
A Paraconsistent Relational Data Model
Rajiv Bagai and Rajshekhar SunderramanDepartment of Computer ScienceThe Wichita State UniversityWichita, KS 67260-0083U.S.A.Tel: +1-316-689-3156Fax: +1-316-689-3984Email: fbagai,rajg@cs.twsu.edu

AbstractWe present a generalisation of the relational data model based on a 4-valued paraconsis-tent logic. Our data model is capable of manipulating incomplete as well as inconsistentinformation. For this model, we de�ne algebraic operators that are generalisations of theusual operators, such as union, selection, join, on ordinary relations. Our data modelcan underlie any database management system that deals with incomplete or inconsistentinformation. As another application of our model and its algebra, we present a bottom-up method for constructing the weak well-founded model of general deductive databases.This method can be very simply extended to construct the well-founded model.Keywords: Paraconsistent relations, Relational algebra, General deductive databases,Weak well-founded model.C.R. Categories: H.2.1, F.3.2, F.4.1, I.2.3.

1 IntroductionTwo important features of the relational data model [5] for databases are its value-orientednature and its rich set of simple, but powerful algebraic operators. Moreover, a strongtheoretical foundation for the model is provided by the classical �rst-order logic [21].This combination of a respectable theoretical platform, ease of implementation and thepracticality of the model resulted in its immediate success, and the model has enjoyedbeing used by many database management systems. Even nonrelational systems are oftendescribed, for commercial purposes, as supporting relational features.One limitation of the relational data model, however, is its lack of applicability tononclassical situations. These are situations involving incomplete, or more importantly,even inconsistent information.Representing and manipulating various forms of incomplete information in relationaldatabases has been a concern of researchers since the very introduction of the relationalmodel. Null values in relational databases [18] have been studied extensively. Codd[6] distinguished between applicable and inapplicable null values. Grant [12] generalisedthe concept of applicable nulls by introducing partial values. Imielinski and Lipski [13]explored marked nulls in relations that allow equating two null values. Disjunctive infor-mation has been studied in [15, 16, 23]. Maybe information in the context of null valueswas the focus of [3]. Lipski [14] distinguished between de�nite and maybe knowledge inthe context of partial information. A study of fuzzy and uncertain information has beenconducted in [11, 20].However, unlike incomplete information, inconsistent information has not enjoyedenough research attention. While it may be argued that true knowledge systems shouldcontain no inconsistent information, contradictions are very common in belief systems.Even experts of a domain often disgaree with each other, sometimes strongly.Logics dealing with inconsistent information are called paraconsistent logics, and werestudied in detail by de Costa [7] and Belnap [2]. Blair and Subrahmanian [4] proposedlogic programming based on paraconsistent logic and Subrahmanian [22] extended thework to disjunctive deductive databases.In this paper, we present a generalisation of the relational data model. Our modelis based on the 4-valued paraconsistent logic of [2] and is capable of manipulating in-complete as well as inconsistent information. The incompleteness is at the tuple level,in that whether or not a particular tuple belongs to a relation may not be known. Thisnotion of incompleteness is di�erent from the other null-values related notions mentionedearlier. Similarly, inconsistency is also at the tuple level, in that a particular tuple maybe considered to be both in and out of a relation.We introduce paraconsistent relations, which are the fundamental mathematical struc-tures underlying our model. A paraconsistent relation essentially contains two kinds of2

tuples: ones that de�nitely belong to the relation and others that de�nitely do not belongto the relation. These structures are strictly more general than ordinary relations, in thatfor any ordinary relation there is a paraconsistent relation with the same informationcontent, but not vice versa. We de�ne algebraic operators over paraconsistent relationsthat extend the standard operators, such as selection, join, union, over ordinary relations.In addition to answering queries in databases, we show another application of ouralgebra on paraconsistent relations. We present a bottom-up method to construct theweak well-founded model of general deductive databases; this model was proposed byFitting in [9].The rest of the paper is organised as follows. Section 2 introduces paraconsistentrelations and two notions of generalising the usual relational operators, such as union,join, projection, for these relations. Section 3 presents some actual generalised algebraicoperators for paraconsistent relations. These operators can be used for specifying queriesfor database systems built on such relations. As another interesting application of theseoperators, Section 4 gives a method for costructing the weak well-founded model of generaldeductive databases. An important step in the construction is to translate the databaseclauses into expressions involving the algebraic operators on paraconsistent relations.Finally, Section 5 contains some concluding remarks and directions for future work.2 Paraconsistent RelationsIn this section, we construct a set-theoretic formulation of paraconsistent relations. Unlikeordinary relations that can model worlds in which every tuple is known to either hold acertain underlying predicate or to not hold it, paraconsistent relations provide a frameworkfor incomplete or even inconsistent information about tuples. They naturally modelbelief systems rather than knowledge systems, and are thus a generalisation of ordinaryrelations. The operators on ordinary relations can also be generalised for paraconsistentrelations. However, any such generalisation of operators should maintain the belief systemintuition behind paraconsistent relations. This section also develops two di�erent notionsof operator generalisations.Let a relation scheme (or just scheme) � be a �nite set of attribute names, where forany attribute name A 2 �, dom(A) is a non-empty domain of values for A. A tuple on� is any map t : �! [A2�dom(A), such that t(A) 2 dom(A), for each A 2 �. Let �(�)denote the set of all tuples on �.De�nition 1 An ordinary relation on scheme � is any subset of �(�). We let O(�) bethe set of all ordinary relations on �. 2The above is the usual de�nition of relations. We call them `ordinary' relations to distin-guish them from other kinds of relations introduced below.3

