Ch3 Active Database Systems

Applications of Active Rules

e Internal to the database:

— Integrity constraint maintenance
— Support of data derivation
(including data replication).

e Extended functionalities:

— Workflow management systems
— Version managers
— Event tracking and logging

— Security administration
e Business Rules:

— Trading rules for the bond market
— Warehouse and inventory management

— Energy management rules

Zaniolo— Ceri— Faloutsos—Snodgrass—Subrahmanian— Zicari—All Rights Reserved

Advanced Database Systems Morgan Kaufmann Copyright (©1997

Ch3 Active Database Systems

Internal and Extended Rules

SC

e Perform classical DBMS functions

e Can be approached with structured
approaches and techniques

e Can be automatically or
semi-automatically generated

e Can be declaratively specified

Zaniolo— Ceri— Faloutsos—Snodgrass—Subrahmanian— Zicari—All Rights Reserved

Advanced Database Systems Morgan Kaufmann Copyright (©1997

Ch3 Active Database Systems

Declarative Design of Active Rules
for Integrity and View Maintenance

SC

e Internal applications of active databases are:

— Static
— Declarative

— High-level, easy to understand

e Approach

— User specifies application at
declarative (high) level

— System derives low-level rules
that implement it (automatically
or semi-automatically)

Zaniolo— Ceri— Faloutsos—Snodgrass—Subrahmanian— Zicari—All Rights Reserved

Advanced Database Systems Morgan Kaufmann Copyright (©1997

Ch3 Active Database Systems

Framework

e Rules should be programmed by DBA

e Rule programming should be
assisted by rule design tools

e Rule derivation can be:

— Completely automatic
(for few well-defined problems)

— Partially automatic
(interactive system)

Zaniolo— Ceri— Faloutsos—Snodgrass—Subrahmanian— Zicari—All Rights Reserved

Advanced Database Systems Morgan Kaufmann Copyright (©1997

Ch3 Active Database Systems

Integrity Constraint Maintenance

e Constraints are static conditions

— Every employee’s department exists

— Every employee’s salary is between 30 and 100

e Rules monitor dynamic database
changes to enforce constraints

— when change to employees or departments
if an employee’s department doesn’t exist
then fix the constraint

— when change to employee salaries
if a salary is not between 30 and 100
then fix the constraint

e Generalizing:

— when potentially invalidating operations

if constraint volated
then fir it

— Constraint consistency points =
Rule processing points

Zaniolo— Ceri— Faloutsos—Snodgrass—Subrahmanian— Zicari—All Rights Reserved

Advanced Database Systems Morgan Kaufmann Copyright (©1997

Ch3 Active Database Systems

Integrity-Preserving Rules

SC

e Constraint: condition C

e Rules(s):
when operations that could make
C become false
if (' is false
then make C true
or abort transaction
e Eixample:

C = every employee’s department exists

Operations = insert into emp,
delete from dept,
update to emp.deptno,
update to dept.dno

e Condition:

— There is some employee violating C' (due to above ops)

e Action: make C true

— Rollback insertion of emp
— Rollback deletion of dept
— Put emp into a dummy dept

Advanced Database Systems Morgan Kaufmann Copyright (©1997

Zaniolo— Ceri— Faloutsos—Snodgrass—Subrahmanian— Zicari—All Rights Reserved

Ch3 Active Database Systems ~7-
SC

Example: Referential Integrity

e Constraint:

EXISTS (SELECT * FROM Dept
WHERE Dno = Emp.Deptno)

e Denial form:

NOT EXISTS (SELECT * FROM Dept
WHERE Dno = Emp.Deptno)

e Abort Rules

CREATE RULE DeptEmpl ON Emp
WHEN INSERTED, UPDATED(Deptno)
IF EXISTS (SELECT * FROM Emp
WHERE NOT EXISTS
(SELECT * FROM Dept
WHERE Dno = Emp.DeptNo))
THEN ROLLBACK

CREATE RULE DeptEmp2 ON Dept
WHEN DELETED, UPDATED(Dno)
IF EXISTS (SELECT * FROM Emp
WHERE NOT EXISTS
(SELECT * FROM Dept
WHERE Dno = Emp.DeptNo))
THEN ROLLBACK

Zaniolo— Ceri— Faloutsos—Snodgrass—Subrahmanian— Zicari—All Rights Reserved
Advanced Database Systems Morgan Kaufmann Copyright (©1997

