
Chapter 15

Query-answering in Deductive

Databases

One of the great virtues of logic programming is that programs have a declarative
semantics which can be understood independently of any particular operational se-
mantics. SLD-resolution is one example of a class of interpreters that can be used to
compute the logical consequences of a definite program. But also other strategies can
be used. In fact, SLD-resolution has several weaknesses also in the case of an ideal
interpreter. For instance, consider the following definition of the Fibonacci numbers
(for convenience X + n and n abbreviate the terms sn(X) and sn(0)):

fib(0, 1).
fib(1, 1).
fib(X + 2, Y )← fib(X + 1, Z),fib(X,W ), add(Z,W, Y ).

Now assume that the following goal clause is given:

← fib(10, X).

The goal reduces to the following:

← fib(9, Z0),fib(8,W0), add(Z0,W0, X).

And selection of the leftmost subgoal yields:

← fib(8, Z1),fib(7,W1), add(Z1,W1, Z0),fib(8,W0), add(Z0,W0, X).

This goal contains two subgoals which are identical up to variable renaming: fib(8, Z1)
and fib(8,W0). In order to resolve the whole goal, both subgoals have to be resolved
leading to duplicate work. As a matter of fact, the number of recursive calls to fib/2
grows exponentially with the size of the input.

229



230 Chapter 15: Query-answering in Deductive Databases

In this particular case it is better to compute answers to← fib(10, X) starting from
the base cases: Since fib(0, 1) and fib(1, 1) it must hold that fib(2, 2) and so forth:

· · ·
fib(0, 1) fib(1, 1) fib(2, 2) fib(3, 3) fib(9, 55) fib(10, 89)

Another problem with SLD-resolution has to do with termination. Even when no
function symbols are involved and there are only a finite number of answers to a goal,
SLD-resolution may loop. Consider the goal ← married(X,Y ) and the program:

married(X,Y )← married(Y,X).
married(adam , anne).

There are only two answers to the goal. However, the SLD-tree is infinite and Prolog
would not even find the answers unless the clauses were swapped.

In Chapter 6 logic programming was advocated as a representation language for
relational databases. But as illustrated above, SLD-resolution is not always the best
mechanism for a query-answering system. In a database system it is particularly
important to guarantee termination of the query-answering process whenever that is
possible. This chapter considers an alternative inference mechanism for logic programs
which has a much improved termination behaviour than SLD-resolution. It may also
avoid unnecessary recomputations such as those above. Some assumptions which are
often made in the deductive database literature are consciously avoided in our expo-
sition. (In particular, the division of the program into an extensional and intensional
part.)

15.1 Naive Evaluation

SLD-resolution is goal-directed — the starting point of the computation is the goal
and the aim of the reasoning process is to derive a contradiction by rewritings of the
goal. This has several advantages:

• The tree-like structure of the search space lends itself to efficient implementa-
tions, both space- and time-wise;

• By focusing attention on the goal it is possible to avoid some inferences which
are of no importance for the answers to the goal.

A completely different approach is to start from what is known to be true — the facts
and the rules of the program — and to (blindly) generate consequences of the program
until the goal can be refuted. (For the sake of simplicity, it will be assumed that all
goals are of the form ← A.) For instance, let P be the program:

married(X,Y )← married(Y,X).
married(adam , anne).

Clearly, P |= married(adam , anne). Moreover, since married(adam , anne) is true in
any model of the program it must hold that P |= married(anne, adam). This idea
resembles the immediate consequence operator originally introduced in Chapter 3:



15.1 Naive Evaluation 231

fun naive(P )
begin

x := facts(P );
repeat

y := x;
x := SP (y);

until x = y;
return x;

end

Figure 15.1: Naive evaluation

TP (I) = {A0 | A0 ← A1, . . . , An ∈ ground(P ) and A1, . . . , An ∈ I}

Recall that the least fixed point of this operator (which can be obtained as the limit
of TP ↑ n where n ≥ 0) characterizes the set of all ground atomic consequences of
the program. Hence, the TP -operator can be used for query-answering. However, for
computational reasons it is often more practical to represent Herbrand interpretations
by sets of atoms (ground or non-ground). A “non-ground TP -operator” may be defined
as follows:1

SP (I) = {A0θ | A0 ← A1, . . . , An ∈ P and θ ∈ solve((A1, . . . , An), I)}

where θ ∈ solve((A1, . . . , An), I) if θ is an mgu of {A1
.= B1, . . . , An

.= Bn} and
B1, . . . , Bn are members in I renamed apart form each other and A0 ← A1, . . . , An.

