Appendix C

Answers to Selected Exercises

1.1 The following is a possible solution (but not the only one):

VX (natural(X) D Y (equal(s(X),Y)))
-3 X better(X, taking_a_nap)
VX (integer(X) D —negative(X))
VX, Y (name(X,Y) A innocent(X) D changed(Y))
VX (area-of -cs(X) D important_for(logic, X)
VX (renter(X) A in_accident(X) D pay_deductible(X))

1.2 The following is a possible solution (but not the only one):

better(bronze_medal, nothing)
—3X better(X, gold_medal)
better(bronze_medal, gold_medal)

1.3 Let MOD(X) denote the set of all models of the formulas X. Then:

PEF if MOD(P)C MOD(F)
ift MOD(P) "MOD(-F) =@
if MOD(PU{-F}) =g
iff P U{—=F} is unsatisfiable

1.4 Take for instance, F' D G = ~FVG. Let & and ¢ be an arbitrary interpretation
and valuation respectively. Then:

SE, FOG iff Sk, G whenever § =, F
iff S, Gor S, F
if Sk, ForSQE,G
if Sk, FVG

253

254

Appendix C: Answers to Selected Exercises

1.6

1.8

1.12

1.15
2.1

2.3

2.4
2.5
2.6

2.7

Let MOD(X) denote the set of all models of the formula X. Then:
F=G if MOD(F)=MOD(G)
ifft MOD(F) € MOD(G) and MOD(G) € MOD(F)
it {F}EGand{G}EF
HINT: Assume that there is a finite interpretation and establish a contradiction
using the semantics of formulas.
HiNTs:

E(f0) = (Ef)o: by the definition of application it suffices to consider the case
when E is a variable.

(0o)y = 0(o7y): it suffices to show that the two substitutions give the same
result when applied to an arbitrary variable. The fact that E(6o) = (Ef)o
can be used to complete the proof.

Only the last one. (Look for counter-examples of the first twol)

Definite clauses:

The Herbrand universe:

Up ={a,b, f(a), f(b), 9(a), g(b), f(g(a)), f(g(b)), f(f(a)), F(f(D)),...}
The Herbrand base:

Bp ={q(z,y) | z,y € Up} U{p(z) | x € Up}

Up ={0,s(0),s(s(0)),...} and Bp = {p(z,y,2) | z,y,z € Up}.
Formulas 2, 3 and 5. HINT: Consider ground instances of the formulas.

Use the immediate consequence operator:

TpT0 4]
Te 11 = A{q(a g(b)),q(b,g(b))}

Tp12 = {p(f(b))}UTr 11
Tp13 = Tp12

That iS, Mp = Tp T 3.

Use the immediate consequence operator:

Tp T 0 = @
TP T 1 = {p(oa
Tp12 = {p(s(

TpTu}

Il
—
]
—~

o0
8
—
(=)
S~—

)

@

—~
(=)
S~—
)
n
—
(=)
S~—
S~—
)
+
NS
Il
0
—

Appendix C: Answers to Selected Exercises 255

3.1

3.2

3.4

3.5
3.6

3.7
4.4

4.7
4.8

4.14
5.1

5.3

5.4

{X/a,Y/a}, not unifiable, {X/f(a),Y/a, Z/a} and the last pair is not unifiable
because of occur-check.

Let 0 be a unifier of s and ¢. By the definition of mgu there is a substitution §
such that ¢ = 5. Now since w is a renaming it follows also that ¢ = fww™14.
Thus, for every unifier o of s and t there is a substitution w~¢ such that

o= (0w)(w™1d).
Assume that o is a unifier of s and ¢t. Then by definition ¢ = 6w for some
substitution w. Moreover, 0 = #fw since 0 is idempotent. Thus, o = fo.

Next, assume that 0 = fo. Since 6 is an mgu it must follow that o is a unifier.
{X/b} is produced twice and {X/a} once.

For instance, the program and goal:

pb~—Dpq.

Prolog’s computation rule produces an infinite tree whereas a computation
rule which always selects the rightmost subgoal yields a finitely failed tree.
Infinitely many. But there are only two answers, X =b and X = a.