De�nition 2 A paraconsistent relation on scheme � is a pair R = hR+; R�i, where R+and R� are any subsets of �(�). We let P(�) be the set of all paraconsistent relationson �. 2Intuitively, R+ may be considered as the set of all tuples for which R is believed tobe true, and R� the set of all tuples for which R is believed to be false. Note thatsince contradictory beliefs are possible, we do not assume R+ and R� to be mutuallydisjoint, though this condition holds in an important class of paraconsistent relations. Asparaconsistent relations may contain contradictory information, they model belief systemsmore naturally than knowledge systems. Furthermore, R+ and R� may not together coverall tuples in �(�).De�nition 3 A paraconsistent relation R on scheme � is called a consistent relation ifR+ \ R� = ;. We let C(�) be the set of all consistent relations on �. Moreover, R iscalled a complete relation if R+ [R� = �(�). If R is both consistent and complete, i.e.R� = �(�)�R+, then it is a total relation, and we let T (�) be the set of all total relationson �. 2It should be observed that (the positive parts of) total relations are essentially the ordinaryrelations. We make this relationship explicit by de�ning a one-one correspondence �� :T (�) ! O(�), given by ��(hR+; R�i) = R+. This correspondence is used frequently inthe following discussion.Operator GeneralisationsIt is easily seen that paraconsistent relations are a generalisation of ordinary relations, inthat for each ordinary relation there is a paraconsistent relation with the same informationcontent, but not vice versa. It is thus natural to think of generalising the operationson ordinary relations, such as union, join, projection etc., to paraconsistent relations.However, any such generalisation should be intuitive with respect to the belief systemmodel of paraconsistent relations. We now construct a framework for operators on bothkinds of relations and introduce two di�erent notions of the generalisation relationshipamong their operators.An n-ary operator on ordinary relations with signature h�1; : : : ;�n+1i is a function� : O(�1) � � � � � O(�n) ! O(�n+1), where �1; : : : ;�n+1 are any schemes. Similarly,an n-ary operator on paraconsistent relations with signature h�1; : : : ;�n+1i is a function	 : P(�1)� � � � � P(�n)! P(�n+1).De�nition 4 An operator 	 on paraconsistent relations with signature h�1; : : : ;�n+1i istotality preserving if for any total relationsR1; : : : ; Rn on schemes �1; : : : ;�n, respectively,	(R1; : : : ; Rn) is also total. 2 4

De�nition 5 A totality preserving operator 	 on paraconsistent relations with signatureh�1; : : : ;�n+1i is a weak generalisation of an operator � on ordinary relations with thesame signature, if for any total relations R1; : : : ; Rn on schemes �1; : : : ;�n, respectively,we have ��n+1((R1; : : : ; Rn)) = �(��1(R1); : : : ; ��n(Rn)): 2The above de�nition essentially requires 	 to coincide with � on total relations (which arein one-one correspondence with the ordinary relations). In general, there may be manyoperators on paraconsistent relations that are weak generalisations of a given operator� on ordinary relations. The behavior of the weak generalisations of � on even justthe consistent relations may in general vary. We require a stronger notion of operatorgeneralisation under which, at least when restricted to consistent relations, the behaviorof all the generalised operators is the same. Before we can develop such a notion, we needthat of `completions' of a paraconsistent relation.We associate with a consistent relation R the set of all (ordinary relations correspond-ing to) total relations obtainable from R by throwing in the missing tuples. Let the mapcomps� : C(�)! 2O(�) be given bycomps�(R) = fQ 2 O(�) j R+ � Q � �(�)�R�g:The set comps�(R) contains all ordinary relations that are `completions' of the consistentrelation R. Observe that comps� is de�ned only for consistent relations and producessets of ordinary relations. The following observation is immediate.Proposition 1 For any consistent relation R on scheme �, comps�(R) is the singletonset fR+g i� R is total.Figure 1 gives a pictorial view of the di�erent kinds of relations and the maps �� andcomps�.We now need to extend operators on ordinary relations to sets of ordinary relations.For any operator � : O(�1) � � � � � O(�n) ! O(�n+1) on ordinary relations, we letS(�) : 2O(�1) � � � � � 2O(�n) ! 2O(�n+1) be a map on sets of ordinary relations de�ned asfollows. For any setsM1; : : : ;Mn of ordinary relations on schemes �1; : : : ;�n, respectively,S(�)(M1; : : : ;Mn) = f�(R1; : : : ; Rn) j Ri 2Mi; for all i; 1 � i � ng:In other words, S(�)(M1; : : : ;Mn) is the set of �-images of all tuples in the cartesianproduct M1 � � � � �Mn. We are now ready to lead up to a stronger notion of operatorgeneralisation.De�nition 6 An operator 	 on paraconsistent relations with signature h�1; : : : ;�n+1iis consistency preserving if for any consistent relations R1; : : : ; Rn on schemes �1; : : : ;�n,respectively, 	(R1; : : : ; Rn) is also consistent. 25

