry, ..., R, on schemes ¥, ..., %,
respectively, W(Ry, ..., R,) is also consistent. O

P(X) compssy —

// 90()
/
C(X)
T
(%) \ o)
—

Figure 1: Classes of relations

Definition 7 A consistency preserving operator ¥ on paraconsistent relations with sig-
nature (3q,...,%,41) is a strong generalisation of an operator © on ordinary relations
with the same signature, if for any consistent relations Ry, ..., R, on schemes ¥,..., %,
respectively, we have

compsy, (V(Ry,...,R,)) = S(0)(compsy, (R),...,compsy, (R,)). O

Given an operator © on ordinary relations, the behavior of a weak generalisation of ©
is ‘controlled” only over the total relations. On the other hand, the behavior of a strong
generalisation is ‘controlled” over all consistent relations. This itself suggests that strong
generalisation is a stronger notion than weak generalisation. The following proposition
makes this precise.

Proposition 2 If ¥ is a strong generalisation of ©, then V is also a weak generalisation

of ©.

Proof Let (Xq,...,%,.1) be the signature of ¥ and O, and let Ry, ..., R, be any total
relations on schemes ¥y, ..., 3, respectively. Since all total relations are consistent, and
¥ is a strong generalisation of ©, we have that

compsy, . (V(Ry,...,R,)) = S(0)(compsy, (R,),...,compsy (1,)).

Proposition 1 gives us that for each 4, 1 <1 < n, compsy, (R;) is the singleton set {R;"},
i.e. {Ay;(R;)}. Therefore, S(©)(compsy (R),...,compsy (R,)) is just the singleton set

6

{©(As, (R1), ..., s, (Ry))}. Hence, W(Ry,..., R,) is total, and Ay
OAs, (R1), ..., s, (Ry)), i.e. U is a weak generalisation of ©. O

U(Ry,...,R,)) =

n+1 (

Though there may be many strong generalisations of an operator on ordinary relations,
they all behave the same when restricted to consistent relations. In the next section, we
propose strong generalisations for the usual operators on ordinary relations. The proposed
generalised operators on paraconsistent relations correspond to the belief system intuition
behind paraconsistent relations.

3 Algebraic Operators on Paraconsistent Relations

In this section, we present one strong generalisation each for the usual ordinary relation
operators, such as union, join, projection. To reflect generalisation, a dot is placed over an
ordinary relation operator to obtain the corresponding paraconsistent relation operator.
For example, X denotes the natural join among ordinary relations, and X denotes natural
join on paraconsistent relations.

Set-Theoretic Operators

We first introduce two fundamental set-theoretic algebraic operators on paraconsistent
relations:

Definition 8 Let R and S be paraconsistent relations on scheme . Then,

(a) the union of R and S, denoted R U S, is a paraconsistent relation on scheme ¥, given
by
(RUS)" =R"UST, (RUS) =R NS

(b) the complement of R, denoted — R, is a paraconsistent relation on scheme ¥, given
by
(- R =R, (- R~ =R'.O

An intuitive appreciation of the union operator may be obtained by interpreting relations
as properties of tuples. So, R U S is the “either-R-or-S” property. Now since RT and
STt are the sets of tuples for which the properties R and S, respectively, are believed
to hold, the set of tuples for which the property “either-R-or-S” is believed to hold is
clearly R* U S*. Moreover, since R~ and S~ are the sets of tuples for which properties
R and S, respectively, are believed to not hold, the set of tuples for which the property
“either- R-or-S” is believed to not hold is similarly R~ N .S™.

In an informal symbolic notation, Rt = {t | R(t)}, and R~ = {t | not R(¢)}.
Now, (R U S)" = {t | R(t) or S(t)}, which is Rt U S*. Similarly, (R U S)~ =
{t | not (R(t) or S(t))} = {t | not R(¢) and not S(¢)}, whichis R~ N S".

The definition of complement and of all the other operators on paraconsistent relations
defined later can (and should) be understood in the same way.

Proposition 3 The operators U and unary — on paraconsistent relations are strong gen-
eralisations of the usual operators U and unary — on ordinary relations.

