
Chapter 2

Definite Logic Programs

2.1 Definite Clauses

The idea of logic programming is to use a computer for drawing conclusions from
declarative descriptions. Such descriptions — called logic programs — consist of finite
sets of logic formulas. Thus, the idea has its roots in the research on automatic theorem
proving. However, the transition from experimental theorem proving to applied logic
programming requires improved efficiency of the system. This is achieved by introduc-
ing restrictions on the language of formulas — restrictions that make it possible to use
the relatively simple and powerful inference rule called the SLD-resolution principle.
This chapter introduces a restricted language of definite logic programs and in the
next chapter their computational principles are discussed. In subsequent chapters a
more unrestrictive language of so-called general programs is introduced. In this way
the foundations of the programming language Prolog are presented.

To start with, attention will be restricted to a special type of declarative sentences
of natural language that describe positive facts and rules. A sentence of this type
either states that a relation holds between individuals (in case of a fact), or that a
relation holds between individuals provided that some other relations hold (in case of
a rule). For example, consider the sentences:

(i) “Tom is John’s child”

(ii) “Ann is Tom’s child”

(iii) “John is Mark’s child”

(iv) “Alice is John’s child”

(v) “The grandchild of a person is a child of a child of this person”

19



20 Chapter 2: Definite Logic Programs

These sentences may be formalized in two steps. First atomic formulas describing
facts are introduced:

child(tom, john) (1)
child(ann, tom) (2)
child(john,mark) (3)
child(alice, john) (4)

Applying this notation to the final sentence yields:

“For all X and Y , grandchild(X,Y ) if
there exists a Z such that child(X,Z) and child(Z, Y )” (5)

This can be further formalized using quantifiers and the logical connectives “⊃” and
“∧”, but to preserve the natural order of expression the implication is reversed and
written “←”:

∀X ∀Y (grandchild(X,Y )← ∃ Z (child(X,Z)∧ child(Z, Y ))) (6)

This formula can be transformed into the following equivalent forms using the equiv-
alences given in connection with Definition 1.15:

∀X ∀Y (grandchild(X,Y ) ∨ ¬ ∃ Z (child(X,Z) ∧ child(Z, Y )))
∀X ∀Y (grandchild(X,Y ) ∨ ∀ Z ¬ (child(X,Z) ∧ child(Z, Y )))
∀X ∀Y ∀Z (grandchild(X,Y ) ∨ ¬ (child(X,Z)∧ child(Z, Y )))
∀X ∀Y ∀Z (grandchild(X,Y )← (child(X,Z)∧ child(Z, Y )))

We now focus attention on the language of formulas exemplified by the example above.
It consists of formulas of the form:

A0 ← A1 ∧ · · · ∧An (where n ≥ 0)

or equivalently:

A0 ∨ ¬A1 ∨ · · · ∨ ¬An

where A0, . . . , An are atomic formulas and all variables occurring in a formula are
(implicitly) universally quantified over the whole formula. The formulas of this form
are called definite clauses. Facts are definite clauses where n = 0. (Facts are sometimes
called unit-clauses.) The atomic formula A0 is called the head of the clause whereas
A1 ∧ · · · ∧An is called its body.

The initial example shows that definite clauses use a restricted form of existential
quantification — the variables that occur only in body literals are existentially quan-
tified over the body (though formally this is equivalent to universal quantification on
the level of clauses).



2.2 Definite Programs and Goals 21

2.2 Definite Programs and Goals

The logic formulas derived above are special cases of a more general form, called clausal
form.

Definition 2.1 (Clause) A clause is a formula ∀(L1 ∨ · · · ∨ Ln) where each Li is an
atomic formula (a positive literal) or the negation of an atomic formula (a negative
literal).

