
Chapter 1

Preliminaries

1.1 Logic Formulas

When describing some state of affairs in the real world we often use declarative1 sen-
tences like:

(i) “Every mother loves her children”

(ii) “Mary is a mother and Tom is Mary’s child”

By applying some general rules of reasoning such descriptions can be used to draw
new conclusions. For example, knowing (i) and (ii) it is possible to conclude that:

(iii) “Mary loves Tom”

A closer inspection reveals that (i) and (ii) describe some universe of persons and
some relations between these individuals — like “. . . is a mother”, “. . . is a child
of . . . ” or the relation “. . . loves . . . ” — which may or may not hold between the
persons.2 This example reflects the principal idea of logic programming — to describe
possibly infinite relations on objects and to apply the programming system in order
to draw conclusions like (iii).

For a computer to deal with sentences like (i)–(iii) the syntax of the sentences must be
precisely defined. What is even more important, the rules of reasoning — like the one

1The notion of declarative sentence has its roots in linguistics. A declarative sentence is a com-
plete expression of natural language which is either true or false, as opposed to e.g. imperative or
interrogative sentences (commands and questions). Only declarative sentences can be expressed in
predicate logic.

2Some people would probably argue that “being a mother” is not a relation but rather a property.
However, for the sake of uniformity properties will be called relations and so will statements which
relate more than two objects (like “. . . is the sum of . . . and . . . ”).

3

4 Chapter 1: Preliminaries

which permits inferring (iii) from (i) and (ii) — must be carefully formalized. Such
problems have been studied in the field of mathematical logic. This chapter surveys
basic logical concepts that are used later on in the book to relate logic programming
and logic. (For basic set theoretic notions see Appendix B.)

The first concept considered is that of logic formulas which provide a formalized syn-
tax for writing sentences like (i)–(iii). Such sentences refer to individuals in some
world and to relations between those individuals. Therefore the starting point is an
assumption about the alphabet of the language. It must include:

• symbols for denoting individuals (e.g. the symbol tom may be used to denote
the person Tom of our example). Such symbols will be called constants;

• symbols for denoting relations (loves , mother , child of). Such symbols are called
predicate symbols.

Every predicate symbol has an associated natural number, called its arity. The relation
named by an n-ary predicate symbol is a set of n-tuples of individuals; in the example
above the predicate symbol loves denotes a set of pairs of persons, including the pair
Mary and Tom, denoted by the constants mary and tom.

With the alphabet of constants, predicate symbols and some auxiliary characters,
sentences of natural language like “Mary loves Tom” can be formalized as formulas
like loves(mary , tom).

The formal language should also provide the possibility of expressing sentences like
(i) which refers to all elements of the described “world”. This sentence says that “for
all individuals X and Y, if X is a mother and Y is a child of X then X loves Y”. For
this purpose, the language of logic introduces the symbol of universal quantifier “∀ ”
(to be read “for every” or “for all”) and the alphabet of variables. A variable is a
symbol that refers to an unspecified individual, like X and Y above. Now the sentences
(i)–(iii) can be formalized accordingly:

∀X (∀Y ((mother (X) ∧ child of (Y,X)) ⊃ loves(X,Y))) (1)
mother(mary) ∧ child of (tom,mary) (2)
loves(mary , tom) (3)

The symbols “∧” and “⊃” are examples of logical connectives which are used to com-
bine logic formulas — “∧” reads “and” and is called conjunction whereas “⊃” is called
implication and corresponds to the “if-then” construction above. Parentheses are used
to disambiguate the language.

Another connective which will be used frequently is that for expressing negation.
It is denoted by “¬” (with reading “not”). For example the sentence “Tom does not
love Mary” can be formalized as the formula:

¬loves(tom,mary)

In what follows the symbol “∃” is also sometimes used. It is called the existential quan-
tifier and reads “there exists”. The existential quantifier makes it possible to express
the fact that, in the world under consideration, there exists at least one individual

1.1 Logic Formulas 5

which is in a certain relation with some other individuals. For example the sentence
“Mary has a child” can be formalized as the formula:

∃X child of (X,mary)

On occasion the logical connectives “∨” and “↔” are used. They formalize the con-
nectives “or” and “if and only if” (“iff”).