Proof Let R and S be consistent relations on scheme Y. Then comps,,(R U S) is the
set {Q| RTUST CQ C7(¥)— (R NS)}. This set is the same as the set {rUs | RT C
rCr(¥)—R,ST CsC7(X)— S}, which is S(U)(compsy,(R), compsy.(S)). Such a
result for unary — can also be shown similarly. O

For sake of completeness, we define the following two related set-theoretic operators
on paraconsistent relations:

Definition 9 Let R and S be paraconsistent relations on scheme Y. Then,

(a) the intersection of R and S, denoted R N S, is a paraconsistent relation on scheme
Y., given by

(RN S)T=R"NST, (RNS) =R US;

(b) the difference of R and S, denoted R — S, is a paraconsistent relation on scheme ¥,
given by
(R—-8S)*=R"NnS", (R-S) =R uSst. O

Again, to obtain an intuitive grasp of such definitions, let us consider the difference
operator. We should interpret R — S as the “R-but-not-S” property. Now the tuples that
definitely have this property are exactly those in R N S—. Thus, (R — S)* =Rt N 5.
Moreover, the tuples that definitely do not have this property are the ones in R~ U ST,
Hence, (R — S)”" = R~ US™.

In our informal symbolic notation, (R — S)* = {t | R(t) and not S(t)}, which is
RTNS~. Similarly, (R — S)~ = {t | not (R(t) and not S(t))} = {t | not R(t) or S(t)},
which is R~ U ST,

Although we have given independent definitions of intersection and difference, these
two operators can be derived from the fundamental operators union and complement as
intuitively expected.

Proposition 4 For any paraconsistent relations R and S on a common scheme, we have

RNS = —(—RU-=S5), and
R—-S = —(-RUS).

Proof (—(—RU-S))"=(-RU-=-S)" =(-R)" N (=9) =R" n ST=(RN 9"
Similarly, (—(—R U —S))” = (R N S)". The second part of the result can be shown
similarly. O

Table 1 gives some more algebraic laws involving the set-theoretic operators. The
symbols ® and U in the table denote the empty and universal total relations, respectively,

Le. ® = (0,7(X)) and U = (1(X), 0).

Table 1: Laws of Algebra of Paraconsistent Relations

commutative laws

la. RUS=SUR
b.RﬁS:SﬁR}
2a. (RUS)UT=RU(SUT)
a(Rm$mT:memﬂ}

3c. RU(SAT)=(RUS)N(RUT)
b. RﬁwUquRﬁSNMRﬁﬂ}
M.RUR:R}

associative laws
distributive laws

idempotent laws

b. RO R=R
5. RU® =R
bh. RUU=0 ‘ ‘
c. RNdP=2o identity laws
d RNU=R
6. ~ (- R)=R } double complementation

7a. RU—- R=0
b. RN — R=®

8a. —~ U =07

bh. —d=0

9. ~(RUS)=~RA-S

b i(RﬁS)ziRU;S} De Morgan laws

Relation-Theoretic Operators

If ¥ and A are relation schemes such that ¥ C A, then for any tuple t € 7(X), we let
t2 denote the set {t' € 7(A) | (A) = t(A), for all A € ¥} of all extensions of . We

extend this notion for any T C 7(X) by defining T® = Uyer t2. We now define some
relation-theoretic algebraic operators on paraconsistent relations.

Definition 10 Let R and S be paraconsistent relations on schemes ¥ and A, respectively.
Then, the natural join (or just join) of R and S, denoted R X S| is a paraconsistent relation
on scheme > U A, given by

(R X S)+ — R+ X S+, (R X S)f — (Rf)ZUA U (Sf)ZUA7

where X is the usual natural join among ordinary relations. O

It is instructive to observe that (R X S)~ contains all extensions of tuples in R~ and S—,
because at least one of R and S is believed false for these extended tuples. The following
proposition is straightforward.

Proposition 5 X is a strong generalisation of M.

Proof Let R and S be consistent relations on schemes ¥ and A, respectively. Then
compsy. 1 (R X S) is the set

{QeOEUA)|RFXSTCQCT(ZUA)— ((R)™2U(S)™)}

and S(X)(compsy,(R), comps,(S)) = {r X s | r € compsy,(R), s € comps,(S5)}.

Let Q € compsy A(R X S). Then my(Q) € compsy(R), where 7y is the usual
projection over Y of ordinary relations. Similarly, ma(Q) € comps,(S). Therefore,
@ € S(X)(compsy(R). comps, (5)).