As seen above, a definite clause is a clause that contains exactly one positive literal.
That is, a formula of the form:

∀(A0 ∨ ¬A1 ∨ · · · ∨ ¬An)

The notational convention is to write such a definite clause thus:

A0 ← A1, . . . , An (n ≥ 0)

If the body is empty (i.e. if n = 0) the implication arrow is usually omitted. Alter-
natively the empty body can be seen as a nullary connective which is true in every
interpretation. (Symmetrically there is also a nullary connective 2 which is false in
every interpretation.) The first kind of logic program to be discussed are programs
consisting of a finite number of definite clauses:

Definition 2.2 (Definite programs) A definite program is a finite set of definite
clauses.

To explain the use of logic formulas as programs, a general view of logic programming
is presented in Figure 2.1. The programmer attempts to describe the intended model
by means of declarative sentences (i.e. when writing a program he has in mind an
algebraic structure, usually infinite, whose relations are to interpret the predicate
symbols of the program). These sentences are definite clauses — facts and rules. The
program is a set of logic formulas and it may have many models, including the intended
model (Figure 2.1(a)). The concept of intended model makes it possible to discuss
correctness of logic programs — a program P is incorrect iff the intended model is not
a model of P . (Notice that in order to prove programs to be correct or to test programs
it is necessary to have an alternative description of the intended model, independent
of P .)

The program will be used by the computer to draw conclusions about the intended
model (Figure 2.1(b)). However, the only information available to the computer about
the intended model is the program itself. So the conclusions drawn must be true in any
model of the program to guarantee that they are true in the intended model (Figure
2.1(c)). In other words — the soundness of the system is a necessary condition. This
will be discussed in Chapter 3. Before that, attention will be focused on the practical
question of how a logic program is to be used.

The set of logical consequences of a program is infinite. Therefore the user is
expected to query the program selectively for various aspects of the intended model.
There is an analogy with relational databases — facts explicitly describe elements
of the relations while rules give intensional characterization of some other elements.



22 Chapter 2: Definite Logic Programs

model model

intended
model

P

(a)

P ` F

(b)

model model

intended
model

F

(c)

Figure 2.1: General view of logic programming



2.2 Definite Programs and Goals 23

Since the rules may be recursive, the relation described may be infinite in contrast
to the traditional relational databases. Another difference is the use of variables and
compound terms. This chapter considers only “queries” of the form:

∀(¬(A1 ∧ · · · ∧Am))

Such formulas are called definite goals and are usually written as:

← A1, . . . , Am

where Ai’s are atomic formulas called subgoals. The goal where m = 0 is denoted 21

and called the empty goal. The logical meaning of a goal can be explained by referring
to the equivalent universally quantified formula:

∀X1 · · · ∀Xn ¬(A1 ∧ · · · ∧Am)

where X1, . . . , Xn are all variables that occur in the goal. This is equivalent to:

¬ ∃X1 · · · ∃Xn (A1 ∧ · · · ∧Am)

This, in turn, can be seen as an existential question and the system attempts to deny
it by constructing a counter-example. That is, it attempts to find terms t1, . . . , tn such
that the formula obtained from A1 ∧ · · · ∧ Am when replacing the variable Xi by ti
(1 ≤ i ≤ n), is true in any model of the program, i.e. to construct a logical consequence
of the program which is an instance of a conjunction of all subgoals in the goal.

By giving a definite goal the user selects the set of conclusions to be constructed.
This set may be finite or infinite. The problem of how the machine constructs it will
be discussed in Chapter 3. The section is concluded with some examples of queries
and the answers obtained to the corresponding goals in a typical Prolog system.