It can be shown that SP is closed under logical consequence. That is, if every atom
in I is a logical consequence of P then so is SP (I). In particular, every atom in ? is
clearly a logical consequence of P . Thus, every atom in SP (?) is a logical consequence
of P . Consequently every atom in SP (SP (?)) is a logical consequence of P and so
forth. This iteration — which may be denoted:

SP ↑ 0, SP ↑ 1, SP ↑ 2, . . .

yields larger and larger sets of atomic consequences. By analogy to the immediate
consequence operator it can be shown that there exists a least set I of atomic formulas
such that SP (I) = I and that this set equals the limit of SP ↑ n. An algorithmic
formulation of this iteration can be found in Figure 15.1. (Let facts(P ) denote the set
of all facts in P .) The algorithm is often referred to as naive evaluation.

The result of the naive evaluation can be used to answer queries to the program:
If B is an atom in naive(P ) renamed apart from A and θ is an mgu of A

.= B. Then
θ is an answer to the goal ← A.

Example 15.1 Consider the following transitive closure program:

1For the sake of simplicity it is assumed that SP (I) never contains two atoms which are renamings
of each other.



232 Chapter 15: Query-answering in Deductive Databases

fun semi-naive(P )
begin

∆x := facts(P );
x := ∆x;
repeat

∆x := ∆SP (x,∆x);
x := x ∪∆x;

until ∆x = ?;
return x;

end

Figure 15.2: Semi-naive evaluation

path(X,Y )← edge(X,Y ).
path(X,Y )← path(X,Z), edge(Z, Y ).

edge(a, b).
edge(b, a).

Let xi denote the value of x after i iterations. Then the iteration of the naive-evaluation
algorithm looks as follows:

x0 = {edge(a, b), edge(b, a)}
x1 = {edge(a, b), edge(b, a), path(a, b), path(b, a)}
x2 = {edge(a, b), edge(b, a), path(a, b), path(b, a), path(a, a), path(b, b)}
x3 = {edge(a, b), edge(b, a), path(a, b), path(b, a), path(a, a), path(b, b)}

The goal ← path(a,X) has two answers: {X/a} and {X/b}.

15.2 Semi-naive Evaluation

As suggested by the name, naive evaluation can be improved in several respects. In
particular, each iteration of the algorithm recomputes everything that was computed
in the previous iteration. That is xi ⊆ xi+1. The revised algorithm in Figure 15.2
avoids this by keeping track of the difference xi \ xi−1 in the auxiliary variable ∆x.
Note first that the loop of the naive evaluation may be replaced by:

repeat
∆x := SP (x) \ x;
x := x ∪∆x;

until ∆x = ?;

The expensive operations here is SP (x) \ x which renders the modified algorithm
even more inefficient than the original one. However, the new auxiliary function call
∆SP (x,∆x) computes the difference more efficiently:



15.3 Magic Transformation 233

∆SP (I,∆I) = {A0θ 6∈ I | A0 ← A1, . . . , An ∈ P and
θ ∈ solve((A1, . . . , An), I,∆I)}

where θ ∈ solve((A1, . . . , An), I,∆I) if θ is an mgu of {A1
.= B1, . . . , An

.= Bn} and
B1, . . . , Bn are atoms in I renamed apart form each other and A0 ← A1, . . . , An and
at least one Bi ∈ ∆I .

It can be shown that the algorithm in Figure 15.2 — usually called semi-naive
evaluation — is equivalent to naive evaluation:

Theorem 15.2 (Correctness of semi-naive evaluation) Let P be a definite pro-
gram, then naive(P ) = semi-naive(P ).

Example 15.3 The following is a trace of the semi-naive evaluation of the programs
in Example 15.1:

∆x0 = {edge(a, b), edge(b, a)}
∆x1 = {path(a, b), path(b, a)}
∆x2 = {path(a, a), path(b, b)}
∆x3 = ?

The main advantage of the naive and semi-naive approach compared to SLD-resolution
is that they terminate for some programs where SLD-resolution loops. In particular
when no function symbols are involved (i.e. datalog programs). For instance, the
goal ← path(a,X) loops under SLD-resolution. On the other hand, there are also
examples where the (semi-) naive approach loops and SLD-resolution terminates. For
instance, consider the goal← fib(5, X) and the following program (extended with the
appropriate definition of add/3):

fib(0, 1).
fib(1, 1).
fib(X + 2, Y )← fib(X + 1, Z),fib(X,W ), add(Z,W, Y ).