Now let @ € S(X)(compsy,(R), comps,(S)). Then RT X S+ € Q and QN(R™)*V2 =
QN (S7)*U2 = (), because R and S are consistent. Therefore,) € compsy (R X S).
O

Definition 11 Let R be a paraconsistent relation on scheme ¥, and A be any scheme.
Then, the projection of R onto A, denoted 7a(R), is a paraconsistent relation on A, given
by

Ta(R)" = ma((R7)™99), Ta(R)” = {t € 7(A) [792 C (R7)™2},

where A is the usual projection over A of ordinary relations. O

It should be noted that, contrary to usual practice, the above definition of projection is
not just for subschemes. However, if A C ¥, then it coincides with the intuitive projection
operation. In this case, 7 (R)~ consists of those tuples in 7(A), all of whose extensions
are in R~. We now define our last relation-theoretic operation.

10

Definition 12 Let R be a paraconsistent relation on scheme ¥, and let F' be any logic
formula involving attribute names in ¥, constant symbols (denoting values in the attribute
domains), equality symbol =, negation symbol —, and connectives V and A. Then, the
selection of R by F, denoted 6 (R), is a paraconsistent relation on scheme X, given by

<.7—}7‘(R)+ = JF(R+)5 UF(R)i =R U O—ﬁF(T(Z))a

where o is the usual selection of tuples satisfying F' from ordinary relations. O
Proposition 6 The operators @ and ¢ are strong generalisations of m and o, respectively.

Proof Similar to that of Proposition 5. O

Example 1 Strictly speaking, relation schemes are sets of attribute names, but in this
example we treat them as ordered sequences of attribute names, so tuples can be viewed
as the usual lists of values. Let {a,b,c} be a common domain for all attribute names,
and let R and S be the following paraconsistent relations on schemes (X,Y) and (Y, Z),
respectively:

R* = {(b,b),(b,(:)}, R = {(a,a),(a,b),(a,c)},
St = {la,0),(c,a)}, S = {(c)}.

Then, R X S is the following paraconsistent relation on scheme (XY, Z):

(XS = {(bea)l,
(RXS)- = {(a,a,a),(a,a,b),(a,a,c),(a,b,a),(a,bb),(a,b,c),
(a,c,a),(a,c,b),(a,cc), (bcb),(ccb)}.

Observe how (R X S)~ blows up to contain extensions of all tuples in R~ and S—. Now,
7ix,7) (R M S) becomes the following paraconsistent relation on scheme (X, Z):

Tix.zy (R M S)T = {(b,a)}, Tix,zy (R X S)” = {(a,a), (a,b),(a,c)}.

The tuples in the negative component of the projected paraconsistent relation are such
that all their extensions were present in the negative component of the original para-
consistent relation. Finally, o x—z(7(x,z) (R X S)) becomes the following paraconsistent
relation on the same scheme:

G-x=z(Tx,z(BXS)" = {(ba)},
Tx=z(Tx2(RXS))™ = {(a,a),(a,b),(a,c),(b.b),(c,c)}.

All tuples that do not satisfy the selection condition always make it to the negative
component of the selected paraconsistent relation. O

11

4 An Application

In this section we give an application of the algebra on paraconsistent relations. We
briefly present a bottom-up method for constructing the weak well-founded model of any
general deductive database. For a somewhat detailed exposition on general deductive
databases the reader is referred to [17], and on the weak well-founded model to [9].

General Deductive Databases

Deductive databases are an extension of relational databases, in that in addition to ma-
nipulating explicitly represented facts, deductive databases provide ways to deduce facts
from other facts in the database. We now give a very brief introduction to deductive
databases. More details can be found in [8, 10, 17],

Let L be a given underlying language with a finite set of constant, variable, and
predicate symbols, but no function symbols. A term is either a variable or a constant.
An atom is of the form p(t1,...,t,), where p is a predicate symbol and the ¢;'s are terms.
A literal is either a positive literal A or a negative literal = A, where A is an atom. For
any literal [we let " denote its complementary literal, i.e. if [is positive then I’ = -,
otherwise [= =’

