
Analysis of Algorithms

AlgorithmInput Output

© 2013 Goodrich, Tamassia, Goldwasser 1Analysis of Algorithms

Analysis of Algorithms 2

Running Time
q Most algorithms transform

input objects into output
objects.

q The running time of an
algorithm typically grows
with the input size.

q Average case time is often
difficult to determine.

q We focus on the worst case
running time.
n Easier to analyze
n Crucial to applications such as

games, finance and robotics

0

20

40

60

80

100

120

R
un

ni
ng

 T
im

e
1000 2000 3000 4000

Input Size

best case
average case
worst case

© 2013 Goodrich, Tamassia, Goldwasser

Analysis of Algorithms 3

Experimental Studies
q Write a program

implementing the
algorithm

q Run the program with
inputs of varying size and
composition, noting the
time needed:

q Plot the results

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 50 100
Input Size

Ti
m

e
(m

s)

© 2013 Goodrich, Tamassia, Goldwasser

Analysis of Algorithms 4

Limitations of Experiments

q It is necessary to implement the
algorithm, which may be difficult

q Results may not be indicative of the
running time on other inputs not included
in the experiment.

q In order to compare two algorithms, the
same hardware and software
environments must be used

© 2013 Goodrich, Tamassia, Goldwasser

Analysis of Algorithms 5

Theoretical Analysis
q Uses a high-level description of the

algorithm instead of an implementation
q Characterizes running time as a

function of the input size, n.
q Takes into account all possible inputs
q Allows us to evaluate the speed of an

algorithm independent of the
hardware/software environment

© 2013 Goodrich, Tamassia, Goldwasser

Analysis of Algorithms 6

Pseudocode
q High-level description of an algorithm
q More structured than English prose
q Less detailed than a program
q Preferred notation for describing

algorithms
q Hides program design issues

© 2013 Goodrich, Tamassia, Goldwasser

Analysis of Algorithms 7

Pseudocode Details
q Control flow

n if … then … [else …]
n while … do …
n repeat … until …
n for … do …
n Indentation replaces braces

q Method declaration
Algorithm method (arg [, arg…])

Input …
Output …

q Method call
method (arg [, arg…])

q Return value
return expression

q Expressions:
¬Assignment

= Equality testing

n2 Superscripts and other
mathematical
formatting allowed

© 2013 Goodrich, Tamassia, Goldwasser

Analysis of Algorithms 8

The Random Access Machine
(RAM) Model

q A CPU

q An potentially unbounded
bank of memory cells,
each of which can hold an
arbitrary number or
character

0
1
2

Memory cells are numbered and accessing
any cell in memory takes unit time.

© 2013 Goodrich, Tamassia, Goldwasser

Analysis of Algorithms 9

Seven Important Functions
q Seven functions that

often appear in algorithm
analysis:
n Constant » 1
n Logarithmic » log n
n Linear » n
n N-Log-N » n log n
n Quadratic » n2

n Cubic » n3

n Exponential » 2n

q In a log-log chart, the
slope of the line
corresponds to the
growth rate

1E+0
1E+2
1E+4
1E+6
1E+8
1E+10
1E+12
1E+14
1E+16
1E+18
1E+20
1E+22
1E+24
1E+26
1E+28
1E+30

1E+0 1E+2 1E+4 1E+6 1E+8 1E+10
n

T
(n
)

Cubic

Quadratic

Linear

© 2013 Goodrich, Tamassia, Goldwasser

Functions Graphed
Using “Normal” Scale

© 2013 Goodrich, Tamassia, Goldwasser 10Analysis of Algorithms

g(n) = 2ng(n) = 1

g(n) = lg n

g(n) = n lg n

g(n) = n

g(n) = n2

g(n) = n3

Slide by Matt Stallmann
included with permission.

Analysis of Algorithms 11

Primitive Operations
q Basic computations

performed by an algorithm
q Identifiable in pseudocode
q Largely independent from the

programming language
q Exact definition not important

(we will see why later)
q Assumed to take a constant

amount of time in the RAM
model

q Examples:
n Evaluating an

expression
n Assigning a value

to a variable
n Indexing into an

array
n Calling a method
n Returning from a

method

© 2013 Goodrich, Tamassia, Goldwasser

Analysis of Algorithms 12

Counting Primitive Operations
q By inspecting the pseudocode, we can determine the

maximum number of primitive operations executed by
an algorithm, as a function of the input size

© 2013 Goodrich, Tamassia, Goldwasser

q Step 1: 2 ops, 3: 2 ops, 4: 2n ops, 5: 2n
ops, 6: 0 to n ops, 7: 1 op

Analysis of Algorithms 13

Estimating Running Time
q Algorithm find_max executes 5n + 5 primitive

operations in the worst case, 4n + 5 in the best
case. Define:
a = Time taken by the fastest primitive operation
b = Time taken by the slowest primitive operation

q Let T(n) be worst-case time of find_max. Then
a (4n + 5) £ T(n) £ b(5n + 5)

q Hence, the running time T(n) is bounded by two
linear functions.

