Analysis of Algorithms

i

B

Algorithm Output

© 2013 Goodrich, Tamassia, Goldwasser Analysis of Algorithms

/N

Running Time

a Most algorithms transform
input objects into output

N

O best case
B average case
B worst case

objects. 120,
a The running time of an 100
algorithm typically grows

80 -

with the input size.

. . 60 -
a Average case time is often

40 -

Running Time

difficult to determine.

a We focus on the worst case 209
running time. 0!
= Easier to analyze

= Crucial to applications such as
games, finance and robotics

© 2013 Goodrich, Tamassia, Goldwasser Analysis of Algorithms

1000

2000 3000
Input Size

Experimental Studies

N
\J

o Write a program
implementing the
algorithm

a Run the program with

time needed:

from time import time
start_time = time()

run algorithm

end_time = time()

elapsed = end_time — start_time

o Plot the results

© 2013 Goodrich, Tamassia, Goldwasser

inputs of varying size and E 5000 -
composition, noting the

9000
8000 -
7000 -
~ 6000 -

.
.
S
.
.

£ 4000 - i
= 3000 - .
L
2000 - T
",l
1000 - i "
oLt .
0 50 100
Input Size
Analysis of Algorithms 3

Limitations of Experiments

N
\J

a It is necessary to implement the
algorithm, which may be difficult

a Results may not be indicative of the
running time on other inputs not included
in the experiment.

a In order to compare two algorithms, the
same hardware and software |
environments must be used

© 2013 Goodrich, Tamassia, Goldwasser Analysis of Algorithms : T4

Theoretical Analysis

N

a Uses a high-level description of the
algorithm instead of an implementation

a Characterizes running time as a
function of the input size, n.

a Takes into account all possible inputs

a Allows us to evaluate the speed of an
algorithm independent of the
hardware/software environment

© 2013 Goodrich, Tamassia, Goldwasser Analysis of Algorithms 5

Pseudocode

N

a High-level description of an algorithm
a More structured than English prose
a Less detailed than a program

a Preferred notation for describing
algorithms

a Hides program design issues

© 2013 Goodrich, Tamassia, Goldwasser Analysis of Algorithms 6

Pseudocode Details %gi

S
a Control flow a Method call
= if ... then ... [else ...] method (arg |, arg...])
= while ... do ... a Return value
= repeat ... until ... return expression
= for ...do ... a Expressions:
= Indentation replaces braces < Assignment

o Method declaration
Algorithm method (arg |, arg...])

Input ... n? Superscripts and other
Output ... mathematical
formatting allowed

= Equality testing

© 2013 Goodrich, Tamassia, Goldwasser Analysis of Algorithms

S St
’***’*‘*’*‘*’***’*‘*’*‘*’***’*‘*’*‘*’***’***’**"’***’***’*ﬂ ’*’*’*’*’*’
R R

N

o A CPU

a An potentially unbounded
bank of memory cells,
each of which can hold an
arbitrary number or
character

@ Memory cells are numbered and accessing
any cell in memory takes unit time.

© 2013 Goodrich, Tamassia, Goldwasser Analysis of Algorithms 8

Seven Important Functions

L/

o Seven functions that
often appear in algorithm !E+30 |

N

analysis: 12728 T — Cublc /
= Constant ~ 1 1E+24 + — Quadratic
» Logarithmic ~ log n }EE@ — Linear 7
= Linear~n IE+18
s N-Log-N ~ nlog n S }E+L61 V4
: +
= Quadratic ~ n? ~ 1g+12

= Cubic ~ n? 1E+10

= Exponential ~ 2~ 1E+8 £
1E+6
o Inalog-log chart, the 12| ~
slope of the line 1E+0 1
corresponds to the IE+0 1E+2 1E#4 1E+6 1E+8 1E+10
growth rate L

© 2013 Goodrich, Tamassia, Goldwasser Analysis of Algorithms 9

ission.

luded with perm

26019

Slide by Matt Stallmann

INC

Normal” Scale

13

Functions Graphed

Using

186419

166119
14619
126019

g(n) =nlgn

as0
00
150

16419

g(n) = 2

86118
66418

50
200

06
o.

150

agng

100

2618

s0

10

70

50

a0

10

10

4500

4000

g(n) = n?