Definition 13 A deductive database is a finite set of clauses of the form
a%bl,bg,...,bm

where m > 0 and a and each b; is an atom. O

A term, atom, literal, or clause is called ground if it contains no variables. The
Herbrand Universe of the underlying language is the set of all ground terms; the Herbrand
Base of the language is the set of all ground atoms; A Herbrand Interpretation of the
language is any subset of the Herbrand Base. A ground instance of a term, atom, literal,
or clause @) is the term, atom, literal, or clause, respectively, obtained by replacing each
variable in) by a constant. For any deductive database P, we let P* denote the set
of all ground instances of clauses in P. Note that since the underlying language has no
function symbols, unlike logic programs, P* is always finite.

One way to give the semantics of a definite deductive database is the least fixpoint of
the following immediate consequence function 7» on Herbrand interpretations:
Definition 14 Let [be a Herbrand interpretation for a deductive database P. Then
Tp(I) is a Herbrand interpretation, given by

Tp(I) = {a | for some clause a < by, ..., b, in P* {by,...,b,} CI1}. O

12

It is well-known that T» always possesses a least fixpoint with respect to the partial order
of set inclusion. The least fixpoint can be shown to be the minimal model for P. This
model is also known to be Tp 1 w, where the ordinal powers of Tp are defined as follows:

Definition 15 For any ordinal «,

0 if a =0,
Tpta=13 Tp(Tp 1 («—1)) if ais a successor ordinal,
Us<a(Tp 1 1), if v is a limit ordinal. O

The expressive power of the clauses of a deductive databases can be increased by
allowing negated atoms in their bodies. This results in a more general class of deductive
databases defined below.

Definition 16 A general deductive database is a finite set of clauses of the form
a < ll,lg,...,lm

where a is an atom, m > 0 and each [; is a literal. O

Weak Well-founded Model of General Deductive Databases

One of the semantics given for general deductive databases is described next. It was
originally presented in [9] for logic programs.

Definition 17 A partial interpretation is a pair [= (I, I~), where I™ and I~ are any
subsets of the Herbrand Base. O

A partial interpretation I is consistent if IT NI~ = (). For any partial interpretations
I and J, we let I N .J be the partial interpretation (IT™ N J* I~ N.J"), and I U.J be the
partial interpretation (I U Jt I~ U J~). We also say I C J whenever I C J* and
- C.J.

Definition 18 Let S be a set partially ordered by C. A map T : S — S is monotonic if,
forany X,V € S, X CY implies T'(X) CT(Y). O

For any general deductive database P, recall that P* is the set of all ground instances
of clauses in P. The weak well-founded model of P is the least fixpoint of the immediate
consequence function T} on consistent partial interpretations defined as follows:

13

Definition 19 Let I be a partial interpretation. Then T (I) is a partial interpretation,
given by

TE(I)™ = {a | for some clause a < I1,...,1, in P* for each i,1 <i < m,
if 1; is positive then [; € I't, and
if [; is negative then [} € I},
T5(I)” = {a | for every clause a < li,...,l,, in P* there is some i,1 < i < m,
such that if [; is positive then [; € I~ and
if I; is negative then I € IT}. O

It can be shown that T} preserves consistency and always possesses a least fixpoint. This
least fixpoint is called the weak well-founded model for P. The model can also be shown
to be T 1 w, where the ordinal powers of T}, are defined as follows:

Definition 20 For any ordinal «,

TEta=1{ TETE 1 (a— 1)) if « is a successor ordinal,
(Us<oTH T B)", Usco (TH 1 B)7) if v is a limit ordinal. O

In [1], the upward closure ordinal of the immediate consequence function is defined as
the least ordinal o such that Th 1 «a is a fixpoint of T5. The following observation for
deductive databases is relevant:

Proposition 7 For any general deductive database P, the upward closure ordinal of T}
is finite, i.e. there is a number n > 0, such that TY tn=T5 tw. O

Thus a mechanism that “computes” the ordinal powers of T can be employed to construct
the weak well-founded model of P.

Construction of the Weak Well-founded Model

We now describe a method for constructing the weak well-founded model for a given
general deductive database P. In this model, paraconsistent relations are the semantic
objects associated with the predicate symbols occurring in P.

