Requirements/Challenges in Data Mining (Con't)

- Data source issues:
 - \rightarrow Diversity of data types
 - Handling complex types of data
 - Mining information from heterogeneous databases and global information systems.
 - Is it possible to expect a DM system to perform well on all kinds of data? (distinct algorithms for distinct data sources)
 - → Data glut
 - Are we collecting the right data with the right amount?
 - Distinguish between the data that is important and the data that is not.

Requirements/Challenges in Data Mining (Con't)

- Other issues
 - Integration of the discovered knowledge with existing knowledge: A knowledge fusion problem.

© Dr. Osmar R. Zaïane, 2001-2003 Database Management Systems University of Alberta 29	© Dr. Osmar R. Zaiane, 2001-2003 Database Management Systems University of Alberta 💭 30
Data Mining	Basic Concepts
 Needing More than just Information Retrieval Elementary Concepts Patterns and Rules to be Discovered Requirements and Challenges Association Rule Mining Classification Clustering 	A transaction is a set of items: $T = \{i_a, i_b,, i_t\}$ $T \subset I$, where <i>I</i> is the set of all possible items $\{i_1, i_2,, i_n\}$ <i>D</i> , the task relevant data, is a set of transactions. An association rule is of the form: $P \Rightarrow Q$, where $P \subset I$, $Q \subset I$, and $P \cap Q = \emptyset$
© Dr. Osmar R. Zaiane, 2001-2003 Database Management Systems University of Alberta 💓 31	© Dr. Osmar R. Zařane, 2001-2003 Database Management Systems University of Alberta 💓 32

Basic Concepts (con't)

P→Q holds in *D* with support s and P→Q has a confidence c in the transaction set *D*.

Support($P \rightarrow Q$) = Probability($P \cup Q$) Confidence($P \rightarrow Q$)=Probability(Q / P)

Itemsets

A set of items is referred to as itemset.

An itemset containing k items is called k-itemset.

An items set can also be seen as a conjunction of items (or a predicate)

Mining Association Rules

Transaction ID Items Bought Min_support 50%			
2000	A,B,C	Min. confidence 50%	
1000	A,C		_
4000	A,D	Frequent Itemset Support	
5000	B,E,F	{A} 75%	_
For rule $\{A\} \rightarrow$ support = sup confidence =	$\{C\}$: pport($\{A, C\}$) = support($\{A, C\}$	$\{B\} = 50\% \\ \{C\} = 50\% \\ \{A,C\} = 50\% \\ \}/support(\{A\}) = 66.6\%$	• Fir set
For rule $\{C\} \rightarrow$ support = sup confidence =	$\{A\}:$ pport($\{A, C\}$) = support($\{A, C\}$)	50%)/support($\{C\}$) = 100.0%	_
© Dr. Osmar R. Zaïane, 2001-2003 Database Management Systems University of Alberta 💓 37		© Dr. O	
Mining Frequent Itemsets: the Key Step			
→Iteratively find the <i>frequent itemsets</i> , i.e. sets of items that			

- have minimum support, with cardinality from 1 to k (k-itemsets)
- →Based on the *Apriori principle*:
 - Any subset of a frequent itemset must also be frequent. E.g., if $\{AB\}$ is a frequent itemset, both $\{A\}$ and $\{B\}$ must be frequent itemsets.
- \rightarrow Use the frequent itemsets to generate association rules.

How do we Mine Association Rules?

put

- A database of transactions
- Each transaction is a list of items (Ex. purchased by a customer in a visit)
- nd all strong rules that associate the presence of one of items with that of another set of items.
 - Example: 98% of people who purchase tires and auto accessories also get automotive services done
 - There are no restrictions on the number of items in the head or body of the rule.

R. Zaïane. 2001-2003 Database Management System University of Alberta

The Apriori Algorithm

 C_k : Candidate itemset of size k L_k : frequent itemset of size k

 $L_1 = \{ \text{frequent items} \};$ for $(k = 1; L_k != \emptyset; k++)$ do begin C_{k+1} = candidates generated from L_k ; for each transaction t in database do increment the count of all candidates in C_{k+1} that are contained in t L_{k+1} = candidates in C_{k+1} with min_support end **return** $\cup_k L_k$;

Data Mining

- Needing More than just Information Retrieval
- Elementary Concepts
- Patterns and Rules to be Discovered
- Requirements and Challenges
- Association Rule Mining
- Classification
- Clustering

Generating Association Rules from Frequent Itemsets

- Only strong association rules are generated.
- Frequent itemsets satisfy minimum support threshold.
- Strong AR satisfy minimum confidence threshold.

• Confidence(
$$P \rightarrow Q$$
) = Prob(Q/P) = $\frac{\text{Support}(P \cup Q)}{\text{Support}(P)}$

For each frequent itemset, **f**, generate all non-empty subsets of **f**. For every non-empty subset **s** of **f** do output rule $s \rightarrow (\mathbf{f} \cdot \mathbf{s})$ if support(**f**)/support(**s**) \geq min confidence

end

© Dr. Osmar R. Zaïane, 2001-2003 Database Management System

University of Alberta

What is Classification?

The goal of data classification is to organize and categorize data in distinct classes.

- A model is first created based on the data distribution.
- ▶ The model is then used to classify new data.
- ▶ Given the model, a class can be predicted for new data.

© Dr. Osmar R. Zaïane, 2001-2003

Database Management Systems