3500
3000

/

\V

2000
1500

g(n)=1Ign

1000

70

60

20

300000

50

250000

g(n) =n’

200000
150000

20
0

100000

50000

a0

Analysis of Algorithms

10

© 2013 Goodrich, Tamassia, Goldwasser

Primitive Operations

N

a Basic computations Examples:
performed by an algorithm - PIES.
= Evaluating an

o Identifiable in pseudocode expression

a Largely independent from the = Assigning a value

_ to a variable
programming language . Indexing into an

o Exact definition not important array
(we will see why later) = Calling a method
o Assumed to take a constant = Returning from a
amount of time in the RAM method
model

© 2013 Goodrich, Tamassia, Goldwasser Analysis of Algorithms 11

'Counting Primitive Operations

a By inspecting the pseudocode, we can determine the
maximum number of primitive operations executed by
an algorithm, as a function of the input size

N

I def find_max(data):

2 """Return the maximum element from a nonempty Python list."""

3 biggest = data[0] # The initial value to beat

4 for val in data: # For each value:

5 if val > biggest # if it is greater than the best so far,
6 biggest = val # we have found a new best (so far)
7 return biggest # When loop ends, biggest is the max

o Step 1: 2 ops, 3: 2 ops, 4: 2n ops, 5: 2n
ops, 6: 0tonops, 7: 1 op

© 2013 Goodrich, Tamassia, Goldwasser Analysis of Algorithms 12

Estimating Running Time w?fg |

o Algorithm find_max executes 5n + 5 primitive
operations in the worst case, 4n + 5 in the best
case. Define:

a = Time taken by the fastest primitive operation
b = Time taken by the slowest primitive operation

o Let T(n) be worst-case time of find_max. Then
a(4n+5)<T(n) < b(5n +)5)

a Hence, the running time T(n) is bounded by two
linear functions.

N

© 2013 Goodrich, Tamassia, Goldwasser Analysis of Algorithms 13

Growth

N

a Changi

n Affec

Rate of Running Time

ng the hardware/ software

environment

s Does

s T(n) by a constant factor, but
not alter the growth rate of 7(n)

a The linear growth rate of the running

time T(n) is an intrinsic property of
algorithm find max

© 2013 Goodrich, Tamassia,

4

Goldwasser Analysis of Algorithms 14

Slide by Matt Stallmann
included with permission.

Why Growth Rate Matters

g
N
i rl::tlme timeforn+1 | timefor2n | timefor4n
clgn clgin+1) | c(lgn+1)| c(lgn+2)
cn c(in+1) 2c n 4c n
~cnlgn | 2cnign+ | 4cnign+ | runtime
cnlgn drupl
+ Ccn 2cn 4cn quadrupies
L, when
Cc n2 ~Chn2+2cn 4c n? /Tﬁ—n’Q/ problem
size doubles
c n3 ~cC n3 + 3cn? 8c n3 64c n3
C2n C2n+1 022n 024n

© 2013 Goodrich, Tamassia, Goldwasser Analysis of Algorithms 15

N

L/

ds

runtime, microsecon

insertion sort vs merge sort

9000

(09}
o
o
o

7000
6000

5000

4000
3000

2000

T T I

50 100 150
number of elements

insertion sort —=— merge sort

200

© 2013 Goodrich, Tamassia, Goldwasser

Slide by Matt Stallmann
included with permission.

Comparison of Two Algorithms

insertion sort is
nz/4

merge sort is
2nlgn

sort a million items?

insertion sort takes

roughly 70 hours
while

merge sort takes

roughly 40 seconds

This is a slow machine, but if
100 x as fast then it’ s 40 minutes
versus less than 0.5 seconds

Analysis of Algorithms 16

Constant Factors

p
\J
_ 1E+26 —
o The growth rate is 1g+24 |- - -Quadratic
not affected by 1E+22 - — Quadrafic 1
1E+20 - - - -Linear =
= constant factors or |g+18 4 — Linear
= lower-order terms _ 1E+16
s 1E+14
o Examples < 1E+12
s 1022+ 105is a linear B9 T+
function 1
u 1E+6 ————1 7
m 10°#2+10%nis a 1E+4
quadratic function lE*2
1E+0
IE+0 1E+2 1E+4 1E+6 1E+8 1E+10