© 2013 Goodrich, Tamassia, Goldwasser

Analysis of Algorithms 14

Growth Rate of Running Time

q Changing the hardware/ software
environment
n Affects T(n) by a constant factor, but
n Does not alter the growth rate of T(n)

q The linear growth rate of the running
time T(n) is an intrinsic property of
algorithm find_max

© 2013 Goodrich, Tamassia, Goldwasser

Why Growth Rate Matters

© 2013 Goodrich, Tamassia, Goldwasser 15Analysis of Algorithms

Slide by Matt Stallmann
included with permission.

if runtime
is... time for n + 1 time for 2 n time for 4 n

c lg n c lg (n + 1) c (lg n + 1) c(lg n + 2)

c n c (n + 1) 2c n 4c n

c n lg n
~ c n lg n

+ c n
2c n lg n +

2cn
4c n lg n +

4cn

c n2 ~ c n2 + 2c n 4c n2 16c n2

c n3 ~ c n3 + 3c n2 8c n3 64c n3

c 2n c 2 n+1 c 2 2n c 2 4n

runtime
quadruples
when
problem
size doubles

Comparison of Two Algorithms

© 2013 Goodrich, Tamassia, Goldwasser 16Analysis of Algorithms

Slide by Matt Stallmann
included with permission.

insertion sort is
n2 / 4

merge sort is
2 n lg n

sort a million items?
insertion sort takes
roughly 70 hours

while
merge sort takes
roughly 40 seconds

This is a slow machine, but if
100 x as fast then it’s 40 minutes
versus less than 0.5 seconds

Analysis of Algorithms 17

Constant Factors
q The growth rate is

not affected by
n constant factors or
n lower-order terms

q Examples
n 102n + 105 is a linear

function
n 105n2 + 108n is a

quadratic function
1E+0
1E+2
1E+4
1E+6
1E+8
1E+10
1E+12
1E+14
1E+16
1E+18
1E+20
1E+22
1E+24
1E+26

1E+0 1E+2 1E+4 1E+6 1E+8 1E+10
n

T
(n
)

Quadratic
Quadratic
Linear
Linear

© 2013 Goodrich, Tamassia, Goldwasser

Analysis of Algorithms 18

Big-Oh Notation
q Given functions f(n) and

g(n), we say that f(n) is
O(g(n)) if there are
positive constants
c and n0 such that
f(n) £ cg(n) for n ³ n0

q Example: 2n + 10 is O(n)
n 2n + 10 £ cn
n (c - 2) n ³ 10
n n ³ 10/(c - 2)
n Pick c = 3 and n0 = 10

1

10

100

1,000

10,000

1 10 100 1,000
n

3n

2n+10

n

© 2013 Goodrich, Tamassia, Goldwasser

Analysis of Algorithms 19

Big-Oh Example
q Example: the function

n2 is not O(n)
n n2 £ cn
n n £ c
n The above inequality

cannot be satisfied
since c must be a
constant

1

10

100

1,000

10,000

100,000

1,000,000

1 10 100 1,000
n

n^2
100n
10n
n

© 2013 Goodrich, Tamassia, Goldwasser

Analysis of Algorithms 20

More Big-Oh Examples
7n-2

7n-2 is O(n)
need c > 0 and n0 ³ 1 such that 7n-2 £ c•n for n ³ n0

this is true for c = 7 and n0 = 1

n 3n3 + 20n2 + 5
3n3 + 20n2 + 5 is O(n3)
need c > 0 and n0 ³ 1 such that 3n3 + 20n2 + 5 £ c•n3 for n ³ n0

this is true for c = 4 and n0 = 21

n 3 log n + 5
3 log n + 5 is O(log n)
need c > 0 and n0 ³ 1 such that 3 log n + 5 £ c•log n for n ³ n0

this is true for c = 8 and n0 = 2
© 2013 Goodrich, Tamassia, Goldwasser

Analysis of Algorithms 21

Big-Oh and Growth Rate
q The big-Oh notation gives an upper bound on the

growth rate of a function
q The statement “f(n) is O(g(n))” means that the growth

rate of f(n) is no more than the growth rate of g(n)
q We can use the big-Oh notation to rank functions

according to their growth rate

f(n) is O(g(n)) g(n) is O(f(n))

g(n) grows more Yes No
f(n) grows more No Yes
Same growth Yes Yes

© 2013 Goodrich, Tamassia, Goldwasser

Analysis of Algorithms 22

Big-Oh Rules

q If is f(n) a polynomial of degree d, then f(n) is
O(nd), i.e.,

1. Drop lower-order terms
2. Drop constant factors

q Use the smallest possible class of functions
n Say “2n is O(n)” instead of “2n is O(n2)”

q Use the simplest expression of the class
n Say “3n + 5 is O(n)” instead of “3n + 5 is O(3n)”