XXXXXXXXXXXXXXXXXXXXz
�����������������������:
T (�)C(�)

P(�) 2O(�)
O(�)��

comps�

Figure 1: Classes of relationsDe�nition 7 A consistency preserving operator 	 on paraconsistent relations with sig-nature h�1; : : : ;�n+1i is a strong generalisation of an operator � on ordinary relationswith the same signature, if for any consistent relations R1; : : : ; Rn on schemes �1; : : : ;�n,respectively, we havecomps�n+1((R1; : : : ; Rn)) = S(�)(comps�1(R1); : : : ; comps�n(Rn)): 2Given an operator � on ordinary relations, the behavior of a weak generalisation of �is `controlled' only over the total relations. On the other hand, the behavior of a stronggeneralisation is `controlled' over all consistent relations. This itself suggests that stronggeneralisation is a stronger notion than weak generalisation. The following propositionmakes this precise.Proposition 2 If 	 is a strong generalisation of �, then 	 is also a weak generalisationof �.Proof Let h�1; : : : ;�n+1i be the signature of 	 and �, and let R1; : : : ; Rn be any totalrelations on schemes �1; : : : ;�n, respectively. Since all total relations are consistent, and	 is a strong generalisation of �, we have thatcomps�n+1((R1; : : : ; Rn)) = S(�)(comps�1(R1); : : : ; comps�n(Rn)):Proposition 1 gives us that for each i, 1 � i � n, comps�i(Ri) is the singleton set fR+i g,i.e. f��i(Ri)g. Therefore, S(�)(comps�1(R1); : : : ; comps�n(Rn)) is just the singleton set6

f�(��1(R1); : : : ; ��n(Rn))g. Hence, 	(R1; : : : ; Rn) is total, and ��n+1((R1; : : : ; Rn)) =�(��1(R1); : : : ; ��n(Rn)), i.e. 	 is a weak generalisation of �. 2Though there may be many strong generalisations of an operator on ordinary relations,they all behave the same when restricted to consistent relations. In the next section, wepropose strong generalisations for the usual operators on ordinary relations. The proposedgeneralised operators on paraconsistent relations correspond to the belief system intuitionbehind paraconsistent relations.3 Algebraic Operators on Paraconsistent RelationsIn this section, we present one strong generalisation each for the usual ordinary relationoperators, such as union, join, projection. To re
ect generalisation, a dot is placed over anordinary relation operator to obtain the corresponding paraconsistent relation operator.For example, 1 denotes the natural join among ordinary relations, and _1 denotes naturaljoin on paraconsistent relations.Set-Theoretic OperatorsWe �rst introduce two fundamental set-theoretic algebraic operators on paraconsistentrelations:De�nition 8 Let R and S be paraconsistent relations on scheme �. Then,(a) the union of R and S, denoted R _[S, is a paraconsistent relation on scheme �, givenby (R _[S)+ = R+ [S+; (R _[S)� = R� \ S�;(b) the complement of R, denoted _� R, is a paraconsistent relation on scheme �, givenby (_� R)+ = R�; (_� R)� = R+: 2An intuitive appreciation of the union operator may be obtained by interpreting relationsas properties of tuples. So, R _[S is the \either-R-or-S" property. Now since R+ andS+ are the sets of tuples for which the properties R and S, respectively, are believedto hold, the set of tuples for which the property \either-R-or-S" is believed to hold isclearly R+ [S+. Moreover, since R� and S� are the sets of tuples for which propertiesR and S, respectively, are believed to not hold, the set of tuples for which the property\either-R-or-S" is believed to not hold is similarly R� \ S�.7

In an informal symbolic notation, R+ = ft j R(t)g, and R� = ft j not R(t)g.Now, (R _[S)+ = ft j R(t) or S(t)g, which is R+ [S+. Similarly, (R _[S)� =ft j not (R(t) or S(t))g = ft j not R(t) and not S(t)g, which is R� \ S�.The de�nition of complement and of all the other operators on paraconsistent relationsde�ned later can (and should) be understood in the same way.Proposition 3 The operators _[and unary _� on paraconsistent relations are strong gen-eralisations of the usual operators [and unary � on ordinary relations.Proof Let R and S be consistent relations on scheme �. Then comps�(R _[S) is theset fQ j R+[S+ � Q � �(�)� (R�\S�)g. This set is the same as the set fr[s j R+ �r � �(�) � R�; S+ � s � �(�)� S�g, which is S([)(comps�(R); comps�(S)). Such aresult for unary _� can also be shown similarly. 2For sake of completeness, we de�ne the following two related set-theoretic operatorson paraconsistent relations:De�nition 9 Let R and S be paraconsistent relations on scheme �. Then,(a) the intersection of R and S, denoted R _\ S, is a paraconsistent relation on scheme�, given by (R _\ S)+ = R+ \ S+; (R _\ S)� = R� [S�;(b) the di�erence of R and S, denoted R _� S, is a paraconsistent relation on scheme �,given by (R _� S)+ = R+ \ S�; (R _� S)� = R� [S+: 2Again, to obtain an intuitive grasp of such de�nitions, let us consider the di�erenceoperator. We should interpret R _� S as the \R-but-not-S" property. Now the tuples thatde�nitely have this property are exactly those in R+ \ S�. Thus, (R _� S)+ = R+ \ S�.Moreover, the tuples that de�nitely do not have this property are the ones in R� [S+.Hence, (R _� S)� = R� [S+.In our informal symbolic notation, (R _� S)+ = ft j R(t) and not S(t)g, which isR+\S�. Similarly, (R _� S)� = ft j not (R(t) and not S(t))g = ft j not R(t) or S(t)g,which is R� [S+.Although we have given independent de�nitions of intersection and di�erence, thesetwo operators can be derived from the fundamental operators union and complement asintuitively expected. 8