HinT: Each clause of the form:
p(t1, ..., tm) < B
in P gives rise to a formula of the form:
p(X1, o, X)) = oovI (X =t X =tm, B) V...

in comp(P). Use truth-preserving rewritings of this formula to obtain the
program clause.

Only P; and Ps.

comp(P) consists of:
p(X1) < X1 =a,—q(b)
q(X1) <0

and some equalities including a = a and b = b.

The well-founded model is {r, —s}.

Without cut there are seven answers. Replacing true(1) by cut eliminates the
answers X =e,Y =cand X = e,Y = d. Replacing true(2) by cut eliminates
in addition X =b,Y =cand X =b,Y =d.

The goal without negation gives the answer X = a while the other goal suc-
ceeds without binding X.

For example:

var(X) < not(not(X = a)), not(not(X =b)).

256

Appendix C: Answers to Selected Exercises

5.6

5.7

5.8

6.2

6.3

6.4

6.5

For example:

between(X,Z,7) — X < Z.
between(X,Y,Z) — X < Z,W is Z — 1, between(X,Y, W).

For instance, since (n+1)2 =n?+2xn+1, n > 0:

sqr(0,0).
sqr(s(X), s(2)) — sqr(X,Y), times(s(s(0)), X, W), plus(Y, W, Z).

For instance:

ged(X,0,X) — X > 0.
ged(X,Y,Z) <Y > 0,W is X mod Y, ged(Y,W, Z).

For instance:

grandchild(X, Z) « parent(Y, X), parent(Z,Y).
sister(X,Y) « female(X),parent(Z, X), parent(Z,Y), X #Y.

brother(X,Y) < male(X), parent(Z, X), parent(Z,Y), X #Y.

etc.

HINT: (1) Colours should be assigned to countries. Hence, represent the coun-
tries by variables. (2) Describe the map in the goal by saying which countries
should be assigned different colours.

For instance:

circuitl(X,Y, Z) «—
and(X,Y, W), inv(W, Z).
circuit2(X,Y, Z,V,W) «—
and(X,Y, A),and(Z,V, B),
and(A, B,C),inv(C,W).

For instance:

p(X,Y) « husband(K, X),wife(K,Y).

q(X) « parent(X,Y).
q(X) < income(X,Y),Y > 20000.

Appendix C: Answers to Selected Exercises

257

6.6 For instance:
xy(QY, X)) Urxy(Q(X,Z) X R(Z,Y))
6.7 For instance:
compose(X,7Z) — r(X,Y),r (Y, Z).

6.9 Take the transitive closure of the parent/2-relation.

6.11 For instance:

ingredients(tea, needs(water, needs(tea_bag, nil))).

ingredients(boiled_egg, needs(water, needs(egg, nil))).

available(water).
available(tea_bag).

can_cook(X) «—
ingredients(X, Ingr), all_available(Ingr).

all_available(nil).
all_available(needs(X,Y)) «—
available(X), all_available(Y).

needs_ingredient(X,Y) «—
ingredients(X, Ingr), among(Y, Ingr).

among(X,needs(X,Y)).
among(X,needs(Y, Z)) —
among(X, 7).

7.1 Alternative list notation:

(a,.(b,[]) (a, (b, -(c,[])))
-(a,b) -(a,.(,[]))
(@, .(-(b, -(c. [])), -(d,[]))) (11D
(a,.(b,X)) (a,.(b, (e, []))
7.4 For instance:
length([],0).

length([X|Y], N) < length(Y, M), N is M + 1.
7.5 For instance:

Ishift((X|YZ), YZX) «— append(YZ,[X], YZX).

258 Appendix C: Answers to Selected Exercises

7.9 For instance:

sublist(X,Y) «— prefiz(X,Y)
sublist(X, [Y|Z]) <« sublist(X, Z).

7.12 For instance:

msort([], [])-

msort([X], [X]).

msort(X,Y) «
split(X, Split1, Split2),
msort(Splitl , Sorted1),
msort(Split2, Sorted?),
merge(Sortedl, Sorted2,Y).

split([X], [], [X]).
split([X, Y[Z], [X|V], [Y[W]) <
split(Z,V,W).

merge((], [1, [)-
merge([X[A], [Y[B],[X|C]) —

[
X <Y,merge(A,[Y|B],C).
merge([X|A], [Y[B],[Y|C]) —
X >Y,merge([X|A], B,C).

