
Object-Oriented Programming

© 2013 Goodrich, Tamassia, Goldwasser 1Object-Oriented Programming



Object-Oriented Programming 2

Terminology
q Each object created in a program is an instance of a 

class. 
q Each class presents to the outside world a concise and 

consistent view of the objects that are instances of 
this class, without going into too much unnecessary 
detail or giving others access to the inner workings of 
the objects. 

q The class definition typically specifies instance 
variables, also known as data members, that the 
object contains, as well as the methods, also known 
as member functions, that the object can execute. 

© 2013 Goodrich, Tamassia, Goldwasser



Goals
q Robustness

n We want software to be capable of handling 
unexpected inputs that are not explicitly defined 
for its application.

q Adaptability
n Software needs to be able to evolve over time in 

response to changing conditions in its 
environment.

q Reusability
n The same code should be usable as a component 

of different systems in various applications.
© 2013 Goodrich, Tamassia, Goldwasser Object-Oriented Programming 3



Abstract Data Types
q Abstraction is to distill a system to its most 

fundamental parts. 
q Applying the abstraction paradigm to the design of data 

structures gives rise to abstract data types (ADTs). 
q An ADT is a model of a data structure that specifies the 

type of data stored, the operations supported on 
them, and the types of parameters of the operations. 

q An ADT specifies what each operation does, but not 
how it does it. 

q The collective set of behaviors supported by an ADT is 
its public interface.

4© 2013 Goodrich, Tamassia, Goldwasser Object-Oriented Programming



Object-Oriented Design 
Principles
q Modularity
q Abstraction
q Encapsulation

© 2013 Goodrich, Tamassia, Goldwasser Object-Oriented Programming 5



Duck Typing
q Python treats abstractions implicitly using a mechanism 

known as duck typing. 
n A program can treat objects as having certain functionality and 

they will behave correctly provided those objects provide this 
expected functionality. 

q As an interpreted and dynamically typed language, there 
is no “compile time” checking of data types in Python, 
and no formal requirement for declarations of abstract 
base classes. 

q The term “duck typing” comes from an adage attributed 
to poet James Whitcomb Riley, stating that “when I see 
a bird that walks like a duck and swims like a duck and 
quacks like a duck, I call that bird a duck.”

6© 2013 Goodrich, Tamassia, Goldwasser Object-Oriented Programming



Abstract Base Classes
q Python supports abstract data types using a mechanism 

known as an abstract base class (ABC). 
q An abstract base class cannot be instantiated, but it 

defines one or more common methods that all 
implementations of the abstraction must have. 

q An ABC is realized by one or more concrete classes that 
inherit from the abstract base class while providing 
implementations for those method declared by the ABC. 

q We can make use of several existing abstract base 
classes coming from Python’s collections module, which 
includes definitions for several common data structure 
ADTs, and concrete implementations of some of these.

7© 2013 Goodrich, Tamassia, Goldwasser Object-Oriented Programming



Encapsulation
q Another important principle of object-oriented design 

is encapsulation. 
n Different components of a software system should not 

reveal the internal details of their respective 
implementations.

q Some aspects of a data structure are assumed to be 
public and some others are intended to be internal 
details. 

q Python provides only loose support for encapsulation. 
n By convention, names of members of a class (both data 

members and member functions) that start with a single 
underscore character (e.g., _secret) are assumed to be 
nonpublic and should not be relied upon.

8© 2013 Goodrich, Tamassia, Goldwasser Object-Oriented Programming



Design Patterns
q Algorithmic patterns:
q Recursion 
q Amortization
q Divide-and-conquer 
q Prune-and-search
q Brute force
q Dynamic programming 
q The greedy method

q Software design 
patterns:

q Iterator 
q Adapter 
q Position 
q Composition 
q Template method 
q Locator 
q Factory method

© 2013 Goodrich, Tamassia, Goldwasser Object-Oriented Programming 9



Object-Oriented 
Software Design
q Responsibilities: Divide the work into different 

actors, each with a different responsibility.
q Independence: Define the work for each class 

to be as independent from other classes as 
possible.

q Behaviors: Define the behaviors for each class 
carefully and precisely, so that the consequences 
of each action performed by a class will be well 
understood by other classes that interact with it.

© 2013 Goodrich, Tamassia, Goldwasser Object-Oriented Programming 10



Unified Modeling Language 
(UML)
A class diagram has three portions.
1. The name of the class
2. The recommended instance variables
3. The recommended methods of the class.