Proposition 4 For any paraconsistent relations R and S on a common scheme, we haveR _\ S = _�(_�R _[_�S); andR _� S = _�(_�R _[S):Proof (_�(_�R _[_�S))+ = (_�R _[_�S)� = (_�R)� \ (_�S)� = R+ \ S+ = (R _\ S)+.Similarly, (_�(_�R _[_�S))� = (R _\ S)�. The second part of the result can be shownsimilarly. 2Table 1 gives some more algebraic laws involving the set-theoretic operators. Thesymbols � and 0 in the table denote the empty and universal total relations, respectively,i.e. � = h;; �(�)i and 0 = h�(�); ;i.Table 1: Laws of Algebra of Paraconsistent Relations1a: R _[S = S _[Rb: R _\ S = S _\ R) commutative laws2a: (R _[S) _[T = R _[(S _[T)b: (R _\ S) _\ T = R _\ (S _\ T)) associative laws3a: R _[(S _\ T) = (R _[S) _\ (R _[T)b: R _\ (S _[T) = (R _\ S) _[(R _\ T)) distributive laws4a: R _[R = Rb: R _\ R = R) idempotent laws5a: R _[� = Rb: R _[0 = 0c: R _\ � = �d: R _\ 0 = R 9>>>=>>>; identity laws6: _� (_� R) = R o double complementation7a: R _[_� R = 0b: R _\ _� R = �)8a: _� 0 = �b: _� � = 0)9a: _� (R _[S) = _� R _\ _� Sb: _� (R _\ S) = _� R _[_� S) De Morgan laws
Relation-Theoretic OperatorsIf � and � are relation schemes such that � � �, then for any tuple t 2 �(�), we lett� denote the set ft0 2 �(�) j t0(A) = t(A), for all A 2 �g of all extensions of t. We9

extend this notion for any T � �(�) by de�ning T� = [t2T t�. We now de�ne somerelation-theoretic algebraic operators on paraconsistent relations.De�nition 10 Let R and S be paraconsistent relations on schemes � and �, respectively.Then, the natural join (or just join) ofR and S, denoted R _1 S, is a paraconsistent relationon scheme � [�, given by(R _1 S)+ = R+ 1 S+; (R _1 S)� = (R�)�[� [(S�)�[�;where 1 is the usual natural join among ordinary relations. 2It is instructive to observe that (R _1 S)� contains all extensions of tuples in R� and S�,because at least one of R and S is believed false for these extended tuples. The followingproposition is straightforward.Proposition 5 _1 is a strong generalisation of 1.Proof Let R and S be consistent relations on schemes � and �, respectively. Thencomps�[�(R _1 S) is the setfQ 2 O(� [�) j R+ 1 S+ � Q � �(� [�)� ((R�)�[� [(S�)�[�)g;and S(1)(comps�(R); comps�(S)) = fr 1 s j r 2 comps�(R); s 2 comps�(S)g:Let Q 2 comps�[�(R _1 S). Then ��(Q) 2 comps�(R), where �� is the usualprojection over � of ordinary relations. Similarly, ��(Q) 2 comps�(S). Therefore,Q 2 S(1)(comps�(R); comps�(S)).Now letQ 2 S(1)(comps�(R); comps�(S)). Then R+ 1 S+ 2 Q andQ\(R�)�[� =Q \ (S�)�[� = ;, because R and S are consistent. Therefore, Q 2 comps�[�(R _1 S).2De�nition 11 Let R be a paraconsistent relation on scheme �, and � be any scheme.Then, the projection of R onto �, denoted _��(R), is a paraconsistent relation on �, givenby _��(R)+ = ��((R+)�[�); _��(R)� = ft 2 �(�) j t�[� � (R�)�[�g;where �� is the usual projection over � of ordinary relations. 2It should be noted that, contrary to usual practice, the above de�nition of projection isnot just for subschemes. However, if � � �, then it coincides with the intuitive projectionoperation. In this case, _��(R)� consists of those tuples in �(�), all of whose extensionsare in R�. We now de�ne our last relation-theoretic operation.10