The method involves two steps. The first step is to convert P into a set of paraconsis-
tent relation definitions for the predicate symbols occurring in P. These definitions are
of the form

p:Dp,

14

where p is a predicate symbol of P, and Dp is an algebraic expression involving predicate
symbols of P and paraconsistent relation operators. The second step is to iteratively
evaluate the expressions in these definitions to incrementally construct the paraconsistent
relations associated with the predicate symbols.

A scheme Y is a Herbrand scheme if dom(A) is the Herbrand Universe, for all A € .
The schemes of the paraconsistent relations that we associate with the predicate symbols
are set internally. Let I' = (vq,1v4,...) be an infinite sequence of some distinct attribute
names. For any n > 1, let ', be the Herbrand scheme {vy,...,v,}. We use the following
scheme renaming operators.

Definition 21 Let ¥ = {A4;,..., A,} be any Herbrand scheme. Then,

(a) for any paraconsistent relation R on scheme I'y,, R(Aq,..., A,) is the paraconsistent
relation

({ter(X)|forsomet € RT t(A;) =t'(v;), forall i,1 <i < n},
{t € 7(X) | for some t' € R~ ,t(A;) = t'(v;), foralli,1 <i<n})
on scheme X, and

(b) for any paraconsistent relation R on scheme X, R[A;, ..., A,] is the paraconsistent
relation

({ter(ly) | forsomet € RT t(v;) =t (A;), foralli,1 <i<n},
{t € 7([,,) | for some t' € R, t(v;) = t'(4;), forall i,1 <i<n})

on scheme [',,. O

Before describing our method to convert the given database P into a set of definitions
for the predicate symbols in P, let us look at an example. Suppose the following are the
only clauses with the predicate symbol p in their heads:

p(X) + r(X,Y), —p(Y)

p(Y) <« s(Y,a)

From these clauses the algebraic definition constructed for the symbol p is the following:

p = (fgxy(r(XY) X =p(Y)[X] U (s(Y,2))))[Y]
Such a conversion exploits the close connection between attribute names in relation
schemes and variables in clauses, as pointed out in [24]. The expression thus constructed

can be used to arrive at a better approximation of the paraconsistent relation p from
some approximations of p, r and s.

The algebraic expression for the predicate symbol p is a union (U) of the expressions
obtained from each clause containing the symbol p in its head. It therefore suffices to
give an algorithm for converting one clause into an expression.

15

Algorithm CONVERT

Input: A general deductive database clause ly < [y, ...,1,,.

Let [y be of the form py(Agi, ..., Aok,), and each [;; 1 < i < m, be either of the form
pi(Ai, ..., Aig,), or of the form —p; (A1, ..., Ai,). For any i, 0 < i < m, let V; be the set
of all variables occurring in ;.

Output: An algebraic expression involving paraconsistent relations.

Method: The expression is constructed by the following steps:

1. For each argument A;; of literal /;, construct argument B;; and condition Cj; as
follows:

(a) If A;; is a constant a, then B;; is any brand new variable and C;; is B;; = a.
b) If A;; is a variable, such that for each k, 1 < k < j, A;x # A;;, then B;; is A;;
j j j j
and Cj; is true.
(c) If A;; is a variable, such that for some k, 1 < k < j, Ay = A
brand new variable and Cj; is A;; = B;;.

ij, then B;; is a

2. Let [, be the atom pi(Bi1, - .., Bi;), and F; be the conjunction Cj; A -+ A Cy,. If [;
is a positive literal, then let @); be the expression 7y, (6 (l;)). Otherwise, let Q; be
the expression —7y. (6, (I;)).

As a syntactic optimisation, if all conjuncts of F; are true (i.e. all arguments of /;
are distinct variables), then both ¢z and 7y, are reduced to identity operations,
and are hence dropped from the expression. For example, if [; = —p(X,Y), then

Q; = —pX,Y).

3. Let E be the natural join (X) of the @;’s thus obtained, 1 < i < m. The output
expression is (05, (v (£)))[Boi, - - -, Bok,], where V' is the set of variables occurring
in lo.

As in step 2, if all conjuncts in Fy are true, then op, is dropped from the output
expression. However, 7y is never dropped, as the clause body may contain variables
not in V. O

From the algebraic expressions obtained by Algorithm CONVERT for clauses in the
given general deductive database, we construct a system of equations defining paracon-
sistent relations as follows.