The SLD-derivation terminates but both the naive and the semi-naive evaluation loop.
The reason is that both naive and semi-naive evaluation blindly generate consequences
without taking the goal into account. However, the fact fib(5, 8) is obtained early on
in the iteration. (In fact, if it was not for the addition it would be computed in the
fourth iteration.)

Both naive and semi-naive evaluation also lend themselves to set-oriented opera-
tions in contrast to SLD-resolution which uses a tuple-at-a-time strategy. The set-
oriented approach is often advantageous in database applications where data may
reside on secondary storage and the number of disk accesses must be minimized.

15.3 Magic Transformation

This section presents a query-answering approach which combines the advantages of
semi-naive evaluation with goal-directedness. The approach amounts to transforming



234 Chapter 15: Query-answering in Deductive Databases

the program P and a goal← A into a new program magic(P ∪{← A}) which may be
executed by the naive or semi-naive algorithm.

One of the problems with the semi-naive evaluation is that it blindly generates
consequences which are not always needed to answer a specific query. This can be
repaired by inserting a “filter” (an extra condition) into the body of each program
clause A0 ← A1, . . . , An so that (an instance of) A0 is a consequence of the program
only if it is needed in order to compute an answer to a specific atomic goal.

For the purpose of defining such filters, the alphabet of predicate symbols is
extended with one new predicate symbol call p for each original predicate symbol
p. If A is of the form p(t1, . . . , tn) then call(A) will be used to denote the atom
call p(t1, . . . , tn). Such an atom is called a magic template. The basic transformation
scheme may be formulated as follows:

Definition 15.4 (Magic transformation) Let magic(P ) be the smallest program
such that if A0 ← A1, . . . , An ∈ P then:

• A0 ← call(A0), A1, . . . , An ∈ magic(P );

• call(Ai)← call(A0), A1, . . . , Ai−1 ∈ magic(P ) for each 1 ≤ i ≤ n.

Given an initial goal ← A a transformed clause of the form:

A0 ← call(A0), A1, . . . , An

can be interpreted as follows:

A0 is true if A0 is needed (to answer ← A) and A1, . . . , An are true.

The statement “. . . is needed (to answer ← A)” can also be read as “. . . is called (in a
goal-directed computation of ← A)”. Similarly a clause of the form:

call(Ai)← call(A0), A1, . . . , Ai−1

can then be understood as follows:

Ai is called if A0 is called and A1, . . . , Ai−1 are true.

Hence, the first clause extends each clause of the original program with a filter as
described above and the second clause defines when a filter is true. The magic trans-
formation can be said to encode a top-down computation with Prolog’s computation
rule. In fact, as will be illustrated below there is a close correspondence between the
semi-naive evaluation of the magic program and the SLD-derivations of the original
program.

Example 15.5 Let P be the program in Example 15.1. Then magic(P ) is the fol-
lowing program:

path(X,Y )← call path(X,Y ), edge(X,Y ).
path(X,Y )← call path(X,Y ), path(X,Z), edge(Z, Y ).
edge(a, b)← call edge(a, b).
edge(b, a)← call edge(b, a).

call edge(X,Y )← call path(X,Y ).
call path(X,Z)← call path(X,Y ).
call edge(Z, Y )← call path(X,Y ), path(X,Z).



15.3 Magic Transformation 235

1:← path(X,Y ).

2:← edge(X,Y ). 3:← path(X,Z0), edge(Z0, Y ).

4:2
X=a,

Y=b

5:2
X=b,

Y=a

6:← edge(X,Z0), edge(Z0, Y ). ∞

7:← edge(b, Y ). 8:← edge(a, Y ).

9:2
X=a,

Y=a

10:2
X=b,

Y=b

���������

XXXXXXXXX

�
��
@
@@

�����

HHHHH

�����

HHHHH

Figure 15.3: SLD-tree of ← path(X,Y )

For instance, note that the last clause may be read: “edge(Z, Y ) is called if path(X,Y )
is called and path(X,Z) is true”. Now compare this with the recursive clause of the
original program in Example 15.1!

Note that the program in the example does not contain any facts. Hence, no atomic
formula can be a logical consequence of the program. In order to be able to use the
magic program for answering a query the program has to be extended with such a
fact. More precisely, in order to answer an atomic goal← A the transformed program
must be extended with the fact call(A). The fact may be read “A is called”.

Example 15.6 Consider a goal ← path(X,Y ) to the program in Example 15.1. The
semi-naive evaluation of the transformed program looks as follows:

∆x0 = {call path(X,Y )}
∆x1 = {call edge(X,Y )}
∆x2 = {edge(a, b), edge(b, a)}
∆x3 = {path(a, b), path(b, a)}
∆x4 = {call edge(a, Y ), call edge(b, Y ), path(a, a), path(b, b)}
∆x5 = ?