De�nition 12 Let R be a paraconsistent relation on scheme �, and let F be any logicformula involving attribute names in �, constant symbols (denoting values in the attributedomains), equality symbol =, negation symbol :, and connectives _ and ^. Then, theselection of R by F , denoted _�F (R), is a paraconsistent relation on scheme �, given by_�F (R)+ = �F (R+); _�F (R)� = R� [�:F (�(�));where �F is the usual selection of tuples satisfying F from ordinary relations. 2Proposition 6 The operators _� and _� are strong generalisations of � and �, respectively.Proof Similar to that of Proposition 5. 2Example 1 Strictly speaking, relation schemes are sets of attribute names, but in thisexample we treat them as ordered sequences of attribute names, so tuples can be viewedas the usual lists of values. Let fa; b; cg be a common domain for all attribute names,and let R and S be the following paraconsistent relations on schemes hX; Y i and hY; Zi,respectively: R+ = f(b; b); (b; c)g; R� = f(a; a); (a; b); (a; c)g;S+ = f(a; c); (c; a)g; S� = f(c; b)g:Then, R _1 S is the following paraconsistent relation on scheme hX; Y; Zi:(R _1 S)+ = f(b; c; a)g;(R _1 S)� = f(a; a; a); (a; a; b); (a; a; c); (a; b; a); (a; b; b); (a; b; c);(a; c; a); (a; c; b); (a; c; c); (b; c; b); (c; c; b)g:Observe how (R _1 S)� blows up to contain extensions of all tuples in R� and S�. Now,_�hX;Zi(R _1 S) becomes the following paraconsistent relation on scheme hX;Zi:_�hX;Zi(R _1 S)+ = f(b; a)g; _�hX;Zi(R _1 S)� = f(a; a); (a; b); (a; c)g:The tuples in the negative component of the projected paraconsistent relation are suchthat all their extensions were present in the negative component of the original para-consistent relation. Finally, _�:X=Z(_�hX;Zi(R _1 S)) becomes the following paraconsistentrelation on the same scheme:_�:X=Z(_�hX;Zi(R _1 S))+ = f(b; a)g;_�:X=Z(_�hX;Zi(R _1 S))� = f(a; a); (a; b); (a; c); (b; b); (c; c)g:All tuples that do not satisfy the selection condition always make it to the negativecomponent of the selected paraconsistent relation. 211

4 An ApplicationIn this section we give an application of the algebra on paraconsistent relations. Webrie
y present a bottom-up method for constructing the weak well-founded model of anygeneral deductive database. For a somewhat detailed exposition on general deductivedatabases the reader is referred to [17], and on the weak well-founded model to [9].General Deductive DatabasesDeductive databases are an extension of relational databases, in that in addition to ma-nipulating explicitly represented facts, deductive databases provide ways to deduce factsfrom other facts in the database. We now give a very brief introduction to deductivedatabases. More details can be found in [8, 10, 17],Let L be a given underlying language with a �nite set of constant, variable, andpredicate symbols, but no function symbols. A term is either a variable or a constant.An atom is of the form p(t1; : : : ; tn), where p is a predicate symbol and the ti0s are terms.A literal is either a positive literal A or a negative literal :A, where A is an atom. Forany literal l we let l0 denote its complementary literal, i.e. if l is positive then l0 = :l,otherwise l = :l0.De�nition 13 A deductive database is a �nite set of clauses of the forma b1; b2; : : : ; bmwhere m � 0 and a and each bi is an atom. 2A term, atom, literal, or clause is called ground if it contains no variables. TheHerbrand Universe of the underlying language is the set of all ground terms; the HerbrandBase of the language is the set of all ground atoms; A Herbrand Interpretation of thelanguage is any subset of the Herbrand Base. A ground instance of a term, atom, literal,or clause Q is the term, atom, literal, or clause, respectively, obtained by replacing eachvariable in Q by a constant. For any deductive database P , we let P ? denote the setof all ground instances of clauses in P . Note that since the underlying language has nofunction symbols, unlike logic programs, P ? is always �nite.One way to give the semantics of a de�nite deductive database is the least �xpoint ofthe following immediate consequence function TP on Herbrand interpretations:De�nition 14 Let I be a Herbrand interpretation for a deductive database P . ThenTP (I) is a Herbrand interpretation, given byTP (I) = fa j for some clause a b1; : : : ; bm in P ?; fb1; : : : ; bmg � Ig: 212

