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Running Time
q Most algorithms transform 

input objects into output 
objects.

q The running time of an 
algorithm typically grows 
with the input size.

q Average case time is often 
difficult to determine.

q We focus on the worst case 
running time.
n Easier to analyze
n Crucial to applications such as 

games, finance and robotics
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Experimental Studies
q Write a program 

implementing the 
algorithm

q Run the program with 
inputs of varying size and 
composition, noting the 
time needed:

q Plot the results
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Limitations of Experiments

q It is necessary to implement the 
algorithm, which may be difficult

q Results may not be indicative of the 
running time on other inputs not included 
in the experiment. 

q In order to compare two algorithms, the 
same hardware and software 
environments must be used
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Theoretical Analysis
q Uses a high-level description of the 

algorithm instead of an implementation
q Characterizes running time as a 

function of the input size, n.
q Takes into account all possible inputs
q Allows us to evaluate the speed of an 

algorithm independent of the 
hardware/software environment
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Pseudocode
q High-level description of an algorithm
q More structured than English prose
q Less detailed than a program
q Preferred notation for describing 

algorithms
q Hides program design issues
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Pseudocode Details
q Control flow

n if … then … [else …]
n while … do …
n repeat … until …
n for … do …
n Indentation replaces braces 

q Method declaration
Algorithm method (arg [, arg…])

Input …
Output …

q Method call
method (arg [, arg…])

q Return value
return expression

q Expressions:
¬Assignment

= Equality testing

n2 Superscripts and other 
mathematical 
formatting allowed
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The Random Access Machine 
(RAM) Model

q A CPU

q An potentially unbounded 
bank of memory cells, 
each of which can hold an 
arbitrary number or 
character

0
1
2

Memory cells are numbered and accessing 
any cell in memory takes unit time.
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Seven Important Functions
q Seven functions that 

often appear in algorithm 
analysis:
n Constant » 1
n Logarithmic » log n
n Linear » n
n N-Log-N » n log n
n Quadratic » n2

n Cubic » n3

n Exponential » 2n

q In a log-log chart, the 
slope of the line 
corresponds to the 
growth rate
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Functions Graphed 
Using “Normal” Scale

© 2013 Goodrich, Tamassia, Goldwasser 10Analysis of Algorithms

g(n) = 2ng(n) = 1

g(n) = lg n

g(n) = n lg n

g(n) = n

g(n) = n2

g(n) = n3

Slide by Matt Stallmann 
included with permission.
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Primitive Operations
q Basic computations 

performed by an algorithm
q Identifiable in pseudocode
q Largely independent from the 

programming language
q Exact definition not important 

(we will see why later)
q Assumed to take a constant 

amount of time in the RAM 
model

q Examples:
n Evaluating an 

expression
n Assigning a value 

to a variable
n Indexing into an 

array
n Calling a method
n Returning from a 

method
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Counting Primitive Operations
q By inspecting the pseudocode, we can determine the 

maximum number of primitive operations executed by 
an algorithm, as a function of the input size

© 2013 Goodrich, Tamassia, Goldwasser

q Step 1: 2 ops, 3: 2 ops, 4: 2n ops, 5: 2n 
ops, 6: 0 to n ops, 7: 1 op
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Estimating Running Time
q Algorithm find_max executes 5n + 5 primitive 

operations in the worst case, 4n + 5 in the best 
case.  Define:
a = Time taken by the fastest primitive operation
b = Time taken by the slowest primitive operation

q Let T(n) be worst-case time of find_max. Then
a (4n + 5) £ T(n) £ b(5n + 5)

q Hence, the running time T(n) is bounded by two 
linear functions.
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Growth Rate of Running Time

q Changing the hardware/ software 
environment 
n Affects T(n) by a constant factor, but
n Does not alter the growth rate of T(n)

q The linear growth rate of the running 
time T(n) is an intrinsic property of 
algorithm find_max
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Why Growth Rate Matters
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Slide by Matt Stallmann 
included with permission.

if runtime 
is... time for n + 1 time for 2 n time for 4 n

c lg n c lg (n + 1) c (lg n + 1) c(lg n + 2)

c n c (n + 1) 2c n 4c n

c n lg n
~ c n lg n

+  c n
2c n lg n + 

2cn
4c n lg n + 

4cn

c n2 ~ c n2 + 2c n 4c n2 16c n2

c n3 ~ c n3 + 3c n2 8c n3 64c n3

c 2n c 2 n+1 c 2 2n c 2 4n

runtime
quadruples
when 
problem
size doubles



Comparison of Two Algorithms
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Slide by Matt Stallmann 
included with permission.

insertion sort is
n2 / 4

merge sort is
2 n lg n

sort a million items?
insertion sort takes
roughly 70 hours

while
merge sort takes
roughly 40 seconds

This is a slow machine, but if
100 x as fast then it’s 40 minutes
versus less than 0.5 seconds
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Constant Factors
q The growth rate is 

not affected by
n constant factors or 
n lower-order terms

q Examples
n 102n + 105 is a linear 

function
n 105n2 + 108n is a 

quadratic function
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Big-Oh Notation
q Given functions f(n) and 

g(n), we say that f(n) is 
O(g(n)) if there are 
positive constants
c and n0 such that
f(n) £ cg(n)  for n ³ n0

q Example: 2n + 10 is O(n)
n 2n + 10 £ cn
n (c - 2) n ³ 10
n n ³ 10/(c - 2)
n Pick c = 3 and n0 = 10
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Big-Oh Example
q Example: the function 

n2 is not O(n)
n n2 £ cn
n n £ c
n The above inequality 

cannot be satisfied 
since c must be a 
constant 
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More Big-Oh Examples
7n-2