Definition 22 For any general deductive database P, EQN(P) is a set of all equations
of the form p = Dp, where p is a predicate symbol of P, and Dp is the union (U) of all
expressions obtained by Algorithm CONVERT for clauses in P with symbol p in their
head. The algebraic expression Dp is also called a definition of p. O

16

It is evident that a predicate symbol may have many definitions. It can be shown that
the above method for converting a general deductive database P into definitions for

its predicate symbols terminates, and that the definitions produced mimic the T} map
defined in [9].

The second and final step in our model construction process is to incrementally con-
struct the paraconsistent relations defined by the given database. For any general de-
ductive database P, we let Pg and P; denote its extensional and intensional portions,
respectively. Pp is essentially the set of clauses of P with empty bodies, and P is the set
of all other clauses of P. Without loss of generality, we assume that no predicate symbol
occurs both in Pg as well as in P;. Let us recall that PJ; is the set of all ground instances
of clauses in Pyg.

The overall construction algorithm is rather straightforward. It treats the predicate
symbols in a given database as imperative “variable names” that may contain a paracon-
sistent relation as value. Thus, any variable p has two set-valued fields, namely p* and

P -

Algorithm CONSTRUCT
Input: A general deductive database P.
Output: Paraconsistent relation values for the predicate symbols of P.

Method: The values are computed by the following steps:

1. (Initialisation)

(a) Compute EQN(Pr) using Algorithm CONVERT for each clause in P;.
(b) For each predicate symbol p in Pg, set

pt = {{a1,...,a) | plar,...,ax) < € Pr}, and
p = {{(b1,...,b) | kis the arity of p, and p(by,...,b;) < & Pj}.

(¢) For each predicate symbol p in Py, set p™ = (), and p~ = (.

2. For each equation of the form p = Dp in EQN(F;), compute the expression Dp and
set p to the resulting paraconsistent relation.

3. If step 2 involved a change in the value of some p, goto 2.

4. Output the final values of all predicate symbols in Py and P;. O

Again, we omit the proof of termination of Algorithm CONSTRUCT and that it
constructs the weak well-founded model of the given database.

17

5 Conclusions and Future Work

We have presented a generalisation of the relational data model, which is capable of
manipulating incomplete or even inconsistent information. Paraconsistent relations, based
on Belnap’s 4-valued logic [2], form the mathematical structures underlying the model.
A paraconsistent relation essentially contains two kinds of tuples: ones for which an
underlying predicate is believed to be true, and ones for which that predicate is believed
to be false. These structures are strictly more general than ordinary relations, in that
for any ordinary relation there is a paraconsistent relation with the same information
content, but not wice versa. Since paraconsistent relations are capable of containing
contradictory information, these structures model belief systems more naturally than
knowledge systems.

We developed two notions of generalising operators on ordinary relations for paracon-
sistent relations. Of these, the stronger notion guarantees that any generalised operator is
“well-behaved” for paraconsistent relation operands that contain consistent information.

For some well-known operators on ordinary relations, such as union, join, projection,
we introduced generalised operators on paraconsistent relations. These generalised oper-
ators maintain the belief system intuition behind paraconsistent relations, and are shown
to be “well-behaved” in the sense mentioned above.

Our data model can be used to represent relational information that may be incomplete
or inconsistent. As usual, the algebraic operators can be used to construct queries to any
database systems for retrieving paraconsistent information. As another application of
paraconsistent relations and the algebra on them, we presented a method for constructing
the weak well-founded model for general deductive databases [9]. This method requires
translating the clauses of the database into expressions involving the generalised operators
introduced earlier. A minor modification to this method can tailor it for constructing the
well-founded model for such databases [25].

Recently there has been some interest in studying extended logic programs in which
the head of clauses can have one or more literals [19]. This leads to two notions of negation:
implicit negation (corresponding to negative literals in the body) and ezplicit negation
(corresponding to negative literals in the head). One possible direction for further re-
search is to extend the paraconsistent relational model presented in this paper to include
disjunctive tuples as in [16], thereby providing a framework under which the semantics of
extended logic programs could be constructed in a bottom-up manner. Allowing explicit
negation in a disjunctive deductive database/logic program usually cuts down on the
number of minimal models, sometimes quite drastically, and as a consequence increases
the efficiency of query processing. This will be one of the main motivations in exploring
the possibility of paraconsistent relations with disjunctive tuples.