It is well-known that TP always possesses a least �xpoint with respect to the partial orderof set inclusion. The least �xpoint can be shown to be the minimal model for P . Thismodel is also known to be TP " !, where the ordinal powers of TP are de�ned as follows:De�nition 15 For any ordinal �,TP " � = 8><>: ; if � = 0,TP (TP " (�� 1)) if � is a successor ordinal,[�<�(TP " �); if � is a limit ordinal. 2The expressive power of the clauses of a deductive databases can be increased byallowing negated atoms in their bodies. This results in a more general class of deductivedatabases de�ned below.De�nition 16 A general deductive database is a �nite set of clauses of the forma l1; l2; : : : ; lmwhere a is an atom, m � 0 and each li is a literal. 2Weak Well-founded Model of General Deductive DatabasesOne of the semantics given for general deductive databases is described next. It wasoriginally presented in [9] for logic programs.De�nition 17 A partial interpretation is a pair I = hI+; I�i, where I+ and I� are anysubsets of the Herbrand Base. 2A partial interpretation I is consistent if I+ \ I� = ;. For any partial interpretationsI and J , we let I \ J be the partial interpretation hI+ \ J+; I� \ J�i, and I [J be thepartial interpretation hI+ [J+; I� [J�i. We also say I � J whenever I+ � J+ andI� � J�.De�nition 18 Let S be a set partially ordered by �. A map T : S ! S is monotonic if,for any X; Y 2 S, X � Y implies T (X) � T (Y). 2For any general deductive database P , recall that P ? is the set of all ground instancesof clauses in P . The weak well-founded model of P is the least �xpoint of the immediateconsequence function T FP on consistent partial interpretations de�ned as follows:13

De�nition 19 Let I be a partial interpretation. Then T FP (I) is a partial interpretation,given byT FP (I)+ = fa j for some clause a l1; : : : ; lm in P ?, for each i; 1 � i � m,if li is positive then li 2 I+, andif li is negative then l0i 2 I�g;T FP (I)� = fa j for every clause a l1; : : : ; lm in P ?, there is some i; 1 � i � m,such that if li is positive then li 2 I�, andif li is negative then l0i 2 I+g: 2It can be shown that T FP preserves consistency and always possesses a least �xpoint. Thisleast �xpoint is called the weak well-founded model for P . The model can also be shownto be T FP " !, where the ordinal powers of T FP are de�ned as follows:De�nition 20 For any ordinal �,T FP " � = 8><>: h;; ;i if � = 0,T FP (T FP " (�� 1)) if � is a successor ordinal,h[�<�(T FP " �)+; [�<� (T FP " �)�i if � is a limit ordinal. 2In [1], the upward closure ordinal of the immediate consequence function is de�ned asthe least ordinal � such that T FP " � is a �xpoint of T FP . The following observation fordeductive databases is relevant:Proposition 7 For any general deductive database P , the upward closure ordinal of T FPis �nite, i.e. there is a number n � 0, such that T FP " n = T FP " !. 2Thus a mechanism that \computes" the ordinal powers of T FP can be employed to constructthe weak well-founded model of P .Construction of the Weak Well-founded ModelWe now describe a method for constructing the weak well-founded model for a givengeneral deductive database P . In this model, paraconsistent relations are the semanticobjects associated with the predicate symbols occurring in P .The method involves two steps. The �rst step is to convert P into a set of paraconsis-tent relation de�nitions for the predicate symbols occurring in P . These de�nitions areof the form p = Dp;14

where p is a predicate symbol of P , and Dp is an algebraic expression involving predicatesymbols of P and paraconsistent relation operators. The second step is to iterativelyevaluate the expressions in these de�nitions to incrementally construct the paraconsistentrelations associated with the predicate symbols.A scheme � is a Herbrand scheme if dom(A) is the Herbrand Universe, for all A 2 �.The schemes of the paraconsistent relations that we associate with the predicate symbolsare set internally. Let � = h�1; �2; : : :i be an in�nite sequence of some distinct attributenames. For any n � 1, let �n be the Herbrand scheme f�1; : : : ; �ng. We use the followingscheme renaming operators.De�nition 21 Let � = fA1; : : : ; Ang be any Herbrand scheme. Then,(a) for any paraconsistent relation R on scheme �n, R(A1; : : : ; An) is the paraconsistentrelationh ft 2 �(�) j for some t0 2 R+; t(Ai) = t0(�i); for all i; 1 � i � ng;ft 2 �(�) j for some t0 2 R�; t(Ai) = t0(�i); for all i; 1 � i � ng ion scheme �, and(b) for any paraconsistent relation R on scheme �, R[A1; : : : ; An] is the paraconsistentrelationh ft 2 �(�n) j for some t0 2 R+; t(�i) = t0(Ai); for all i; 1 � i � ng;ft 2 �(�n) j for some t0 2 R�; t(�i) = t0(Ai); for all i; 1 � i � ng ion scheme �n. 2Before describing our method to convert the given database P into a set of de�nitionsfor the predicate symbols in P , let us look at an example. Suppose the following are theonly clauses with the predicate symbol p in their heads:p(X) r(X,Y), :p(Y)p(Y) s(Y,a)From these clauses the algebraic de�nition constructed for the symbol p is the following:p = (_�{X}(r(X; Y) _1 _�p(Y)))[X] _[(s(Y; Z))))[Y]Such a conversion exploits the close connection between attribute names in relationschemes and variables in clauses, as pointed out in [24]. The expression thus constructedcan be used to arrive at a better approximation of the paraconsistent relation p fromsome approximations of p, r and s.The algebraic expression for the predicate symbol p is a union (_[) of the expressionsobtained from each clause containing the symbol p in its head. It therefore su�ces togive an algorithm for converting one clause into an expression.15