© 2013 Goodrich, Tamassia, Goldwasser Analysis of Algorithms 17

Blg -Oh Notation

f\

10,000
o Given functions f{n) and 3 '
g(n), we say that f(n) s i L
O(g(n)) if there are : /
positive constants —n /
¢ and n, such that 100 /
f(n) < cg(n) for n> n, 0 /

a Example: 2n + 10 is O(n)

m 2n+10<cn
m (c—2)n=>10
m n>10/(c—-2)
m Pick c=3and ny,=10

© 2013 Goodrich, Tamassia, Goldwasser

Analysis of Algorithms

10

100

1,000

18

N

Big-Oh Example

1,000,000
a Example: the function

© 2013 Goodrich, Tamassia, Goldwasser

- 100,000 =
n? is not O(n) ’
] n2 < cn 107000 1|
m n<c¢
= The above inequality 1,000
cannot be satisfied
since ¢ must be a 100
constant
10

—nN2
---100n
--10n

—n

Analysis of Algorithms

10

100

1,000

19

T LA T ST b LT e L E T b e T E T b L b LT ST b T e b TE LT AT TE T b LA T b
bbb bbbttt bbbttt Sttt et ettt Sttt
b e e
] |

A
N

e 7n-2
/n-2is O(n)
need ¢ > 0 and ny > 1 such that 7n-2 < cen for n > n,
thisistrueforc=7andn, =1

m3n3+ 20n2 + 5
3n3 + 20n2 + 5 is O(n3)
need c > 0 and ny > 1 such that 3n3 + 20n? + 5 < cen3 for n > n,
this is true for c = 4 and ny, = 21

m3logn+5

3logn+ 5is O(log n)
need ¢ > 0 and ny > 1 such that 3 log n + 5 < celog n for n > n,

this is true forc = 8 and ny = 2
© 2013 Goodrich, Tamassia, Goldwasser Analysis of Algorithms 20

N

according to their growth rate

Big-Oh and Growth Rate

a The big-Oh notation gives an upper bound on the
growth rate of a function

o The statement “f{(n) is O(g(n))” means that the growth
rate of f{n) is no more than the growth rate of g(n)

a We can use the big-Oh notation to rank functions

fin) 1s O(g(n))

g(n)is O(f(n))

g(n) grows more Yes No
f(n) grows more No Yes
Same growth Yes Yes

© 2013 Goodrich, Tamassia, Goldwasser

Analysis of Algorithms

21

Big-Oh Rules

A
Y

a If is fin) a polynomial of degree d, then fin) is
Oo(n9), i.e.,
1. Drop lower-order terms
2. Drop constant factors

a Use the smallest possible class of functions
» Say “2n is O(n)” instead of “2n is O(n?)”

a Use the simplest expression of the class
s Say “3n+5is O(n)” instead of “3n +5 is O(3n)”

© 2013 Goodrich, Tamassia, Goldwasser Analysis of Algorithms 22

Asymptotic Algorithm Analysis

o The asymptotic analysis of an algorithm determines
the running time in big-Oh notation

a To perform the asymptotic analysis

= We find the worst-case humber of primitive operations
executed as a function of the input size

= We express this function with big-Oh notation

o Example:
= We say that algorithm find_max “runs in O(n) time”
a Since constant factors and lower-order terms are
eventually dropped anyhow, we can disregard them
when counting primitive operations

N

© 2013 Goodrich, Tamassia, Goldwasser Analysis of Algorithms 23

N

a We further illustrate
asymptotic analysis with
two algorithms for prefix
averages

a The i-th prefix average of
an array X is average of the
first (i + 1) elements of X:

A[i] = (X[0] + XT1] + ... + XTi])/(i+1)

o Computing the array 4 of
prefix averages of another
array X has applications to
financial analysis

Computing Prefix Averages

35
30 -
25

EX
OA

20 -
15 A
10 A
5 -

© 2013 Goodrich, Tamassia, Goldwasser Analysis of Algorithms

1 2 3 4 5 6 7

Prefix Averages (Quadratic)

@ The following algorithm computes prefix averages in
quadratic time by applying the definition

N

| def prefix_averagel(S):

2 """Return list such that, for all j, A[j] equals average of S[0], ..., S[j]."""
3 n=len(S)

4 A=][0]*n # create new list of n zeros

5 for jin range(n):

6 total = 0 # begin computing S[0] + ... + S][j]

7 for i in range(j + 1):

8 total += SJi]