So far individuals have been represented only by constants. However it is often
the case that in the world under consideration, some “individuals” are “composed
objects”. For instance, in some world it may be necessary to discuss relations between
families as well as relations between persons. In this case it would be desirable to
refer to a given family by a construction composed of the constants identifying the
members of the family (actually what is needed is a function that constructs a family
from its members). The language of logic offers means of solving this problem. It is
assumed that its alphabet contains symbols called functors that represent functions
over object domains. Every functor has assigned a natural number called its arity,
which determines the number of arguments of the function. The constants can be
seen as 0-ary functors. Assume now that there is a ternary3 functor family , a binary
functor child and a constant none. The family consisting of the parents Bill and Mary
and children Tom and Alice can now be represented by the construction:

family(bill ,mary , child(tom, child(alice ,none)))

Such a construction is called a compound term.

The above informal discussion based on examples of simple declarative sentences gives
motivation for introducing basic constructs of the language of symbolic logic. The kind
of logic used here is called predicate logic. Next a formal definition of this language
is given. For the moment we specify only the form of allowed sentences, while the
meaning of the language will be discussed separately. Thus the definition covers only
the syntax of the language separated from its semantics.

From the syntactic point of view logic formulas are finite sequences of symbols such
as variables, functors and predicate symbols. There are infinitely many of them and
therefore the symbols are usually represented by finite strings of primitive characters.
The representation employed in this book usually conforms to that specified in the
ISO standard of the programming language Prolog (1995). Thus, the alphabet of the
language of predicate logic consists of the following classes of symbols:

• variables which will be written as alphanumeric identifiers beginning with capital
letters (sometimes subscriped). Examples of variables are X,Xs, Y,X7, . . .;

• constants which are numerals or alphanumeric identifiers beginning with lower-
case letters. Examples of constants are x, alf , none, 17, . . .;

• functors which are alphanumeric identifiers beginning with lower-case letters
and with an associated arity > 0. To emphasize the arity n of a functor f it is
sometimes written in the form f/n;

3Usually the terms nullary, unary, binary and ternary are used instead of 0-ary, 1-ary, 2-ary and
3-ary.

6 Chapter 1: Preliminaries

• predicate symbols which are usually alphanumeric identifiers starting with lower-
case letters and with an associated arity ≥ 0. The notation p/n is used also for
predicate symbols;

• logical connectives which are ∧ (conjunction), ¬ (negation), ↔ (logical equiva-
lence), ⊃ (implication) and ∨ (disjunction);

• quantifiers — ∀ (universal) and ∃ (existential);

• auxiliary symbols like parentheses and commas.

No syntactic distinction will be imposed between constants, functors and predicate
symbols. However, as a notational convention we use a, b, c, . . . (with or without
adornments) to denote constants and X,Y, Z, . . . to denote variables. Functors are
denoted f, g, h, . . . and p, q, r, . . . are used to denote predicate symbols. Constants
are sometimes viewed as nullary functors. Notice also that the sets of functors and
predicate symbols may contain identical identifiers with different arities.

Sentences of natural language consist of words where objects of the described world
are represented by nouns. In the formalized language of predicate logic objects will
be represented by strings called terms whose syntax is defined as follows:

Definition 1.1 (Terms) The set T of terms over a given alphabet A is the smallest
set such that:

• any constant in A is in T ;

• any variable in A is in T ;

• if f/n is a functor in A and t1, . . . , tn ∈ T then f(t1, . . . , tn) ∈ T .

In this book terms are typically denoted by s and t.
In natural language only certain combinations of words are meaningful sentences.