Hence, the evaluation terminates and produces the expected answers: path(a, a),
path(a, b), path(b, a) and path(b, b).

It is interesting to compare the semi-naive evaluation of the magic program with the
SLD-tree of the goal ← path(X,Y ) with respect to the original program.

The selected subgoal in the root of the SLD-tree in Figure 15.3 is path(X,Y ).
Conceptually this amounts to a call to the procedure path/2. In the magic computation
this corresponds to the state before the first iteration. The first iteration generates the
fact call edge(X,Y ) which corresponds to the selection of the subgoal edge(X,Y ) in
node 2 of the SLD-tree. Simultaneously, path(X,Z0) is selected in node 3. However,



236 Chapter 15: Query-answering in Deductive Databases

s0 s3 s4 · · · sn

s1

s2

Figure 15.4: Duplicate paths

this is not explicitly visible in ∆x1 since call path(X,Y ) and call path(X,Z0) are
renamings of each other. Iteration two yields two answers to the call to edge(X,Y );
namely edge(a, b) and edge(b, a) corresponding to nodes 4 and 5 in the SLD-tree. These
nodes also provide answers to the call path(X,Y ) (and path(X,Z0)) and correspond
to the result of iteration three, and so forth.

The magic approach can be shown to be both sound and complete:

Theorem 15.7 (Soundness of magic) Let P be a definite program and ← A an
atomic goal. If Aθ ∈ naive(magic(P ∪ {← A})) then P |= ∀(Aθ).

Theorem 15.8 (Completeness of magic) Let P be a definite program and ← A
an atomic goal. If P |= ∀(Aθ) then there exists Aσ ∈ naive(magic(P ∪ {← A})) such
that Aθ is an instance of Aσ.

The magic approach combines advantages of naive (and semi-naive) evaluation with
goal-directedness. In particular, it has a much improved termination behaviour over
both SLD-resolution and naive (and semi-naive) evaluation of the original program P :

• If the SLD-tree of ← A is finite then naive(magic(P ∪ {← A})) terminates;

• If naive(P ) terminates, then naive(magic(P ∪ {← A})) terminates;

Moreover, the magic approach sometimes avoids repeating computations. Consider
the following program and graph in Figure 15.4:

path(X,Y )← edge(X,Y ).
path(X,Y )← edge(X,Z), path(Z, Y ).

Even if the SLD-tree of ← path(s0, X) is finite the tree contains two branches which
are identical up to variable renaming — one that computes all paths from s3 via s0 and
s1 and one branch that computes all paths from s3 via s0 and s2. By using semi-naive
evaluation of the transformed program this is avoided since the algorithm computes a
set of magic templates and answers to the templates.

15.4 Optimizations

The magic transformation described in the previous section may be modified in various
ways to optimize the query-answering process. We give here a brief account of some
potential optimizations without going too much into technical detail.



15.4 Optimizations 237

Supplementary magic

Each iteration of the naive evaluation amounts to computing:

solve((A1, . . . , An), I)

for each program clause A0 ← A1, . . . , An. This in turn amounts to finding an mgu of
sets of equations of the form:

{A1
.= B1, . . . , An

.= Bn}
If the program contains several clauses with common subgoals it means that the same
unification steps are repeated in each iteration of the evaluation. (The same can be
said about semi-naive evaluation.) This is a crucial observation for evaluation of magic
programs as the magic transformation of a clause A0 ← A1, . . . , An gives rise to the
following sub-program:

call(A1) ← call(A0).
call(A2) ← call(A0), A1.
call(A3) ← call(A0), A1, A2.

...
call(An) ← call(A0), A1, A2, . . . , An−1.

A0 ← call(A0), A1, A2, . . . , An−1, An.

Hence, naive and semi-naive evaluation run the risk of having to repeat a great many
unification steps in each iteration of the evaluation.

It is possible to factor out the common subgoals using so-called supplementary
predicates O0, . . . ,On; Let X be the sequence of all variables in the original clause and
let the supplementary predicates be defined as follows:

O0(X) ← call(A0)
O1(X) ← O0(X), A1

...
On(X) ← On−1(X), An

Intuitively, Oi(X) describes the state of the computation in a goal-directed computa-
tion of A0 ← A1, . . . , An after the success of Ai (or before A1 if i = 0). For instance,
the last clause states that “if On−1(X) is the state of the computation before calling
An and An succeeds then On(X) is the state of the computation after An”.

Using supplementary predicates the magic transformation may be reformulated as
follows:

call(Ai+1) ← Oi(X). (0 ≤ i < n)
A0 ← On(X).