9 A[j] = total / (j+1) # record the average

10 return A

© 2013 Goodrich, Tamassia, Goldwasser Analysis of Algorithms 25

Arithmetic Progression

N

a The running time of
prefixAveragel 1S

O(1+2+...+n)

a The sum of the first n
integersisn(n+1)/2
= There is a simple visual
proof of this fact
a Thus, algorithm
prefixAveragel runs in
O(n?) time

S == NN W A Ui & 1

© 2013 Goodrich, Tamassia, Goldwasser Analysis of Algorithms 26

Prefix Averages 2 (Looks Better)

@ The following algorithm uses an internal Python
function to simplify the code

N

| def prefix_average2(S):

2 """Return list such that, for all j, A[j] equals average of S[0], ..., S[j]."""
3 n=len(S)

4 A=1]0] *n # create new list of n zeros

5 for jin range(n):

6 A[j] = sum(S[0:j+1]) / (j+1) # record the average

7 return A

@ Algorithm prefixAverageZ2 still runs in O(n?) time!

© 2013 Goodrich, Tamassia, Goldwasser Analysis of Algorithms 27

Prefix Averages 3 (Linear Time)

@ The following algorithm computes prefix averages in
linear time by keeping a running sum

N

I def prefix_average3(S):

2 """Return list such that, for all j, A[j] equals average of S[0], ..., S[j]."""

3 n=len(S)

4 A=][0]*n # create new list of n zeros

5 total =0 # compute prefix sum as S[0] + S[1] + ...
6 for jin range(n):

7 total += S[j] # update prefix sum to include S[j]

8 A[j] = total / (j+1) # compute average based on current sum
9 return A

@ Algorithm prefixAverage3 runs in O(n) time

© 2013 Goodrich, Tamassia, Goldwasser Analysis of Algorithms 28

Math you need to Review

4 Summations
@ Logarithms and Exponents

N

o properties of logarithms:

logy(xy) = logyx + logpy
logy, (X/y) = logpx - logpy
log,xa = alog,x

log,a = log,a/log,b

o properties of exponentials:
a(b+C) — aba C

. bc — b\c
@ Proof techniques i /ac(j ;(b_c)

Basic probability b = a log,b

bc = 3 c*Iogab

© 2013 Goodrich, Tamassia, Goldwasser Analysis of Algorithms 29

Relatives of Big-Oh J

4 big-Omega
s f(n) is Q(g(n)) if there is a constant c > 0
and an integer constant ny > 1 such that
f(n) > ceg(n) for n > n,

N

@ big-Theta

s f(n) is ®(g(n)) if there are constants ¢’ > 0 and ¢”
> 0 and an integer constant n, > 1 such that
c’eg(n) < f(n) < c”eg(n) forn > n,

© 2013 Goodrich, Tamassia, Goldwasser Analysis of Algorithms 30

S St

’***’*‘*’*‘*’***’*‘*’*‘*’***’*‘*’*‘*’***’***’**"’***’***’*ﬂ’*’*’*’*’*’

R R
I t . t . I ‘ \ t t .

Notation

Big-Oh

= f(n) is O(g(n)) if f(n) is asymptotically
less than or equal to g(n)

big-Omega

= f(n) is Q(g(n)) if f(n) is asymptotically
greater than or equal to g(n)

big-Theta

= f(n) is ®(g(n)) if f(n) is asymptotically
equal to g(n)

N

© 2013 Goodrich, Tamassia, Goldwasser Analysis of Algorithms 31

oy
e
0o
e e T T A
| |

m 5n?is Q(n?)
f(n) 1s C2(g(n)) 1f there 1s a constant ¢ > 0 and an integer constant n, > 1
such that f(n) > ceg(n) for n > n,
letc=5and ny,=1
m 5n?is Q(n)
f(n) 1s C2(g(n)) 1f there 1s a constant ¢ > 0 and an integer constant n, > 1
such that f(n) > ceg(n) for n > n,
letc=1and n,=1

m Sn?is O®n?)

Ain) is O(g(n)) if it is Q(n?) and O(n?). We have already seen the former,
for the latter recall that f(n) 1s O(g(n)) if there is a constant ¢ > 0 and an
integer constant n, > 1 such that f(n) < ceg(n) for n > n,

Letc=5andn,=1

N

© 2013 Goodrich, Tamassia, Goldwasser Analysis of Algorithms 32