Example 2.3 Referring to the family-example in Section 2.1 the user may ask the
following queries (with the corresponding goal):

Query Goal

“Is Ann a child of Tom?” ← child(ann, tom)
“Who is a grandchild of Ann?” ← grandchild(X, ann)
“Whose grandchild is Tom?” ← grandchild(tom,X)
“Who is a grandchild of whom?” ← grandchild(X,Y )

The following answers are obtained:

• Since there are no variables in the first goal the answer is simply “yes”;

• Since the program contains no information about grandchildren of Ann the an-
swer to the second goal is “no one” (although most Prolog implementations
would answer simply “no”;

1Of course, formally it is not correct to write ← A1, . . . , Am since “←” should have a formula
also on the left-hand side. The problem becomes even more evident when m = 0 because then the
right-hand side disappears as well. However, formally the problem can be viewed as follows — a
definite goal has the form ∀(¬(A1 ∧ · · · ∧Am)) which is equivalent to ∀(2∨¬(A1 ∧ · · · ∧Am ∧ )). A
nonempty goal can thus be viewed as the formula ∀(2 ← (A1 ∧ · · · ∧Am)). The empty goal can be
viewed as the formula 2← which is equivalent to 2.



24 Chapter 2: Definite Logic Programs

• Since Tom is the grandchild of Mark the answer is X = mark in reply to the
third goal;

• The final goal yields three answers:

X = tom Y = mark

X = alice Y = mark

X = ann Y = john

It is also possible to ask more complicated queries, for example “Is there a person
whose grandchildren are Tom and Alice?”, expressed formally as:

← grandchild(tom,X), grandchild(alice,X)

whose (expected) answer is X = mark.

2.3 The Least Herbrand Model

Definite programs can only express positive knowledge — both facts and rules say
which elements of a structure are in a relation, but they do not say when the relations
do not hold. Therefore, using the language of definite programs, it is not possible to
construct contradictory descriptions, i.e. unsatisfiable sets of formulas. In other words,
every definite program has a model. This section discusses this matter in more detail.
It shows also that every definite program has a well defined least model. Intuitively
this model reflects all information expressed by the program and nothing more.

We first focus attention on models of a special kind, called Herbrand models. The
idea is to abstract from the actual meanings of the functors (here, constants are treated
as 0-ary functors) of the language. More precisely, attention is restricted to the inter-
pretations where the domain is the set of variable-free terms and the meaning of every
ground term is the term itself. After all, it is a common practice in databases — the
constants tom and ann may represent persons but the database describes relations
between the persons by handling relations between the terms (symbols) no matter
whom they represent.

The formal definition of such domains follows and is illustrated by two simple
examples.

Definition 2.4 (Herbrand universe, Herbrand base) Let A be an alphabet
containing at least one constant symbol. The set UA of all ground terms constructed
from functors and constants in A is called the Herbrand universe of A. The set BA of
all ground, atomic formulas over A is called the Herbrand base of A.

The Herbrand universe and Herbrand base are often defined for a given program. In
this case it is assumed that the alphabet of the program consists of exactly those
symbols which appear in the program. It is also assumed that the program contains
at least one constant (since otherwise, the domain would be empty).

Example 2.5 Consider the following definite program P :



2.3 The Least Herbrand Model 25

odd(s(0)).
odd(s(s(X)))← odd(X).

The program contains one constant (0) and one unary functor (s). Consequently the
Herbrand universe looks as follows:

UP = {0, s(0), s(s(0)), s(s(s(0))), . . .}

Since the program contains only one (unary) predicate symbol (odd) it has the follow-
ing Herbrand base:

BP = {odd(0), odd(s(0)), odd(s(s(0))), . . .}

Example 2.6 Consider the following definite program P :

owns(owner(corvette), corvette).
happy(X)← owns(X, corvette).

In this case the Herbrand universe UP consists of the set:

{corvette, owner(corvette), owner(owner(corvette)), . . .}

and the Herbrand base BP of the set:

{owns(s, t) | s, t ∈ UP } ∪ {happy(s) | s ∈ UP }

Definition 2.7 (Herbrand interpretations) A Herbrand interpretation of P is an
interpretation = such that:

• the domain of = is UP ;

• for every constant c, c= is defined to be c itself;

• for every n-ary functor f the function f= is defined as follows

f=(x1, . . . , xn) := f(x1, . . . , xn)

That is, the function f= applied to n ground terms composes them into the
ground term with the principal functor f ;

• for every n-ary predicate symbol p the relation p= is a subset of UnP (the set of
all n-tuples of ground terms).