The counterpart of sentences in predicate logic are special constructs built from terms.
These are called formulas or well-formed formulas (wff) and their syntax is defined as
follows:

Definition 1.2 (Formulas) Let T be the set of terms over the alphabet A. The set
F of wff (with respect to A) is the smallest set such that:

• if p/n is a predicate symbol in A and t1, . . . , tn ∈ T then p(t1, . . . , tn) ∈ F ;

• if F and G ∈ F then so are (¬F), (F ∧G), (F ∨G), (F ⊃ G) and (F ↔ G);

• if F ∈ F and X is a variable in A then (∀XF) and (∃XF) ∈ F .

Formulas of the form p(t1, . . . , tn) are called atomic formulas (or simply atoms).
In order to adopt a syntax similar to that of Prolog, formulas in the form (F ⊃ G)

are instead written in the form (G← F). To simplify the notation parentheses will be
removed whenever possible. To avoid ambiguity it will be assumed that the connectives

1.2 Semantics of Formulas 7

have a binding-order where ¬, ∀ and ∃ bind stronger than ∨, which in turn binds
stronger than ∧ followed by ⊃ (i.e. ←) and finally ↔. Thus (a ← ((¬b) ∧ c)) will
be simplified into a ← ¬b ∧ c. Sometimes binary functors and predicate symbols are
written in infix notation (e.g. 2 ≤ 3).

Let F be a formula. An occurrence of the variable X in F is said to be bound
either if the occurrence follows directly after a quantifier or if it appears inside the
subformula which follows directly after “∀X” or “∃X”. Otherwise the occurrence is
said to be free. A formula with no free occurrences of variables is said to be closed. A
formula/term which contains no variables is called ground.

Let X1, . . . , Xn be all variables that occur free in a formula F . The closed formula
of the form ∀X1(. . . (∀Xn F) . . .) is called the universal closure of F and is denoted
∀ F . Similarly, ∃ F is called the existential closure of F and denotes the formula F
closed under existential quantification.

1.2 Semantics of Formulas

The previous section introduced the language of formulas as a formalization of a class
of declarative statements of natural language. Such sentences refer to some “world”
and may be true or false in this world. The meaning of a logic formula is also defined
relative to an “abstract world” called an (algebraic) structure and is also either true or
false. In other words, to define the meaning of formulas, a formal connection between
the language and a structure must be established. This section discusses the notions
underlying this idea.

As stated above declarative statements refer to individuals, and concern relations
and functions on individuals. Thus the mathematical abstraction of the “world”, called
a structure, is a nonempty set of individuals (called the domain) with a number of
relations and functions defined on this domain. For example the structure referred
to by the sentences (i)–(iii) may be an abstraction of the world shown in Figure 1.1.
Its domain consists of three individuals — Mary, John and Tom. Moreover, three
relations will be considered on this set: a unary relation, “. . . is a mother”, and two
binary relations, “. . . is a child of . . . ” and “. . . loves . . . ”. For the sake of simplicity
it is assumed that there are no functions in the structure.

The building blocks of the language of formulas are constants, functors and pred-
icate symbols. The link between the language and the structure is established as
follows:

Definition 1.3 (Interpretation) An interpretation = of an alphabet A is a non-
empty domain D (sometimes denoted |=|) and a mapping that associates:

• each constant c ∈ A with an element c= ∈ D;

• each n-ary functor f ∈ A with a function f=:Dn → D;

• each n-ary predicate symbol p ∈ A with a relation p= ⊆ D × · · · × D︸ ︷︷ ︸
n

.

The interpretation of constants, functors and predicate symbols provides a basis for
assigning truth values to formulas of the language. The meaning of a formula will be

8 Chapter 1: Preliminaries

Mary Tom John

Figure 1.1: A family structure

defined as a function on meanings of its components. First the meaning of terms will
be defined since they are components of formulas. Since terms may contain variables
the auxiliary notion of valuation is needed. A valuation ϕ is a mapping from variables
of the alphabet to the domain of an interpretation. Thus, it is a function which assigns
objects of an interpretation to variables of the language. By the notation ϕ[X 7→ t]
we denote the valuation which is identical to ϕ except that ϕ[X 7→ t] maps X to t.