7.13 For instance:

edge(1,2,b).
edge(2,2,a).
edge(2,3,a).
edge(3,2,0).
final(3).

accept(State, []) «—
final(State).
accept(State, [X|Y]) —
edge(State, NewState, X), accept(NewState,Y).

7.17 For instance:
palindrome(X) «— diff_palin(X — []).
diff palin(X — X).

diff palin([X|Y]-Y).
diff palin([X|Y] — Z) « diff palin(Y — [X|Z]).

Appendix C: Answers to Selected Exercises 259

7.20 HINT: Represent the empty binary tree by the constant empty and the non-
empty tree by node(X, Left, Right) where X is the label and Left and Right
the two subtrees of the node.

8.3 The following program provides a starting point (the program finds all refu-
tations but it does not terminate):

prove(Goal) «—
int(Depth), dfid(Goal, Depth, 0).

dfid(true, Depth, Depth).

dfid((X,Y), Depth, NewDepth) «—
dfid(X, Depth, T'mpDepth),
dfid(Y, TmpDepth, NewDepth).

dfid(X, s(Depth), NewDepth) —
clause(X,Y),
dfid(Y, Depth, NewDepth).

int(s(0)).
int(s(X)) —
int(X).

8.4 HiINT: For instance, the fourth rule may be defined as follows:
d(X +Y, Dz + Dy) — d(X, Dx),d(Y, Dy).

10.3 Definite clause grammar:

Prolog program:

bleat(Xo, X2) <« connects(Xo, b, X1), aaa(X1, X2).
aaa(Xo, X1) <« connects(Xo, a, X1).

aaa(Xo, X2) < connects(Xo, a, X1), aaa(X1, X2).
connects([X|Y], X,Y).

A refutation is obtained, for instance, by giving the goal « bleat([b, a,al, []).

10.4 The DCG describes a language consisting only of the empty string. However,
at the same time it defines the “concatenation”-relation among lists. That is,
the nonterminal z([a, b], [¢c,d], X) not only derives the empty string but also
binds X to [a,b, ¢, d].

12.1 The definition of append/3 and member/2 is left to the reader:

260 Appendix C: Answers to Selected Exercises

eq(T1,T2) —
nodes(T1, N1),nodes(T2, N2),equal(N17, N27?).

nodes(empty, []).
nodes(tree(X,T1,T2),[X|N]) —
nodes(T'1, N1),nodes(T2, N2),append(N1?, N2?, N).

equal(X,Y) —
subset(X,Y), subset(Y, X).

subset([], X).
subset([X|Y],Z) «
member (X, Z), subset(Y?, Z).

12.2 HINT: write a program which transposes the second matrix and then computes
all inner products.

13.3 HINT: The overall structure of the proof is as follows:

Etapp(nil, X)=X
Etapp(e(X,Y),Z) = c(X,app(Y,Z)) EFa=a E-_=_
Er_ = E+-_ =

14.3 The following program with real-valued or rational constraints can be used to
answer e.g. the goal «— jugs([M,1 — M, 0], Res, N).

Jugs([A, B,C],[A,B,C],N) «—
N=0,A+B+C=1.
jugs([A, B,C], Res, N) «
N >0,
Jugs([0.6 %« A+ 0.2 B,0.7« B+ 04 A, C+0.1x B], Res, N — 1).

15.1 The transformed program looks as follows:

expr(X,Z) «—
call_expr(X, Z), expr(X, [+|Y]), expr(Y, Z).
expr([id|Y],Y) «
call_expr([id|Y],Y).
call_expr(X, [+|Y]) «
call_expr(X, 7).
call_expr(Y, Z) —
call_expr(X, Z), expr(X, [+]Y]).

Adding call_expr([id, +,id], X) to the program yields the semi-naive iteration:

Appendix C: Answers to Selected Exercises

261

Al‘o
A(El
A{EQ
Al‘g
Al‘4

{call_expr([id, +,id], A)}

{expr([id, +,id], [+, id]), call_expr([id, +, id], [+|A])}
{call_expr([id), A), call _expr([id], [+]A])}
{expr([id),[1)}

{expr([id, +,id], [])}

262 Appendix C: Answers to Selected Exercises