Thus Herbrand interpretations have predefined meanings of functors and constants
and in order to specify a Herbrand interpretation it suffices to list the relations as-
sociated with the predicate symbol. Hence, for an n-ary predicate symbol p and a
Herbrand interpretation = the meaning p= of p consists of the following set of n-
tuples: {〈t1, . . . , tn〉 ∈ UnP | = |= p(t1, . . . , tn)}.



26 Chapter 2: Definite Logic Programs

Example 2.8 One possible interpretation of the program P in Example 2.5 is odd= =
{〈s(0)〉, 〈s(s(s(0)))〉}. A Herbrand interpretation can be specified by giving a family
of such relations (one for every predicate symbol).

Since the domain of a Herbrand interpretation is the Herbrand universe the relations
are sets of tuples of ground terms. One can define all of them at once by specifying
a set of labelled tuples, where the labels are predicate symbols. In other words: A
Herbrand interpretation = can be seen as a subset of the Herbrand base (or a possibly
infinite relational database), namely {A ∈ BP | = |= A}.

Example 2.9 Consider some alternative Herbrand interpretations for P of Example
2.5.

=1 := ?

=2 := {odd(s(0))}
=3 := {odd(s(0)), odd(s(s(0)))}
=4 := {odd(sn(0)) | n ∈ {1, 3, 5, 7, . . .}}

= {odd(s(0)), odd(s(s(s(0)))), . . .}
=5 := BP

Definition 2.10 (Herbrand model) A Herbrand model of a set of (closed) formulas
is a Herbrand interpretation which is a model of every formula in the set.

It turns out that Herbrand interpretations and Herbrand models have two attractive
properties. The first is pragmatic: In order to determine if a Herbrand interpretation
= is a model of a universally quantified formula ∀F it suffices to check if all ground
instances of F are true in =. For instance, to check if A0 ← A1, . . . , An is true in = it
suffices to show that if (A0 ← A1, . . . , An)θ is a ground instance of A0 ← A1, . . . , An
and A1θ, . . . , Anθ ∈ = then A0θ ∈ =.

Example 2.11 Clearly =1 cannot be a model of P in Example 2.5 as it is not a
Herbrand model of odd(s(0)). However, =2,=3,=4,=5 are all models of odd(s(0))
since odd(s(0)) ∈ =i, (2 ≤ i ≤ 5).

Now, =2 is not a model of odd(s(s(X)))← odd(X) since there is a ground instance
of the rule — namely odd(s(s(s(0)))) ← odd(s(0)) — such that all premises are true:
odd(s(0)) ∈ =2, but the conclusion is false: odd(s(s(s(0)))) 6∈ =2. By a similar
reasoning it follows that =3 is not a model of the rule.

However, =4 is a model also of the rule; let odd(s(s(t)))← odd(t) be any ground
instance of the rule where t ∈ UP . Clearly, odd(s(s(t))) ← odd(t) is true if odd(t) 6∈ =4

(check with Definition 1.6). Furthermore, if odd(t) ∈ =4 then it must also hold that
odd(s(s(t))) ∈ =4 (cf. the the definition of =4 above) and hence odd(s(s(t))) ← odd(t)
is true in =4. Similar reasoning proves that =5 is also a model of the program.

The second reason for focusing on Herbrand interpretations is more theoretical. For
the restricted language of definite programs, it turns out that in order to determine
whether an atomic formula A is a logical consequence of a definite program P it suffices
to check that every Herbrand model of P is also a Herbrand model of A.



2.3 The Least Herbrand Model 27

Theorem 2.12 Let P be a definite program and G a definite goal. If =′ is a model
of P ∪ {G} then = := {A ∈ BP | =′ |= A} is a Herbrand model of P ∪ {G}.

