1. Consider the following schema:
```
suppliers(SID,sname,address).
parts(PID, pname,color).
supplies(SID,PID,cost).
```

The primary keys are shown in uppercase. The SID column in supplies is a foreign key referring to SID in suppliers and the PID column in supplies is a foreign key referring to PID in parts. The supplies table lists the prices charged for parts by suppliers. Write one of the following queries in DRC and the other in Relational Algebra.
(a) Get the pnames of parts supplied by at least 3 different suppliers.
(b) Get the pnames of the most expensive parts supplied by suppliers named Yosemite Sham.
2. Suppose we have a relation Male (name) that holds the set of names of males. There is also a relation Marriages (name1, name2) that relates pairs of married people. It is not determined which of a married couple is listed first, and you should not assume that Marriages (a, b) implies Marriages (b, a). A Bachelor is a male who is not married. Write a Datalog and Relational Algebra queries that define the set of Bachelors.
3. Convert the following Datalog rule into an expression of Relational Algebra and DRC for relation P.
$p(X, Y):-r(X, Z, Z), s(Z, Y, Y)$.
4. For each of the following sets of formulas, use the MGU algorithm to determine if it has a most general unifier. If yes, what is the MGU?
(a) $\{[[X, Y], Z \mid R],[[a, b],[1,2],[c, d]]\}$
(b) $\{k(X, g(Y, a), Y), k(g(g(U, Z), Z), x, g(Z, a))\}$
(c) $\{p(X, X), p(f(a, Y), f(Z, b))\}$
5. Consider the following Prolog program (Note: Rule numbers are not part of the program you should cite them in the SLD refutation tree):

```
(R1) p(a).
(R7) q(X) :- s(X).
(R2) p(X) :- q(X), r(X).
(R1) p(X) :- u(X). (R8) r(a).
    (R9) r(b).
(R4) s(a).
(R5) s(b). (R10) u(d).
(R6) s(c).
```

Construct the entire SLD Refutation tree for the query: ?- $p(X)$. Show rule numbers and MGUs at each edge of the tree.
6. Consider the problem of manipulating matrices in Prolog. A NxM matrix of numbers is represented in Prolog as a list of rows, where each row is a list of numbers. For example, the matrix $\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right)$ is represented in Prolog as the list $[[1,2,3],[4,5,6]]$. Write Prolog programs for the following:
(a) Transpose: The transpose of a matrix is defined as a matrix obtained by turning the rows of the given matrix into columns and the columns into rows. For instance, the transpose of $\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right)$ is $\left(\begin{array}{cc}1 & 4 \\ 2 & 5 \\ 3 & 6\end{array}\right)$
Here are two sample runs in SWI-Prolog:
?- transpose([[1, 2, 3] , $[4,5,6]], M)$.
$\mathrm{M}=[[1,4],[2,5],[3,6]]$
Yes
?- transpose([$[2,3,4,5],[7,8,9,10],[8,7,6,5]], M)$.
$M=[[2,7,8],[3,8,7],[4,9,6],[5,10,5]]$
Yes
(b) Matrix multiplication: Recall Matrix multiplication from your Math classes. Here is an example:
$\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right) \times\left(\begin{array}{ll}5 & 6 \\ 7 & 8\end{array}\right)=\left(\begin{array}{ll}1^{*} 5+2^{*} 7 & 1^{*} 6+2^{*} 8 \\ 3^{*} 5+4^{*} 7 & 3^{*} 6+4^{*} 8\end{array}\right)=\left(\begin{array}{cc}19 & 22 \\ 43 & 50\end{array}\right)$
Here are two sample runs in SWI-Prolog:

```
?- matrixMul([[1,2], [3,4]],[[5,6],[7, 8]],M).
M=[[19, 22], [43,50]]
Yes
?- matrixMul([[2,3,4],[5,6,7]],[[1,2,3,4],[2,3,5,6],[7, 1, 2, 4]],M).
M = [[36, 17, 29, 42], [66, 35, 59, 84]]
Yes
```

You do not have to check for the proper dimensions of the input matrices.
Hint: Try using transpose.