The transformation increases the number of clauses in the transformed program. It
also increases the number of iterations in the evaluation. However, the amount of work
in each iteration decreases dramatically since the clause bodies are shorter and avoids
much of the redundancy due to duplicate unifications.

Note that no clause in the new sub-program contains more than two body literals.
In fact, the supplementary transformation is very similar in spirit to Chomsky Normal
Form used to transform context-free grammars (see Hopcroft and Ullman (1979)).



238 Chapter 15: Query-answering in Deductive Databases

Subsumption

In general we are only interested in “most general answers” to a goal. That is to say,
if the answer A1 is a special case of A2 then we are only interested in A2. (This is
why the definition of SLD-resolution involves only most general unifiers.) In a naive or
semi-naive evaluation it may happen that the set being computed contains two atoms,
A1 and A2, where A1 is an instance of A2 (i.e. there is a substitution θ such that
A1 = A2θ). Then A1 is said to be subsumed by A2. In this case A1 is redundant and
may be removed from the set without sacrificing completeness of the query-answering
process. Moreover, keeping the set as small as possible also improves performance of
the algorithms. In the worst case, redundancy due to subsumption may propagate
leading to an explosion in the size of the set.

From a theoretical perspective it is easy to extend both naive and semi-naive
evaluation with a normalization procedure which removes redundancy from the set.
However, checking for subsumption may be so expensive from the computational point
of view (and is so rarely needed), that it is often not used in practice.

Sideways information passing

As commented the magic transformation presented in Definition 15.4 encodes a goal-
directed computation where the subgoals are solved in the left to right order. Hence,
given a clause:

A0 ← A1, . . . , An

the transformed program contains a clause:

call(Ai)← call(A0), A1, . . . , Ai−1

In addition to imposing an ordering on the body atoms, the clause also propagates
bindings of call(A0) and A1, . . . , Ai−1 to call(Ai). Now two objections may be raised:

• The left to right goal ordering is not necessarily the most efficient way of an-
swering a query;

• Some of the bindings may be of no use for call(Ai). And even if they are of use,
we may not necessarily want to propagate all bindings to it.

Consider the following sub-program which checks if two nodes (e.g. in a tree) are on the
same depth. That is, if they have a common ancestor the same number of generations
back.

sd(X,X).
sd(X,Y )← child(X,Z), child(Y,W ), sd(Z,W ).

Note that there is no direct flow of bindings between child(X,Z) and child(Y,W ) in
a goal-directed computation. Hence the two subgoals may be solved in parallel. How-
ever, the recursive call sd(X,Z) relies on bindings from the previous two, and should
probably await the success of the other subgoals. Now, the magic transformation
imposes a linear ordering on the subgoals by generating:



Exercises 239

call child(X,Z)← call sd(X,Y ).
call child(Y,W )← call sd(X,Y ), child (X,Z).
call sd(Z,W )← call sd(X,Y ), child (X,Z), child(Y,W ).

In this particular case it would probably be more efficient to emit the clauses:

call child(X,Z)← call sd(X,Y ).
call child(Y,W )← call sd(X,Y ).
call sd(Z,W )← call sd(X,Y ), child (X,Z), child(Y,W ).

Intuitively this means that the two calls to child/2 are carried out “in parallel” as
soon as sd/2 is called. The recursive call, on the other hand, goes ahead only if the
two calls to child/2 succeed.

This example illustrates that there are variations of the magic transformation which
potentially yield more efficient programs. However, in order to exploit such variations
the transformation must be parameterized by the strategy for solving the subgoals of
each clause. Which strategy to use relies on the flow of data between atoms in the
program and may require global analysis of the program. Such strategies are commonly
called sip’s (sideways information passing strategies) and the problem of generating
efficient strategies is an active area of research (see Ullman (1989) for further reading).

Exercises

15.1 Transform the following program using Definition 15.4:

expr(X,Z)← expr(X, [+|Y ]), expr(Y,Z).
expr([id|Y ], Y ).

Then use naive and semi-naive evaluation to “compute” answers to the goal:

← expr([id, +, id], X).

What happens if the goal is evaluated using SLD-resolution and the original
program?

15.2 Consider the program sd/2 on p. 238 and the following “family tree”:

child(b, a). child (c, a). child (d, b). child(e, b). child(f, c).
child(g, d). child (h, d). child (i, e). child(j, f). child(k, f).

Transform the program using (a) magic templates (b) supplementary magic.
Then compute the answers to the goal:

← sd(d,X)



240 Chapter 15: Query-answering in Deductive Databases