Proof : Clearly, = is a Herbrand interpretation. Now assume that =′ is a model and
that = is not a model of P ∪ {G}. In other words, there exists a ground instance of a
clause or a goal in P ∪ {G}:

A0 ← A1, . . . , Am (m ≥ 0)

which is not true in = (A0 = 2 in case of a goal).
Since this clause is false in = then A1, . . . , Am are all true and A0 is false in =.

Hence, by the definition of = we conclude that A1, . . . , Am are true and A0 is false
in =′. This contradicts the assumption that =′ is a model. Hence = is a model of
P ∪ {G}.

Notice that the form of P in Theorem 2.12 is restricted to definite programs. In the
general case, nonexistence of a Herbrand model of a set of formulas P does not mean
that P is unsatisfiable. That is, there are sets of formulas P which do not have a
Herbrand model but which have other models.2

Example 2.13 Consider the formulas {¬p(a),∃Xp(X)} where UP := {a} and BP :=
{p(a)}. Clearly, there are only two Herbrand interpretations — the empty set and BP
itself. The former is not a model of the second formula. The latter is a model of the
second formula but not of the first.

However, it is not very hard to find a model of the formulas — let the domain be
the natural numbers, assign 0 to the constant a and the relation {〈1〉, 〈3〉, 〈5〉, . . .} to
the predicate symbol p (i.e. let p denote the “odd”-relation). Clearly this is a model
since “0 is not odd” and “there exists a natural number which is odd, e.g. 1”.

Notice that the Herbrand base of a definite program P always is a Herbrand model
of the program. To check that this is so, simply take an arbitrary ground instance
of any clause A0 ← A1, . . . , Am in P . Clearly, all A0, . . . , Am are in the Herbrand
base. Hence the formula is true. However, this model is rather uninteresting —
every n-ary predicate of the program is interpreted as the full n-ary relation over the
domain of ground terms. More important is of course the question — what are the
interesting models of the program? Intuitively there is no reason to expect that the
model includes more ground atoms than those which follow from the program. By the
analogy to databases — if John is not in the telephone directory he probably has no
telephone. However, the directory gives only positive facts and if John has a telephone
it is not a contradiction to what is said in the directory.

The rest of this section is organized as follows. First it is shown that there exists a
unique minimal model called the least Herbrand model of a definite program. Then it is
shown that this model really contains all positive information present in the program.

The Herbrand models of a definite program are subsets of its Herbrand base. Thus
the set-inclusion is a natural ordering of such models. In order to show the existence
of least models with respect to set-inclusion it suffices to show that the intersection of
all Herbrand models is also a (Herbrand) model.

2More generally the result of Theorem 2.12 would hold for any set of clauses.



28 Chapter 2: Definite Logic Programs

Theorem 2.14 (Model intersection property) Let M be a non-empty family
of Herbrand models of a definite program P . Then the intersection = :=

⋂
M is a

Herbrand model of P .

Proof : Assume that = is not a model of P . Then there exists a ground instance of a
clause of P :

A0 ← A1, . . . , Am (m ≥ 0)

which is not true in =. This implies that = contains A1, . . . , Am but not A0. Then
A1, . . . , Am are elements of every interpretation of the family M . Moreover there must
be at least one model =i ∈M such that A0 6∈ =i. Thus A0 ← A1, . . . , Am is not true
in this =i. Hence =i is not a model of the program, which contradicts the assumption.
This concludes the proof that the intersection of any set of Herbrand models of a
program is also a Herbrand model.

Thus by taking the intersection of all Herbrand models (it is known that every definite
program P has at least one Herbrand model — namely BP ) the least Herbrand model
of the definite program is obtained.

Example 2.15 Let P be the definite program {male(adam), female(eve)} with ob-
vious intended interpretation. P has the following four Herbrand models:

{male(adam), female(eve)}
{male(adam),male(eve), female(eve)}
{male(adam), female(eve), female(adam)}

{male(adam),male(eve), female(eve), female(adam)}

It is not very hard to see that any intersection of these yields a Herbrand model.
However, all but the first model contain atoms incompatible with the intended one.
Notice also that the intersection of all four models yields a model which corresponds
to the intended model.