Definition 1.4 (Semantics of terms) Let = be an interpretation, ϕ a valuation
and t a term. Then the meaning ϕ=(t) of t is an element in |=| defined as follows:

• if t is a constant c then ϕ=(t) := c=;

• if t is a variable X then ϕ=(t) := ϕ(X);

• if t is of the form f(t1, . . . , tn), then ϕ=(t) := f=(ϕ=(t1), . . . , ϕ=(tn)).

Notice that the meaning of a compound term is obtained by applying the function
denoted by its main functor to the meanings of its principal subterms, which are
obtained by recursive application of this definition.

Example 1.5 Consider a language which includes the constant zero, the unary func-
tor s and the binary functor plus. Assume that the domain of = is the set of the
natural numbers (N) and that:

zero= := 0

1.2 Semantics of Formulas 9

s=(x) := 1 + x

plus=(x, y) := x+ y

That is, zero denotes the natural number 0, s denotes the successor function and plus
denotes the addition function. For the interpretation = and a valuation ϕ such that
ϕ(X) := 0 the meaning of the term plus(s(zero), X) is obtained as follows:

ϕ=(plus(s(zero), X)) = ϕ=(s(zero)) + ϕ=(X)
= (1 + ϕ=(zero)) + ϕ(X)
= (1 + 0) + 0
= 1

The meaning of a formula is a truth value. The meaning depends on the components of
the formula which are either (sub-) formulas or terms. As a consequence the meanings
of formulas also rely on valuations. In the following definition the notation = |=ϕ Q
is used as a shorthand for the statement “Q is true with respect to = and ϕ” and
= 6|=ϕ Q is to be read “Q is false w.r.t. = and ϕ”.

Definition 1.6 (Semantics of wff’s) Let = be an interpretation, ϕ a valuation and
Q a formula. The meaning of Q w.r.t. = and ϕ is defined as follows:

• = |=ϕ p(t1, . . . , tn) iff 〈ϕ=(t1), . . . , ϕ=(tn)〉 ∈ p=;

• = |=ϕ (¬F) iff = 6|=ϕ F ;

• = |=ϕ (F ∧G) iff = |=ϕ F and = |=ϕ G;

• = |=ϕ (F ∨G) iff = |=ϕ F or = |=ϕ G (or both);

• = |=ϕ (F ⊃ G) iff = |=ϕ G whenever = |=ϕ F ;

• = |=ϕ (F ↔ G) iff = |=ϕ (F ⊃ G) and = |=ϕ (G ⊃ F);

• = |=ϕ (∀XF) iff = |=ϕ[X 7→t] F for every t ∈ |=|;

• = |=ϕ (∃XF) iff = |=ϕ[X 7→t] F for some t ∈ |=|.

The semantics of formulas as defined above relies on the auxiliary concept of valuation
that associates variables of the formula with elements of the domain of the interpre-
tation. It is easy to see that the truth value of a closed formula depends only on
the interpretation. It is therefore common practice in logic programming to consider
all formulas as being implicitly universally quantified. That is, whenever there are
free occurrences of variables in a formula its universal closure is considered instead.
Since the valuation is of no importance for closed formulas it will be omitted when
considering the meaning of such formulas.

10 Chapter 1: Preliminaries

Example 1.7 Consider Example 1.5 again. Assume that the language contains also
a unary predicate symbol p and that:

p= := {〈1〉, 〈3〉, 〈5〉, 〈7〉, . . .}

Then the meaning of the formula p(zero) ∧ p(s(zero)) in the interpretation = is de-
termined as follows:

= |= p(zero) ∧ p(s(zero)) iff = |= p(zero) and = |= p(s(zero))
iff 〈ϕ=(zero)〉 ∈ p= and 〈ϕ=(s(zero))〉 ∈ p=
iff 〈ϕ=(zero)〉 ∈ p= and 〈1 + ϕ=(zero)〉 ∈ p=
iff 〈0〉 ∈ p= and 〈1〉 ∈ p=

Now 〈1〉 ∈ p= but 〈0〉 6∈ p= so the whole formula is false in =.