Ch3 Active Database Systems
SC

Example: Repair Rules for EMP

CREATE RULE DeptEmpl ON Emp
WHEN INSERTED
IF EXISTS (SELECT * FROM INSERTED
WHERE NOT EXISTS
(SELECT * FROM Dept
WHERE Dno = Emp.DeptNo))
THEN UPDATE Emp
SET DeptNo = NULL
WHERE EmpNo IN
(SELECT EmpNo FROM INSERTED)
AND NOT EXISTS
(SELECT * FROM Dept
WHERE Dno = Emp.DeptNo))

Zaniolo— Ceri— Faloutsos—Snodgrass—Subrahmanian— Zicari—All Rights Reserved
Advanced Database Systems Morgan Kaufmann Copyright (©1997

Ch3 Active Database Systems
SC

Example: Repair Rules for EMP (2)

CREATE RULE DeptEmp2 ON Emp
WHEN UPDATED(Deptno)
IF EXISTS (SELECT * FROM NEW-UPDATED
WHERE NOT EXISTS
(SELECT * FROM Dept
WHERE Dno = Emp.DeptNo))
THEN UPDATE Emp
SET DeptNo = 99
WHERE EmpNo IN
(SELECT EmpNo FROM NEW-UPDATED)
AND NOT EXISTS
(SELECT * FROM Dept
WHERE Dno = Emp.DeptNo))

Zaniolo— Ceri— Faloutsos—Snodgrass—Subrahmanian— Zicari—All Rights Reserved
Advanced Database Systems Morgan Kaufmann Copyright (©1997

Ch3 Active Database Systems -10-
SC

Example: Repair Rules for DEPT

Repair rules on table Dept

CREATE RULE DeptEmp3 ON Dept

WHEN DELETED

IF EXISTS (SELECT * FROM Emp WHERE EXISTS
(SELECT * FROM DELETED
WHERE Dno = Emp.DeptNo))

THEN DELETE FROM Emp

WHERE EXISTS

(SELECT * FROM DELETED
WHERE Dno = Emp.Deptno)

CREATE RULE DeptEmp4 ON Dept

WHEN UPDATED(Dno)

IF EXISTS (SELECT * FROM Emp WHERE EXISTS
(SELECT * FROM OLD-UPDATED
WHERE Dno = Emp.Deptno))

THEN DELETE FROM Emp

WHERE EXISTS

(SELECT * FROM OLD-UPDATED
WHERE Dno = Emp.DeptNo)

Zaniolo— Ceri— Faloutsos—Snodgrass—Subrahmanian— Zicari—All Rights Reserved

Advanced Database Systems Morgan Kaufmann Copyright (©1997

Ch3 Active Database Systems -11-
SC

View Maintenance

e Logical tables derived from base tables

— Portion of database specified by retrieval query

— Used to provide different abstraction levels (or: external
schemas)

e Referenced in retrieval queries
o Virtual views

— Not physically stored

— Implemented by query modification
o Materialized views

— Physically stored

— Kept consistent with base tables

Zaniolo— Ceri— Faloutsos—Snodgrass—Subrahmanian— Zicari—All Rights Reserved

Advanced Database Systems Morgan Kaufmann Copyright (©1997

Ch3 Active Database Systems

Virtual Views

12—
SC

e Views define derived data by static database queries

Table high-paid =
All employees with high salaries

e Virtual views are not stored in the database

e Rules dynamically detect queries on
virtual views and transform into
queries on base tables

when retrieve from high-paid
then retrieve from emp
where sal > X

Zaniolo— Ceri— Faloutsos—Snodgrass—Subrahmanian— Zicari—All Rights Reserved

Advanced Database Systems Morgan Kaufmann Copyright (©1997

Ch3 Active Database Systems -13-
SC

Materialized Views

e View: V = query @)

e Rules(s): when operations that can change
the result of ()
then modify V'

e How to generate rule(s) from view?

e Generate triggering operations by analyzing ()

V' = all employees with high salaries

Ops = insert into emp,
delete from emp,
update emp.sal

e Generate action to modify V'

— Evaluate query @), set V' = result

— Evaluate () using changed values,
update V'

— Determine which by analyzing ()

Zaniolo— Ceri— Faloutsos—Snodgrass—Subrahmanian— Zicari—All Rights Reserved

Advanced Database Systems Morgan Kaufmann Copyright (©1997

Ch3 Active Database Systems -14-
SC

Materialized Views and Rules

e SQL select expressions

define view V as
select Cols from Tables where Predicate

e Materialized initially, stored in database
e “Refreshed” at rule processing points