Algorithm CONVERTInput: A general deductive database clause l0 l1; : : : ; lm.Let l0 be of the form p0(A01; : : : ; A0k0), and each li, 1 � i � m, be either of the formpi(Ai1; : : : ; Aiki), or of the form :pi(Ai1; : : : ; Aiki). For any i, 0 � i � m, let Vi be the setof all variables occurring in li.Output: An algebraic expression involving paraconsistent relations.Method: The expression is constructed by the following steps:1. For each argument Aij of literal li, construct argument Bij and condition Cij asfollows:(a) If Aij is a constant a, then Bij is any brand new variable and Cij is Bij = a.(b) If Aij is a variable, such that for each k, 1 � k < j, Aik 6= Aij, then Bij is Aijand Cij is true.(c) If Aij is a variable, such that for some k, 1 � k < j, Aik = Aij, then Bij is abrand new variable and Cij is Aij = Bij.2. Let l̂i be the atom pi(Bi1; : : : ; Biki), and Fi be the conjunction Ci1 ^ � � � ^Ciki. If liis a positive literal, then let Qi be the expression _�Vi(_�Fi(l̂i)). Otherwise, let Qi bethe expression _� _�Vi(_�Fi(l̂i)).As a syntactic optimisation, if all conjuncts of Fi are true (i.e. all arguments of liare distinct variables), then both _�Fi and _�Vi are reduced to identity operations,and are hence dropped from the expression. For example, if li = :p(X,Y), thenQi = _�p(X,Y).3. Let E be the natural join (_1) of the Qi's thus obtained, 1 � i � m. The outputexpression is (_�F0(_�V (E)))[B01; : : : ; B0k0], where V is the set of variables occurringin l̂0.As in step 2, if all conjuncts in F0 are true, then _�F0 is dropped from the outputexpression. However, _�V is never dropped, as the clause body may contain variablesnot in V . 2From the algebraic expressions obtained by Algorithm CONVERT for clauses in thegiven general deductive database, we construct a system of equations de�ning paracon-sistent relations as follows.De�nition 22 For any general deductive database P , EQN(P) is a set of all equationsof the form p = Dp, where p is a predicate symbol of P , and Dp is the union (_[) of allexpressions obtained by Algorithm CONVERT for clauses in P with symbol p in theirhead. The algebraic expression Dp is also called a de�nition of p. 216

It is evident that a predicate symbol may have many de�nitions. It can be shown thatthe above method for converting a general deductive database P into de�nitions forits predicate symbols terminates, and that the de�nitions produced mimic the T FP mapde�ned in [9].The second and �nal step in our model construction process is to incrementally con-struct the paraconsistent relations de�ned by the given database. For any general de-ductive database P , we let PE and PI denote its extensional and intensional portions,respectively. PE is essentially the set of clauses of P with empty bodies, and PI is the setof all other clauses of P . Without loss of generality, we assume that no predicate symboloccurs both in PE as well as in PI . Let us recall that P ?E is the set of all ground instancesof clauses in PE.The overall construction algorithm is rather straightforward. It treats the predicatesymbols in a given database as imperative \variable names" that may contain a paracon-sistent relation as value. Thus, any variable p has two set-valued �elds, namely p+ andp�.Algorithm CONSTRUCTInput: A general deductive database P .Output: Paraconsistent relation values for the predicate symbols of P .Method: The values are computed by the following steps:1. (Initialisation)(a) Compute EQN(PI) using Algorithm CONVERT for each clause in PI .(b) For each predicate symbol p in PE, setp+ = fha1; : : : ; aki j p(a1; : : : ; ak) 2 P ?Eg; andp� = fhb1; : : : ; bki j k is the arity of p, and p(b1; : : : ; bk) 62 P ?Eg:(c) For each predicate symbol p in PI , set p+ = ;, and p� = ;.2. For each equation of the form p = Dp in EQN(PI), compute the expression Dp andset p to the resulting paraconsistent relation.3. If step 2 involved a change in the value of some p, goto 2.4. Output the �nal values of all predicate symbols in PE and PI . 2Again, we omit the proof of termination of Algorithm CONSTRUCT and that itconstructs the weak well-founded model of the given database.17