Example 1.8 Consider the interpretation = that assigns:

• the persons Tom, John and Mary of the structure in Figure 1.1 to the constants
tom, john and mary;

• the relations “. . . is a mother”, “. . . is a child of . . . ” and “. . . loves . . . ” of
the structure in Figure 1.1 to the predicate symbols mother/1, child of /2 and
loves/2.

Using the definition above it is easy to show that the meaning of the formula:

∀X ∃Y loves(X,Y)

is false in = (since Tom does not love anyone), while the meaning of formula:

∃X ∀Y ¬loves(Y,X)

is true in = (since Mary is not loved by anyone).

1.3 Models and Logical Consequence

The motivation for introducing the language of formulas was to give a tool for describ-
ing “worlds” — that is, algebraic structures. Given a set of closed formulas P and an
interpretation = it is natural to ask whether the formulas of P give a proper account
of this world. This is the case if all formulas of P are true in =.

Definition 1.9 (Model) An interpretation = is said to be a model of P iff every
formula of P is true in =.

Clearly P has infinitely many interpretations. However, it may happen that none of
them is a model of P . A trivial example is any P that includes the formula (F ∧¬F)
where F is an arbitrary (closed) formula. Such sets of formulas are called unsatisfiable.
When using formulas for describing “worlds” it is necessary to make sure that every
description produced is satisfiable (that is, has at least one model), and in particular
that the world being described is a model of P .

Generally, a satisfiable set of formulas has (infinitely) many models. This means
that the formulas which properly describe a particular “world” of interest at the same
time describe many other worlds.

1.3 Models and Logical Consequence 11

C

B

A

Figure 1.2: An alternative structure

Example 1.10 Figure 1.2 shows another structure which can be used as a model
of the formulas (1) and (2) of Section 1.1 which were originally used to describe the
world of Figure 1.1. In order for the structure to be a model the constants tom, john
and mary are interpreted as the boxes ‘A’, ‘B’ and ‘C’ respectively — the predicate
symbols loves , child of and mother are interpreted as the relations “. . . is above . . . ”,
“. . . is below . . . ” and “. . . is on top”.

Our intention is to use the description of the world of interest to obtain more infor-
mation about this world. This new information is to be represented by new formulas
not explicitly included in the original description. An example is the formula (3) of
Section 1.1 which is obtained from (1) and (2). In other words, for a given set P of
formulas other formulas (say F) which are also true in the world described by P are
searched for. Unfortunately, P itself has many models and does not uniquely identify
the “intended model” which was described by P . Therefore it must be required that
F is true in every model of P to guarantee that it is also true in the particular world
of interest. This leads to the fundamental concept of logical consequence.

Definition 1.11 (Logical consequence) Let P be a set of closed formulas. A closed
formula F is called a logical consequence of P (denoted P |= F) iff F is true in every
model of P .

Example 1.12 To illustrate this notion by an example it is shown that (3) is a logical
consequence of (1) and (2). Let = be an arbitrary interpretation. If = is a model of
(1) and (2) then:

= |= ∀X(∀Y ((mother (X) ∧ child of (Y,X)) ⊃ loves(X,Y))) (4)
= |= mother (mary) ∧ child of (tom,mary) (5)

For (4) to be true it is necessary that:

= |=ϕ mother(X) ∧ child of (Y,X) ⊃ loves(X,Y) (6)

for any valuation ϕ — specifically for ϕ(X) = mary= and ϕ(Y) = tom=. However,
since these individuals are denoted by the constants mary and tom it must also hold
that:

= |= mother (mary) ∧ child of (tom,mary) ⊃ loves(mary, tom) (7)

Finally, for this to hold it follows that loves(mary, tom) must be true in = (by Defi-
nition 1.6 and since (5) holds by assumption). Hence, any model of (1) and (2) is also
a model of (3).