This example indicates a connection between the least Herbrand model and the in-
tended model of a definite program. The intended model is an abstraction of the world
to be described by the program. The world may be richer than the least Herbrand
model. For instance, there may be more female individuals than just Eve. However,
the information not included explicitly (via facts) or implicitly (via rules) in the pro-
gram cannot be obtained as an answer to a goal. The answers correspond to logical
consequences of the program. Ideally, a ground atomic formula p(t1, . . . , tn) is a log-
ical consequence of the program iff, in the intended interpretation =, ti denotes the
individual xi and 〈x1, . . . , xn〉 ∈ p=. The set of all such ground atoms can be seen as
a “coded” version of the intended model. The following theorem relates this set to the
least Herbrand model.

Theorem 2.16 The least Herbrand model MP of a definite program P is the set of
all ground atomic logical consequences of the program. That is, MP = {A ∈ BP |
P |= A}.



2.4 Construction of Least Herbrand Models 29

Proof : Show first MP ⊇ {A ∈ BP | P |= A}: It is easy to see that every ground atom
A which is a logical consequence of P is an element of MP . Indeed, by the definition
of logical consequence A must be true in MP . On the other hand, the definition of
Herbrand interpretation states that A is true in MP iff A is an element of MP .

Then show that MP ⊆ {A ∈ BP | P |= A}: Assume that A is in MP . Hence it is
true in every Herbrand model of P . Assume that it is not true in some non-Herbrand
model =′ of P . But we know (see Theorem 2.12) that the set = of all ground atomic
formulas which are true in =′ is a Herbrand model of P . Hence A cannot be an element
of =. This contradicts the assumption that there exists a model of P where A is false.
Hence A is true in every model of P , that is P |= A, which concludes the proof.

The model intersection property expressed by Theorem 2.14 does not hold for arbitrary
formulas as illustrated by the following example.

Example 2.17 Consider the formula p(a)∨ q(b). Clearly, both {p(a)} and {q(b)} are
Herbrand models of the formula. However, the intersection {p(a)} ∩ {q(b)} = ? is
not a model. The two models are examples of minimal models — that is, one cannot
remove any element from the model and still have a model. However, there is no least
model — that is, a unique minimal model.

2.4 Construction of Least Herbrand Models

The question arises how the least Herbrand model can be constructed, or approximated
by successive enumeration of its elements. The answer to this question is given by a
fixed point approach to the semantics of definite programs. (A fixpoint of a function
f : D → D is an element x ∈ D such that f(x) = x.) This section gives only a sketch
of the construction. The discussion of the relevant theory is outside of the scope of
this book. However, the intuition behind the construction is the following:

A definite program consists of facts and rules. Clearly, all ground instances of the
facts must be included in every Herbrand model. If a Herbrand interpretation = does
not include a ground instance of a fact A of the program then A is not true in = and
= is not a model.

Next, consider a rule A0 ← A1, . . . , Am where (m > 0). This rule states that
whenever A1, . . . , Am are true then so is A0. In other words, take any ground instance
(A0 ← A1, . . . , Am)θ of the rule. If = includes A1θ, . . . , Amθ it must also include A0θ
in order to be a model.

Consider the set =1 of all ground instances of facts in the program. It is now
possible to use every instance of each rule to augment =1 with new elements which
necessarily must belong to every model. In that way a new set =2 is obtained which
can be used again to generate more elements which must belong to the model. This
process is repeated as long as new elements are generated. The new elements added
to =i+1 are those which must follow immediately from =i.