5 Conclusions and Future WorkWe have presented a generalisation of the relational data model, which is capable ofmanipulating incomplete or even inconsistent information. Paraconsistent relations, basedon Belnap's 4-valued logic [2], form the mathematical structures underlying the model.A paraconsistent relation essentially contains two kinds of tuples: ones for which anunderlying predicate is believed to be true, and ones for which that predicate is believedto be false. These structures are strictly more general than ordinary relations, in thatfor any ordinary relation there is a paraconsistent relation with the same informationcontent, but not vice versa. Since paraconsistent relations are capable of containingcontradictory information, these structures model belief systems more naturally thanknowledge systems.We developed two notions of generalising operators on ordinary relations for paracon-sistent relations. Of these, the stronger notion guarantees that any generalised operator is\well-behaved" for paraconsistent relation operands that contain consistent information.For some well-known operators on ordinary relations, such as union, join, projection,we introduced generalised operators on paraconsistent relations. These generalised oper-ators maintain the belief system intuition behind paraconsistent relations, and are shownto be \well-behaved" in the sense mentioned above.Our data model can be used to represent relational information that may be incompleteor inconsistent. As usual, the algebraic operators can be used to construct queries to anydatabase systems for retrieving paraconsistent information. As another application ofparaconsistent relations and the algebra on them, we presented a method for constructingthe weak well-founded model for general deductive databases [9]. This method requirestranslating the clauses of the database into expressions involving the generalised operatorsintroduced earlier. A minor modi�cation to this method can tailor it for constructing thewell-founded model for such databases [25].Recently there has been some interest in studying extended logic programs in whichthe head of clauses can have one or more literals [19]. This leads to two notions of negation:implicit negation (corresponding to negative literals in the body) and explicit negation(corresponding to negative literals in the head). One possible direction for further re-search is to extend the paraconsistent relational model presented in this paper to includedisjunctive tuples as in [16], thereby providing a framework under which the semantics ofextended logic programs could be constructed in a bottom-up manner. Allowing explicitnegation in a disjunctive deductive database/logic program usually cuts down on thenumber of minimal models, sometimes quite drastically, and as a consequence increasesthe e�ciency of query processing. This will be one of the main motivations in exploringthe possibility of paraconsistent relations with disjunctive tuples.
18

References[1] R. Bagai, M. Bezem, and M. H. van Emden. On downward closure ordinals of logicprograms. Fundamenta Informaticae, XIII(1):67{83, 1990.[2] N. D. Belnap. A useful four-valued logic. In G. Eppstein and J. M. Dunn, editors,Modern Uses of Many-valued Logic, pages 8{37. Reidel, Dordrecht, 1977.[3] J. Biskup. A foundation of Codd's relational maybe-operations. ACM Transactionson Database Systems, 8(4):608{636, December 1983.[4] H. A. Blair and V. S. Subrahmanian. Paraconsistent logic programming. TheoreticalComputer Science, 68:135{154, 1989.[5] E. F. Codd. A relational model for large shared data banks. Communications of theACM, 13(6):377{387, June 1970.[6] E.F. Codd. Missing information (applicable and inapplicable) in relational databases.SIGMOD Record, 15(4):53{78, December 1986.[7] N. C. A. da Costa. On the theory of inconsistent formal systems. Notre DameJournal of Formal Logic, 15:621{630, 1977.[8] S. K. Das. Deductive databases and logic programming. Addison-Wesley, New York,1992.[9] M. Fitting. A Kripke-Kleene semantics for logic programs. Journal of Logic Pro-gramming, 4:295{312, 1985.[10] H. Gallaire, J. Minker, and J.M. Nicolas. Logic and databases: A deductive approach.ACM Computing Surveys, 16(2):151{184, June 1984.[11] E. Gelenbe and G. Hebrail. A probability model of uncertainity in databases. InProceedings of the International Conference on Data Engineering. IEEE ComputerSociety Press, 1986.[12] J. Grant. Partial values in a tabular database model. Information Processing Letters,9(2):97{99, August 1979.[13] T. Imieli�nski and W. Lipski. Incomplete information in relational databases. Journalof the ACM, 31(4):761{791, October 1984.[14] W. Lipski. On semantic issues connected with incomplete information databases.ACM Transactions on Database Systems, 4:262{296, 1979.[15] K.-C. Liu and R. Sunderraman. On representing inde�nite and maybe informationin relational databases. In Proceedings of the Fourth International Conference onData Engineering, Los Angeles, California, February 1988, pages 250{257, 1988.19

[16] K.-C. Liu and R. Sunderraman. Inde�nite and maybe information in relationaldatabases. ACM Transactions on Database Systems, 15(1):1{39, 1990.[17] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, second edition,1987.[18] D. Maier. The Theory of Relational Databases. Computer Science Press, 1983.[19] J. Minker and C. Ruiz. On extended disjunctive logic programs. In J. Komorowskiand Z.W. Ras, editors, Proceedings of the Seventh International Symposium onMethodologies for Intelligent Systems, pages 1{18. Lecture Notes in AI, Springer-Verlag, New York, June 1993.[20] K.V.S.V.N. Raju and A.K. Majumdar. Fuzzy functional dependencies and loss-less join decomposition of fuzzy relational database systems. ACM Transactions onDatabase Systems, 13(2):129{166, 1988.[21] R. Reiter. Towards a logical reconstruction of relational database theory. InM. Brodie, J. Mylopoulos, and J.W. Schmidt, editors, On Conceptual Modeling,pages 191{238. Springer-Verlag, Berlin and New York, 1984.[22] V. S. Subrahmanian. Paraconsistent disjunctive deductive databases. TheoreticalComputer Science, 93:115{141, 1992.[23] R. Sunderraman. Deductive databases with conditional facts. In M. Worboys andA. F. Grundy, editors, Advances in Databases, pages 162{175. Lecture Notes inComputer Science, 696, Springer-Verlag, 1993. (Proceedings of the 11th BritishNational Conference on Databases).[24] J. D. Ullman. Principles of Database and Knowledge-Base Systems, volume 1. Com-puter Science Press, 1988.[25] A. van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for generallogic programs. Journal of the ACM, 38(3):621{650, 1991.

20