12 Chapter 1: Preliminaries

This example shows that it may be rather difficult to prove that a formula is a logical
consequence of a set of formulas. The reason is that one has to use the semantics of
the language of formulas and to deal with all models of the formulas.

One possible way to prove P |= F is to show that ¬F is false in every model of P ,
or put alternatively, that the set of formulas P ∪{¬F} is unsatisfiable (has no model).
The proof of the following proposition is left as an exercise.

Proposition 1.13 (Unsatisfiability) Let P be a set of closed formulas and F a
closed formula. Then P |= F iff P ∪ {¬F} is unsatisfiable.

It is often straightforward to show that a formula F is not a logical consequence of the
set P of formulas. For this, it suffices to give a model of P which is not a model of F .

Example 1.14 Let P be the formulas:

∀X(r(X) ⊃ (p(X) ∨ q(X))) (8)
r(a) ∧ r(b) (9)

To prove that p(a) is not a logical consequence of P it suffices to consider an inter-
pretation = where |=| is the set consisting of the two persons “Adam” and “Eve” and
where:

a= := Adam
b= := Eve
p= := {〈Eve〉} % the property of being female
q= := {〈Adam〉} % the property of being male
r= := {〈Adam〉, 〈Eve〉} % the property of being a person

Clearly, (8) is true in = since “any person is either female or male”. Similarly (9) is
true since “both Adam and Eve are persons”. However, p(a) is false in = since Adam
is not a female.

Another important concept based on the semantics of formulas is the notion of logical
equivalence.

Definition 1.15 (Logical equivalence) Two formulas F and G are said to be log-
ically equivalent (denoted F ≡ G) iff F and G have the same truth value for all
interpretations = and valuations ϕ.

Next a number of well-known facts concerning equivalences of formulas are given. Let
F and G be arbitrary formulas and H(X) a formula with zero or more free occurrences
of X . Then:

¬¬F ≡ F
F ⊃ G ≡ ¬F ∨G
F ⊃ G ≡ ¬G ⊃ ¬F
F ↔ G ≡ (F ⊃ G) ∧ (G ⊃ F)

¬(F ∨G) ≡ ¬F ∧ ¬G DeMorgan’s law
¬(F ∧G) ≡ ¬F ∨ ¬G DeMorgan’s law
¬∀XH(X) ≡ ∃X¬H(X) DeMorgan’s law
¬∃XH(X) ≡ ∀X¬H(X) DeMorgan’s law

1.4 Logical Inference 13

and if there are no free occurrences of X in F then:

∀X(F ∨H(X)) ≡ F ∨ ∀XH(X)

Proofs of these equivalences are left as an exercise to the reader.

1.4 Logical Inference

In Section 1.1 the sentence (iii) was obtained by reasoning about the sentences (i)
and (ii). The language was then formalized and the sentences were expressed as the
logical formulas (1), (2) and (3). With this formalization, reasoning can be seen as a
process of manipulation of formulas, which from a given set of formulas, like (1) and
(2), called the premises, produces a new formula called the conclusion, for instance
(3). One of the objectives of the symbolic logic is to formalize “reasoning principles”
as formal re-write rules that can be used to generate new formulas from given ones.
These rules are called inference rules. It is required that the inference rules correspond
to correct ways of reasoning — whenever the premises are true in any world under
consideration, any conclusion obtained by application of an inference rule should also
be true in this world. In other words it is required that the inference rules produce
only logical consequences of the premises to which they can be applied. An inference
rule satisfying this requirement is said to be sound.

Among well-known inference rules of predicate logic the following are frequently
used:

• Modus ponens or elimination rule for implication: This rule says that whenever
formulas of the form F and (F ⊃ G) belong to or are concluded from a set of
premises, G can be inferred. This rule is often presented as follows:

F F ⊃ G
G

(⊃ E)

• Elimination rule for universal quantifier: This rule says that whenever a formula
of the form (∀XF) belongs to or is concluded from the premises a new formula
can be concluded by replacing all free occurrences of X in F by some term t
which is free for X (that is, all variables in t remain free when X is replaced by
t: for details see e.g. van Dalen (1983) page 68). This rule is often presented as
follows:

∀XF (X)
F (t)

(∀E)

• Introduction rule for conjunction: This rule states that if formulas F and G
belong to or are concluded from the premises then the conclusion F ∧G can be
inferred. This is often stated as follows:

F G

F ∧G (∧I)

Soundness of these rules can be proved directly from the definition of the semantics of
the language of formulas.