7n-2 is O(n)
need c > 0 and n0 ³ 1 such that 7n-2 £ c•n for n ³ n0

this is true for c = 7 and n0 = 1

n 3n3 + 20n2 + 5
3n3 + 20n2 + 5 is O(n3)
need c > 0 and n0 ³ 1 such that 3n3 + 20n2 + 5 £ c•n3 for n ³ n0

this is true for c = 4 and n0 = 21

n 3 log n + 5
3 log n + 5 is O(log n)
need c > 0 and n0 ³ 1 such that 3 log n + 5 £ c•log n for n ³ n0

this is true for c = 8 and n0 = 2
© 2013 Goodrich, Tamassia, Goldwasser
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Big-Oh and Growth Rate
q The big-Oh notation gives an upper bound on the 

growth rate of a function
q The statement “f(n) is O(g(n))” means that the growth 

rate of f(n) is no more than the growth rate of g(n)
q We can use the big-Oh notation to rank functions 

according to their growth rate

f(n) is O(g(n)) g(n) is O(f(n))

g(n) grows more Yes No
f(n) grows more No Yes
Same growth Yes Yes
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Big-Oh Rules

q If is f(n) a polynomial of degree d, then f(n) is 
O(nd), i.e.,

1. Drop lower-order terms
2. Drop constant factors

q Use the smallest possible class of functions
n Say “2n is O(n)” instead of “2n is O(n2)”

q Use the simplest expression of the class
n Say “3n + 5 is O(n)” instead of “3n + 5 is O(3n)”
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Asymptotic Algorithm Analysis
q The asymptotic analysis of an algorithm determines 

the running time in big-Oh notation
q To perform the asymptotic analysis

n We find the worst-case number of primitive operations 
executed as a function of the input size

n We express this function with big-Oh notation
q Example:

n We say that algorithm find_max “runs in O(n) time”
q Since constant factors and lower-order terms are 

eventually dropped anyhow, we can disregard them 
when counting primitive operations
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Computing Prefix Averages
q We further illustrate 

asymptotic analysis with 
two algorithms for prefix 
averages

q The i-th prefix average of 
an array X is average of the 
first (i + 1) elements of X:

A[i] = (X[0] + X[1] + … + X[i])/(i+1)

q Computing the array A of 
prefix averages of another 
array X has applications to 
financial analysis
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Prefix Averages (Quadratic)
The following algorithm computes prefix averages in 
quadratic time by applying the definition
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Arithmetic Progression
q The running time of 

prefixAverage1 is
O(1 + 2 + …+ n)

q The sum of the first n
integers is n(n + 1) / 2
n There is a simple visual 

proof of this fact
q Thus, algorithm 

prefixAverage1 runs in 
O(n2) time 0
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Prefix Averages 2 (Looks Better)
The following algorithm uses an internal Python 
function to simplify the code

Algorithm prefixAverage2 still runs in O(n2) time!
© 2013 Goodrich, Tamassia, Goldwasser
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Prefix Averages 3 (Linear Time)
The following algorithm computes prefix averages in 
linear time by keeping a running sum

Algorithm prefixAverage3 runs in O(n) time 
© 2013 Goodrich, Tamassia, Goldwasser
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q properties of logarithms:
logb(xy) = logbx + logby
logb (x/y) = logbx - logby
logbxa = alogbx
logba = logxa/logxb

q properties of exponentials:
a(b+c) = aba c
abc = (ab)c

ab /ac = a(b-c)

b = a logab

bc = a c*logab

Summations
Logarithms and Exponents

Proof techniques
Basic probability

Math you need to Review
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Relatives of Big-Oh
big-Omega
n f(n) is W(g(n)) if there is a constant c > 0 

and an integer constant n0 ³ 1 such that 
f(n) ³ c•g(n) for n ³ n0

big-Theta
n f(n) is Q(g(n)) if there are constants c’ > 0 and c’’ 

> 0 and an integer constant n0 ³ 1 such that 
c’•g(n) £ f(n) £ c’’•g(n) for n ³ n0
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Intuition for Asymptotic 
Notation

Big-Oh
n f(n) is O(g(n)) if f(n) is asymptotically 

less than or equal to g(n)
big-Omega
n f(n) is W(g(n)) if f(n) is asymptotically 

greater than or equal to g(n)
big-Theta
n f(n) is Q(g(n)) if f(n) is asymptotically 

equal to g(n)
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Example Uses of the 
Relatives of Big-Oh

f(n) is Q(g(n)) if it is W(n2) and O(n2). We have already seen the former, 
for the latter recall that f(n) is O(g(n)) if there is a constant c > 0 and an 
integer constant n0 ³ 1 such that f(n) < c•g(n) for n ³ n0 

Let c = 5 and n0 = 1

n 5n2 is Q(n2)

f(n) is W(g(n)) if there is a constant c > 0 and an integer constant n0 ³ 1 
such that f(n) ³ c•g(n) for n ³ n0

let c = 1 and n0 = 1

n 5n2 is W(n)

f(n) is W(g(n)) if there is a constant c > 0 and an integer constant n0 ³ 1 
such that f(n) ³ c•g(n) for n ³ n0

let c = 5 and n0 = 1

n 5n2 is W(n2)
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