© 2013 Goodrich, Tamassia, Goldwasser Object-Oriented Programming 11



Class Definitions
q A class serves as the primary means for abstraction in 

object-oriented programming.
q In Python, every piece of data is represented as an 

instance of some class.
q A class provides a set of behaviors in the form of 

member functions (also known as methods), with 
implementations that belong to all its instances.

q A class also serves as a blueprint for its instances, 
effectively determining the way that state information 
for each instance is represented in the form of 
attributes (also known as fields, instance variables, 
or data members).

© 2013 Goodrich, Tamassia, Goldwasser Object-Oriented Programming 12



The self Identifier
q In Python, the self identifier plays a key 

role. 
q In any class, there can possibly be many 

different instances, and each must 
maintain its own instance variables.

q Therefore, each instance stores its own 
instance variables to reflect its current 
state. Syntactically, self identifies the 
instance upon which a method is invoked.

© 2013 Goodrich, Tamassia, Goldwasser Object-Oriented Programming 13



Example

© 2013 Goodrich, Tamassia, Goldwasser Object-Oriented Programming 14



Example, Part 2

© 2013 Goodrich, Tamassia, Goldwasser Object-Oriented Programming 15



Example, Part 3

© 2013 Goodrich, Tamassia, Goldwasser Object-Oriented Programming 16



Constructors
q A user can create an instance of the 

CreditCard class using a syntax as:

q Internally, this results in a call to the 
specially named __init__ method that 
serves as the constructor of the class. 

q Its primary responsibility is to establish 
the state of a newly created credit card 
object with appropriate instance variables. 

© 2013 Goodrich, Tamassia, Goldwasser Object-Oriented Programming

17



Operator Overloading
q Python’s built-in classes provide natural 

semantics for many operators. 
q For example, the syntax a + b invokes 

addition for numeric types, yet 
concatenation for sequence types. 

q When defining a new class, we must 
consider whether a syntax like a + b 
should be defined when a or b is an 
instance of that class.

© 2013 Goodrich, Tamassia, Goldwasser Object-Oriented Programming 18



Iterators
q Iteration is an important concept in the 

design of data structures. 
q An iterator for a collection provides 

one key behavior: 
n It supports a special method named 
__next__ that returns the next element of 
the collection, if any, or raises a 
StopIteration exception to indicate that 
there are no further elements.

© 2013 Goodrich, Tamassia, Goldwasser Object-Oriented Programming 19



Automatic Iterators

q Python also helps by 
providing an 
automatic iterator 
implementation for 
any class that 
defines both 
__len__ and 
__getitem__.

© 2013 Goodrich, Tamassia, Goldwasser Object-Oriented Programming 20



Inheritance
q A mechanism for a modular and hierarchical 

organization is inheritance. 
q This allows a new class to be defined based upon an 

existing class as the starting point. 
q The existing class is typically described as the base 

class, parent class, or superclass, while the newly 
defined class is known as the subclass or child class.

q There are two ways in which a subclass can 
differentiate itself from its superclass:
n A subclass may specialize an existing behavior by providing a new 

implementation that overrides an existing method. 
n A subclass may also extend its superclass by providing brand new 

methods.
© 2013 Goodrich, Tamassia, Goldwasser Object-Oriented Programming 21



Inheritance is Built into Python

q A portion of Python’s hierarchy of 
exception types:

© 2013 Goodrich, Tamassia, Goldwasser Object-Oriented Programming 22



An Extended Example
q A numeric progression is a sequence of numbers, 

where each number depends on one or more of the 
previous numbers.
n An arithmetic progression determines the next number 

by adding a fixed constant to the previous value. 
n A geometric progression determines the next number by 

multiplying the previous value by a fixed constant. 
n A Fibonacci progression uses the formula Ni+1=Ni+Ni-1

© 2013 Goodrich, Tamassia, Goldwasser Object-Oriented Programming 23



The Progression Base Class

© 2013 Goodrich, Tamassia, Goldwasser Object-Oriented Programming 24



ArithmeticProgression Subclass

© 2013 Goodrich, Tamassia, Goldwasser Object-Oriented Programming 25



GeometricProgression Subclass

© 2013 Goodrich, Tamassia, Goldwasser Object-Oriented Programming 26



FibonacciProgression Subclass

© 2013 Goodrich, Tamassia, Goldwasser Object-Oriented Programming 27