14 Chapter 1: Preliminaries

Their use can be illustrated by considering the example above. The premises are:

∀X (∀Y (mother (X) ∧ child of (Y,X) ⊃ loves(X,Y))) (10)
mother (mary) ∧ child of (tom,mary) (11)

Elimination of the universal quantifier in (10) yields:

∀Y (mother (mary) ∧ child of (Y,mary) ⊃ loves(mary, Y)) (12)

Elimination of the universal quantifier in (12) yields:

mother (mary) ∧ child of (tom,mary) ⊃ loves(mary, tom) (13)

Finally modus ponens applied to (11) and (13) yields:

loves(mary, tom) (14)

Thus the conclusion (14) has been produced in a formal way by application of the
inference rules. The example illustrates the concept of derivability. As observed, (14)
is obtained from (10) and (11) not directly, but in a number of inference steps, each
of them adding a new formula to the initial set of premises. Any formula F that
can be obtained in that way from a given set P of premises is said to be derivable
from P . This is denoted by P ` F . If the inference rules are sound it follows that
whenever P ` F , then P |= F . That is, whatever can be derived from P is also a
logical consequence of P . An important question related to the use of inference rules is
the problem of whether all logical consequences of an arbitrary set of premises P can
also be derived from P . In this case the set of inference rules is said to be complete.

Definition 1.16 (Soundness and Completeness) A set of inference rules are
said to be sound if, for every set of closed formulas P and every closed formula F ,
whenever P ` F it holds that P |= F . The inference rules are complete if P ` F
whenever P |= F .

A set of premises is said to be inconsistent if any formula can be derived from the
set. Inconsistency is the proof-theoretic counterpart of unsatisfiability, and when the
inference system is both sound and complete the two are frequently used as synonyms.

1.5 Substitutions

The chapter is concluded with a brief discussion on substitutions — a concept funda-
mental to forthcoming chapters. Formally a substitution is a mapping from variables
of a given alphabet to terms in this alphabet. The following syntactic definition is
often used instead:

Definition 1.17 (Substitutions) A substitution is a finite set of pairs of terms
{X1/t1, . . . , Xn/tn} where each ti is a term and each Xi a variable such that Xi 6= ti
and Xi 6= Xj if i 6= j. The empty substitution is denoted ε.

1.5 Substitutions 15

The application Xθ of a substitution θ to a variable X is defined as follows:

Xθ :=
{
t if X/t ∈ θ.
X otherwise

In what follows let Dom({X1/t1, . . . , Xn/tn}) denote the set {X1, . . . , Xn}. Also let
Range({X1/t1, . . . , Xn/tn}) be the set of all variables in t1, . . . , tn. Thus, for variables
not included in Dom(θ), θ behaves as the identity mapping. It is natural to extend
the domain of substitutions to include also terms and formulas. In other words, it is
possible to apply a substitution to an arbitrary term or formula in the following way:

Definition 1.18 (Application) Let θ be a substitution {X1/t1, . . . , Xn/tn} and E
a term or a formula. The application Eθ of θ to E is the term/formula obtained by
simultaneously replacing ti for every free occurrence of Xi in E (1 ≤ i ≤ n). Eθ is
called an instance of E.