18

References

1]

2]

[10]

[11]

[12]

[13]

[14]

[15]

R. Bagai, M. Bezem, and M. H. van Emden. On downward closure ordinals of logic
programs. Fundamenta Informaticae, XI11(1):67 83, 1990.

N. D. Belnap. A useful four-valued logic. In G. Eppstein and J. M. Dunn, editors,
Modern Uses of Many-valued Logic, pages 8-37. Reidel, Dordrecht, 1977.

J. Biskup. A foundation of Codd’s relational maybe-operations. ACM Transactions
on Database Systems, 8(4):608 636, December 1983.

H. A. Blair and V. S. Subrahmanian. Paraconsistent logic programming. Theoretical
Computer Science, 68:135-154, 1989.

E. F. Codd. A relational model for large shared data banks. Communications of the
ACM, 13(6):377-387, June 1970.

E.F. Codd. Missing information (applicable and inapplicable) in relational databases.
SIGMOD Record, 15(4):53 78, December 1986.

N. C. A. da Costa. On the theory of inconsistent formal systems. Notre Dame
Journal of Formal Logic, 15:621-630, 1977.

S. K. Das. Deductive databases and logic programming. Addison-Wesley, New York,
1992.

M. Fitting. A Kripke-Kleene semantics for logic programs. Journal of Logic Pro-
gramming, 4:295 312, 1985.

H. Gallaire, J. Minker, and J.M. Nicolas. Logic and databases: A deductive approach.
ACM Computing Surveys, 16(2):151-184, June 1984.

E. Gelenbe and G. Hebrail. A probability model of uncertainity in databases. In
Proceedings of the International Conference on Data Engineering. IEEE Computer
Society Press, 1986.

J. Grant. Partial values in a tabular database model. Information Processing Letters,
9(2):97 99, August 1979.

T. Imielinski and W. Lipski. Incomplete information in relational databases. Journal
of the ACM, 31(4):761-791, October 1984.

W. Lipski. On semantic issues connected with incomplete information databases.
ACM Transactions on Database Systems, 4:262—-296, 1979.

K.-C. Liu and R. Sunderraman. On representing indefinite and maybe information
in relational databases. In Proceedings of the Fourth International Conference on
Data Engineering, Los Angeles, California, February 1988, pages 250 257, 1988.

19

[16]

[17]

[18]
[19]

[20]

[21]

22]

23]

[24]

[25]

K.-C. Liu and R. Sunderraman. Indefinite and maybe information in relational
databases. ACM Transactions on Database Systems, 15(1):1 39, 1990.

J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, second edition,
1987.

D. Maier. The Theory of Relational Databases. Computer Science Press, 1983.

J. Minker and C. Ruiz. On extended disjunctive logic programs. In J. Komorowski
and Z.W. Ras, editors, Proceedings of the Seventh International Symposium on
Methodologies for Intelligent Systems, pages 1 18. Lecture Notes in Al, Springer-
Verlag, New York, June 1993.

K.V.S.V.N. Raju and A.K. Majumdar. Fuzzy functional dependencies and loss-
less join decomposition of fuzzy relational database systems. ACM Transactions on
Database Systems, 13(2):129 166, 1988.

R. Reiter. Towards a logical reconstruction of relational database theory. In
M. Brodie, J. Mylopoulos, and J.W. Schmidt, editors, On Conceptual Modeling,
pages 191 238. Springer-Verlag, Berlin and New York, 1984.

V. S. Subrahmanian. Paraconsistent disjunctive deductive databases. Theoretical
Computer Science, 93:115 141, 1992.

R. Sunderraman. Deductive databases with conditional facts. In M. Worboys and
A. F. Grundy, editors, Advances in Databases, pages 162 175. Lecture Notes in
Computer Science, 696, Springer-Verlag, 1993. (Proceedings of the 11th British
National Conference on Databases).

J. D. Ullman. Principles of Database and Knowledge-Base Systems, volume 1. Com-
puter Science Press, 1988.

A. van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for general
logic programs. Journal of the ACM, 38(3):621 650, 1991.

20