Changes to base tables —
Production rules modify view

Zaniolo— Ceri— Faloutsos—Snodgrass—Subrahmanian— Zicari—All Rights Reserved

Advanced Database Systems Morgan Kaufmann Copyright (©1997

Ch3 Active Database Systems

View-Maintaining Rules

15—
SC

e Recomputation approach (easy but bad)

when changes to base tables
then recompute view

e Incremental approach (good but hard)

when changes to base tables
then change view

e Incremental rules is complicated for:

— Views with duplicates

— Certain base table operations

Advanced Database Systems Morgan Kaufmann Copyright (©1997

Zaniolo— Ceri— Faloutsos—Snodgrass—Subrahmanian— Zicari—All Rights Reserved

Ch3 Active Database Systems -16-
SC

Example

e Relational view selecting departments with one employee who
earns more than 50,000

DEFINE VIEW HighPaidDept AS
(SELECT DISTINCT Dept.Name
FROM Dept, Emp
WHERE Dept.Dno = Emp.Deptno
AND Emp.Sal > 50K)

e Critical events

. insertions into Emp
. insertions into Dept
. deletions from Emp

. updates to Emp.Deptno

1
2
3
4. deletions from Dept
5
6. updates to Emp.Sal
7

. updates to Dept.Dno

Zaniolo— Ceri— Faloutsos—Snodgrass—Subrahmanian— Zicari—All Rights Reserved

Advanced Database Systems Morgan Kaufmann Copyright (©1997

Ch3 Active Database Systems -17-
SC

Refresh Rules written in Starburst

Refresh rules CREATE RULE RefreshHighPaidDeptl ON Dept
WHEN INSERTED, DELETED,
UPDATED(Deptno), UPDATED(Sal)
THEN DELETE * FROM HighPaidDept;
INSERT INTO HighPaidDept:
(SELECT DISTINCT Dept.Name
FROM Dept, Emp
WHERE Dept.Dno = Emp.Deptno
AND Emp.Sal > 50K)

CREATE RULE RefreshHighPaidDept2 ON Emp
WHEN INSERTED, DELETED, UPDATED(Dno)
THEN DELETE * FROM HighPaidDept;
INSERT INTO HighPaidDept:
(SELECT DISTINCT Dept.Name
FROM Dept, Emp
WHERE Dept.Dno = Emp.Deptno
AND Emp.Sal > 50K)

Zaniolo— Ceri— Faloutsos—Snodgrass—Subrahmanian— Zicari—All Rights Reserved
Advanced Database Systems Morgan Kaufmann Copyright (©1997

Ch3 Active Database Systems -18-
SC

Incremental Rule for Insert on Dept

Incremental refresh rule
CREATE RULE IncrRefreshHighPaidDeptl ON Dept
WHEN INSERTED
THEN INSERT INTO HighPaidDept:
(SELECT DISTINCT Dept.Name
FROM INSERTED, Emp
WHERE INSERTED.Dno = Emp.Deptno
AND Emp.Sal > 50K)

Zaniolo— Ceri— Faloutsos—Snodgrass—Subrahmanian— Zicari—All Rights Reserved
Advanced Database Systems Morgan Kaufmann Copyright (©1997

Ch3 Active Database Systems -19-
SC

Replication

e A special case of data derivation (identical copies).

e Main application: distributed systems (copies on different
Servers).

e Typical approach: asynchronous.

— Capture Step: Active rules react to changes on one
copy and collect changes into deltas.

— Apply step: Deltas are propagated to other copies at
the appropriate time.

e Alternatives:

— Primary-Secondary

— Symmetric

Zaniolo— Ceri— Faloutsos—Snodgrass—Subrahmanian— Zicari—All Rights Reserved

Advanced Database Systems Morgan Kaufmann Copyright (©1997

Ch3 Active Database Systems

Active Rules for Replication

Capture rules CREATE RULE Capturel ON Primary
WHEN INSERTED
THEN INSERT INTO PosDelta

(SELECT * FROM INSERTED)

CREATE RULE Capture2 ON Primary

WHEN DELETED

THEN INSERT INTO NegDelta
(SELECT * FROM DELETED)

CREATE RULE Capture3 ON Primary

WHEN UPDATED

THEN INSERT INTO PosDelta
(SELECT * FROM NEW-UPDATED);
INSERT INTO NegDelta
(SELECT * FROM OLD-UPDATED)

Zaniolo— Ceri— Faloutsos—Snodgrass—Subrahmanian— Zicari—All Rights Reserved
Advanced Database Systems Morgan Kaufmann Copyright (©1997

Ch3 Active Database Systems —21-
SC

Workflow Management

e A new paradigm for organizing the working activities within
enterprise.

e Intrinsecally reactive: workflow managers monitor events and
perform the required event management activities.

e Fvents are:

— Internal: generated from within the workflow manager
while workflows are progressing.