Example 1.19

p(f(X,Z), f(Y, a)){X/a, Y/Z,W/b} = p(f(a, Z), f(Z, a))
p(X,Y){X/f(Y), Y/b} = p(f(Y), b)

It is also possible to compose substitutions:

Definition 1.20 (Composition) Let θ and σ be two substitutions:

θ := {X1/s1, . . . , Xm/sm}
σ := {Y1/t1, . . . , Yn/tn}

The composition θσ of θ and σ is obtained from the set:

{X1/s1σ, . . . ,Xm/smσ, Y1/t1, . . . , Yn/tn}

by removing all Xi/siσ for which Xi = siσ (1 ≤ i ≤ m) and by removing those Yj/tj
for which Yj ∈ {X1, . . . , Xm} (1 ≤ j ≤ n).

It is left as an exercise to prove that the above syntactic definition of composition
actually coincides with function composition (see exercise 1.13).

Example 1.21

{X/f(Z), Y/W}{X/a,Z/a,W/Y } = {X/f(a), Z/a,W/Y }

A kind of substitution that will be of special interest are the so-called idempotent
substitutions:

Definition 1.22 (Idempotent substitution) A substitution θ is said to be idem-
potent iff θ = θθ.

16 Chapter 1: Preliminaries

It can be shown that a substitution θ is idempotent iff Dom(θ) ∩Range(θ) = ?. The
proof of this is left as an exercise and so are the proofs of the following properties:

Proposition 1.23 (Properties of substitutions) Let θ, σ and γ be substitutions
and let E be a term or a formula. Then:

• E(θσ) = (Eθ)σ

• (θσ)γ = θ(σγ)

• εθ = θε = θ

Notice that composition of substitutions is not commutative as illustrated by the
following example:

{X/f(Y)}{Y/a} = {X/f(a), Y/a} 6= {Y/a}{X/f(Y)} = {Y/a,X/f(Y)}

Exercises

1.1 Formalize the following sentences of natural language as formulas of predicate
logic:

a) Every natural number has a successor.
b) Nothing is better than taking a nap.
c) There is no such thing as negative integers.
d) The names have been changed to protect the innocent.
e) Logic plays an important role in all areas of computer science.
f) The renter of a car pays the deductible in case of an accident.

1.2 Formalize the following sentences of natural language into predicate logic:

a) A bronze medal is better than nothing.
b) Nothing is better than a gold medal.
c) A bronze medal is better than a gold medal.

1.3 Prove Proposition 1.13.

1.4 Prove the equivalences in connection with Definition 1.15.

1.5 Let F := ∀X ∃Y p(X,Y) and G := ∃Y ∀Xp(X,Y). State for each of the
following four formulas whether it is satisfiable or not. If it is, give a model
with the natural numbers as domain, if it is not, explain why.

(F ∧G) (F ∧ ¬G) (¬F ∧ ¬G) (¬F ∧G)

1.6 Let F and G be closed formulas. Show that F ≡ G iff {F} |= G and {G} |= F .

1.7 Show that P is unsatisfiable iff there is some closed formula F such that P |= F
and P |= ¬F .

Exercises 17

1.8 Show that the following three formulas are satisfiable only if the interpretation
has an infinite domain

∀X¬p(X,X)
∀X∀Y ∀Z(p(X,Y) ∧ p(Y,Z) ⊃ p(X,Z))

∀X∃Y p(X,Y)

1.9 Let F be a formula and θ a substitution. Show that ∀F |= ∀(Fθ).
1.10 Let P1, P2 and P3 be sets of closed formulas. Redefine |= in such a way that

P1 |= P2 iff every formula in P2 is a logical consequence of P1. Then show that
|= is transitive — that is, if P1 |= P2 and P2 |= P3 then P1 |= P3.

1.11 Let P1 and P2 be sets of closed formulas. Show that if P1 ⊆ P2 and P1 |= F
then P2 |= F .

1.12 Prove Proposition 1.23.

1.13 Let θ and σ be substitutions. Show that the composition θσ is equivalent to
function composition of the mappings denoted by θ and σ.

1.14 Show that a substitution θ is idempotent iff Dom(θ) ∩Range(θ) = ?.

1.15 Which of the following statements are true?

• if σθ = δθ then σ = δ

• if θσ = θδ then σ = δ

• if σ = δ then σθ = δθ

18 Chapter 1: Preliminaries