© 2013 Goodrich, Tamassia, Goldwasser

Analysis of Algorithms 23

Asymptotic Algorithm Analysis
q The asymptotic analysis of an algorithm determines

the running time in big-Oh notation
q To perform the asymptotic analysis

n We find the worst-case number of primitive operations
executed as a function of the input size

n We express this function with big-Oh notation
q Example:

n We say that algorithm find_max “runs in O(n) time”
q Since constant factors and lower-order terms are

eventually dropped anyhow, we can disregard them
when counting primitive operations

© 2013 Goodrich, Tamassia, Goldwasser

Analysis of Algorithms 24

Computing Prefix Averages
q We further illustrate

asymptotic analysis with
two algorithms for prefix
averages

q The i-th prefix average of
an array X is average of the
first (i + 1) elements of X:

A[i] = (X[0] + X[1] + … + X[i])/(i+1)

q Computing the array A of
prefix averages of another
array X has applications to
financial analysis

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7

X
A

© 2013 Goodrich, Tamassia, Goldwasser

Analysis of Algorithms 25

Prefix Averages (Quadratic)
The following algorithm computes prefix averages in
quadratic time by applying the definition

© 2013 Goodrich, Tamassia, Goldwasser

Analysis of Algorithms 26

Arithmetic Progression
q The running time of

prefixAverage1 is
O(1 + 2 + …+ n)

q The sum of the first n
integers is n(n + 1) / 2
n There is a simple visual

proof of this fact
q Thus, algorithm

prefixAverage1 runs in
O(n2) time 0

1

2
3
4
5

6
7

1 2 3 4 5 6

© 2013 Goodrich, Tamassia, Goldwasser

Analysis of Algorithms 27

Prefix Averages 2 (Looks Better)
The following algorithm uses an internal Python
function to simplify the code

Algorithm prefixAverage2 still runs in O(n2) time!
© 2013 Goodrich, Tamassia, Goldwasser

Analysis of Algorithms 28

Prefix Averages 3 (Linear Time)
The following algorithm computes prefix averages in
linear time by keeping a running sum

Algorithm prefixAverage3 runs in O(n) time
© 2013 Goodrich, Tamassia, Goldwasser

Analysis of Algorithms 29

q properties of logarithms:
logb(xy) = logbx + logby
logb (x/y) = logbx - logby
logbxa = alogbx
logba = logxa/logxb

q properties of exponentials:
a(b+c) = aba c
abc = (ab)c

ab /ac = a(b-c)

b = a logab

bc = a c*logab

Summations
Logarithms and Exponents

Proof techniques
Basic probability

Math you need to Review

© 2013 Goodrich, Tamassia, Goldwasser

Analysis of Algorithms 30

Relatives of Big-Oh
big-Omega
n f(n) is W(g(n)) if there is a constant c > 0

and an integer constant n0 ³ 1 such that
f(n) ³ c•g(n) for n ³ n0

big-Theta
n f(n) is Q(g(n)) if there are constants c’ > 0 and c’’

> 0 and an integer constant n0 ³ 1 such that
c’•g(n) £ f(n) £ c’’•g(n) for n ³ n0

© 2013 Goodrich, Tamassia, Goldwasser

Analysis of Algorithms 31

Intuition for Asymptotic
Notation

Big-Oh
n f(n) is O(g(n)) if f(n) is asymptotically

less than or equal to g(n)
big-Omega
n f(n) is W(g(n)) if f(n) is asymptotically

greater than or equal to g(n)
big-Theta
n f(n) is Q(g(n)) if f(n) is asymptotically

equal to g(n)

© 2013 Goodrich, Tamassia, Goldwasser

Analysis of Algorithms 32

Example Uses of the
Relatives of Big-Oh

f(n) is Q(g(n)) if it is W(n2) and O(n2). We have already seen the former,
for the latter recall that f(n) is O(g(n)) if there is a constant c > 0 and an
integer constant n0 ³ 1 such that f(n) < c•g(n) for n ³ n0

Let c = 5 and n0 = 1

n 5n2 is Q(n2)

f(n) is W(g(n)) if there is a constant c > 0 and an integer constant n0 ³ 1
such that f(n) ³ c•g(n) for n ³ n0

let c = 1 and n0 = 1

n 5n2 is W(n)

f(n) is W(g(n)) if there is a constant c > 0 and an integer constant n0 ³ 1
such that f(n) ³ c•g(n) for n ³ n0

let c = 5 and n0 = 1

n 5n2 is W(n2)

© 2013 Goodrich, Tamassia, Goldwasser