— External: representing the interaction of the workflow

manager with the external world.

e The most significant application of rules: expressing excep-
tions to the normal flow.

Zaniolo— Ceri— Faloutsos—Snodgrass—Subrahmanian— Zicari—All Rights Reserved

Advanced Database Systems Morgan Kaufmann Copyright (©1997

Ch3 Active Database Systems —22-
SC

Examples of Active Rules for Workflow
Management

define trigger WF1 for Agent
events modify(Agent.Availability)
condition Agent(A), occurred(modify(Agent.Availability),A),
A.Availability=FALSE, task(T), T.Responsible=A,
T.Type='Urgent’, Agent(B), A.Substitute=B,
B.Availability=TRUE
actions modify(Task.Responsible, T, B)
end:

define trigger WF2 for Accident
events create(Accident)
condition Accident(A), occurred(create, A),
Booking(B), B.Car = A.DamagedCar,
actions create(Warning,[B.Number,B.Agent],X)
end:

Zaniolo— Ceri— Faloutsos—Snodgrass—Subrahmanian— Zicari—All Rights Reserved

Advanced Database Systems Morgan Kaufmann Copyright (©1997

Ch3 Active Database Systems —23-
SC

Business Rules

e Performing a part of the application-specific business.
e Examples:

— Stock and bond trading in financial applications.
— Airway assignment to flights in air traffic control systems
— Order management in inventory control systems.

e Key design principle:
knowledge independence.

— Factoring knowledge out
of the applications.

— Rules automatically shared
by all applications.

— Rules logically part
of the database schema
(designed by “DBA”).

— Knowledge evolution feasible and
controllable (changing rules
without changing applications)).

Zaniolo— Ceri— Faloutsos—Snodgrass—Subrahmanian— Zicari—All Rights Reserved

Advanced Database Systems Morgan Kaufmann Copyright (©1997

Ch3 Active Database Systems —24-
SC

Energy Management System

e The ENEL Energy Management System uses a "radial topol-
ogy” network (<— forest), each "user” connected to a single
"distributor” through a network of intermediate "nodes”.

e The purpose of the network is to transfer the exact power from
distributors to users through nodes and (directed) branches
connecting pairs of nodes.

e A transaction changes the user’s profile, then the system finds
the appropriate layout and power supply.

Zaniolo— Ceri— Faloutsos—Snodgrass—Subrahmanian— Zicari—All Rights Reserved

Advanced Database Systems Morgan Kaufmann Copyright (©1997

Ch3 Active Database Systems —25-
SC

Active Rules

R1: If a new user requires power, connect it to the closest node

R2: If a user or a node requires less power, change the power of the
user or node and propagate the change to its input branch

R3: If a branch requires less power, change the power of the branch
and propagate the change to its input node

R4: If the power required from a distributor is decreased, change its
output power accordingly

Rb6: If a user or node requires more power, change the power of the
user or node and propagate the change to its input branch

R6: If a branch requires more power, change the power of the branch
and propagate the change to its input node

R7: If the power required from a distributor is increased, change its
output power accordingly

R8: If a distributor’s power exceeds its maximum, rollback the
entire transaction

R9: If a branch’s power is changed, change the power of some of its
wires accordingly

R10: If a wire’s power is above its threshold, change wire type

R11: If there’s no suitable wire type, add another wire to the branch

R12: If a wire is not included into a tube, add a tube around it

R13: If a tube is too small to fit all its wires, change it into a
larger tube

R14: If a wire inside a tube is high voltage and the tube is not
protected, change it into a protected tube

R15: If there’s no suitable tube, split the branch into two branches

Zaniolo— Ceri— Faloutsos—Snodgrass—Subrahmanian— Zicari—All Rights Reserved

Advanced Database Systems Morgan Kaufmann Copyright (©1997