The construction outlined above can be formally defined as an iteration of a trans-
formation TP on Herbrand interpretations of the program P . The operation is called
the immediate consequence operator and is defined as follows:

Definition 2.18 (Immediate consequence operator) Let ground(P ) be the set
of all ground instances of clauses in P . TP is a function on Herbrand interpretations



30 Chapter 2: Definite Logic Programs

of P defined as follows:

TP (I) := {A0 | A0 ← A1, . . . , Am ∈ ground(P ) ∧ {A1, . . . , Am} ⊆ I}

For definite programs it can be shown that there exists a least interpretation = such
that TP (=) = = and that = is identical with the least Herbrand model MP . Moreover,
MP is the limit of the increasing, possibly infinite sequence of iterations:

?, TP (?), TP (TP (?)), TP (TP (TP (?))), . . .

There is a standard notation used to denote elements of the sequence of interpretations
constructed for P . Namely:

TP ↑ 0 := ?

TP ↑ (i+ 1) := TP (TP ↑ i)

TP ↑ ω :=
∞⋃
i=0

TP ↑ i

The following example illustrates the construction:

Example 2.19 Consider again the program of Example 2.5.

TP ↑ 0 = ?

TP ↑ 1 = {odd(s(0))}
TP ↑ 2 = {odd(s(s(s(0)))), odd(s(0))}

...
TP ↑ ω = {odd(sn(0)) | n ∈ {1, 3, 5, . . .}}

As already mentioned above it has been established that the set constructed in this
way is identical to the least Herbrand model.

Theorem 2.20 Let P be a definite program and MP its least Herbrand model. Then:

• MP is the least Herbrand interpretation such that TP (MP ) = MP (i.e. it is the
least fixpoint of TP ).

• MP = TP ↑ ω.

For additional details and proofs see for example Apt (1990), Lloyd (1987) or van Em-
den and Kowalski (1976).



Exercises 31

Exercises

2.1 Rewrite the following formulas in the form A0 ← A1, . . . , Am:

∀X(p(X) ∨ ¬q(X))
∀X(p(X) ∨ ¬∃ Y (q(X,Y ) ∧ r(X)))
∀X(¬p(X) ∨ (q(X) ⊃ r(X)))
∀X(r(X) ⊃ (q(X) ⊃ p(X)))

2.2 Formalize the following scenario as a definite program:

Basil owns Fawlty Towers. Basil and Sybil are married. Polly and
Manuel are employees at Fawlty Towers. Smith and Jones are guests
at Fawlty Towers. All hotel-owners and their spouses serve all guests
at the hotel. All employees at a hotel serve all guests at the hotel. All
employees dislike the owner of the workplace. Basil dislikes Manuel.

Then ask the queries “Who serves who?” and “Who dislikes who?”.

2.3 Give the Herbrand universe and Herbrand base of the following definite pro-
gram:

p(f(X))← q(X, g(X)).
q(a, g(b)).
q(b, g(b)).

2.4 Give the Herbrand universe and Herbrand base of the following definite pro-
gram:

p(s(X), Y, s(Z))← p(X,Y, Z).
p(0, X,X).

2.5 Consider the Herbrand universe consisting of the constants a, b, c and d. Let
= be the Herbrand interpretation:

{p(a), p(b), q(a), q(b), q(c), q(d)}

Which of the following formulas are true in =?

(1) ∀Xp(X)
(2) ∀Xq(X)
(3) ∃X(q(X) ∧ p(X))
(4) ∀X(q(X) ⊃ p(X))
(5) ∀X(p(X) ⊃ q(X))

2.6 Give the least Herbrand model of the program in exercise 2.3.

2.7 Give the least Herbrand model of the program in exercise 2.4. Hint : the model
is infinite, but a certain pattern can be spotted when using the TP -operator.



32 Chapter 2: Definite Logic Programs

2.8 Consider the following program:

p(0).
p(s(X))← p(X).

Show that p(sn(0)) ∈ TP ↑ m iff n < m.

2.9 Let P be a definite program and = a Herbrand interpretation. Show that =
is a model of P iff TP (=) ⊆ =.


