
Recursion 1

Recursion

© 2013 Goodrich, Tamassia, Goldwasser

Recursion 2

The Recursion Pattern
q Recursion: when a method calls itself
q Classic example--the factorial function:

n n! = 1· 2· 3· ··· · (n-1)· n
q Recursive definition:

q As a Python method:

î
í
ì

-×
=

=
elsenfn
n

nf
)1(

0 if1
)(

© 2013 Goodrich, Tamassia, Goldwasser

Recursion 3

Content of a Recursive Method
q Base case(s)

n Values of the input variables for which we perform
no recursive calls are called base cases (there
should be at least one base case).

n Every possible chain of recursive calls must
eventually reach a base case.

q Recursive calls
n Calls to the current method.
n Each recursive call should be defined so that it

makes progress towards a base case.

© 2013 Goodrich, Tamassia,
Goldwasser

Visualizing Recursion

q Recursion trace
n A box for each

recursive call
n An arrow from each

caller to callee
n An arrow from each

callee to caller
showing return value

q Example

Recursion 4

recursiveFactorial (4)

recursiveFactorial (3)

recursiveFactorial (2)

recursiveFactorial (1)

recursiveFactorial (0)

return 1

call

call

call

call

return 1*1 = 1

return 2*1 = 2

return 3*2 = 6

return 4*6 = 24 final answercall

© 2013 Goodrich, Tamassia,
Goldwasser

Recursion 5

Example: English Ruler
q Print the ticks and numbers like an English ruler:

© 2013 Goodrich, Tamassia,
Goldwasser

6

Using Recursion
drawTicks(length)

Input: length of a ‘tick’
Output: ruler with tick of the given length in
the middle and smaller rulers on either side

Recursion© 2013 Goodrich, Tamassia, Goldwasser

drawTicks(length)

if(length > 0) then

drawTicks(length - 1)

draw tick of the given length

drawTicks(length - 1)

Slide by Matt Stallmann
included with permission.

Recursion 7

Recursive Drawing Method
q The drawing method is

based on the following
recursive definition

q An interval with a
central tick length L >1
consists of:
n An interval with a central

tick length L-1
n An single tick of length L
n An interval with a central

tick length L-1

drawTicks (3) Output

drawTicks (0)

(previous pattern repeats)

drawOneTick (1)

drawTicks (1)

drawTicks (2)

drawOneTick (2)

drawTicks (2)

drawTicks (1)

drawTicks (0)

drawTicks (0)

drawTicks (0)

drawOneTick (1)

drawOneTick (3)

© 2013 Goodrich, Tamassia,
Goldwasser

Recursion 8

A Recursive Method for Drawing
Ticks on an English Ruler

Note the two
recursive calls

© 2013 Goodrich, Tamassia, Goldwasser

Binary Search
q Search for an integer, target, in an

ordered list.

© 2013 Goodrich, Tamassia, Goldwasser 9Recursion

Visualizing Binary Search
q We consider three cases:

n If the target equals data[mid], then we have found the target.
n If target < data[mid], then we recur on the first half of the

sequence.
n If target > data[mid], then we recur on the second half of the

sequence.

© 2013 Goodrich, Tamassia, Goldwasser 10Recursion

Analyzing Binary Search
q Runs in O(log n) time.

n The remaining portion of the list is of size
high – low + 1.

n After one comparison, this becomes one of
the following:

n Thus, each recursive call divides the search
region in half; hence, there can be at most
log n levels.

© 2013 Goodrich, Tamassia, Goldwasser 11Recursion

Recursion 12

Linear Recursion
q Test for base cases

n Begin by testing for a set of base cases (there should be
at least one).

n Every possible chain of recursive calls must eventually
reach a base case, and the handling of each base case
should not use recursion.

q Recur once
n Perform a single recursive call
n This step may have a test that decides which of several

possible recursive calls to make, but it should ultimately
make just one of these calls

n Define each possible recursive call so that it makes
progress towards a base case.

© 2013 Goodrich, Tamassia, Goldwasser

Recursion 13

Example of Linear Recursion
Algorithm LinearSum(A, n):
Input:
A integer array A and an integer

n = 1, such that A has at least
n elements

Output:
The sum of the first n integers
in A

if n = 1 then
return A[0]

else
return LinearSum(A, n - 1) +

A[n - 1]

Example recursion trace:

LinearSum(A,5)

LinearSum(A,1)

LinearSum(A,2)

LinearSum(A,3)

LinearSum(A,4)

call

call

call

call return A[0] = 4

return 4 + A[1] = 4 + 3 = 7

return 7 + A[2] = 7 + 6 = 13

return 13 + A[3] = 13 + 2 = 15

call return 15 + A[4] = 15 + 5 = 20

© 2013 Goodrich, Tamassia, Goldwasser

Recursion 14

Reversing an Array
Algorithm ReverseArray(A, i, j):

Input: An array A and nonnegative integer
indices i and j

Output: The reversal of the elements in A
starting at index i and ending at j
if i < j then

Swap A[i] and A[j]
ReverseArray(A, i + 1, j - 1)

return

© 2013 Goodrich, Tamassia, Goldwasser

Recursion 15

Defining Arguments for Recursion
q In creating recursive methods, it is important to define

the methods in ways that facilitate recursion.
q This sometimes requires we define additional

paramaters that are passed to the method.
q For example, we defined the array reversal method as

ReverseArray(A, i, j), not ReverseArray(A).
q Python version:

© 2013 Goodrich, Tamassia, Goldwasser

Recursion 16

Computing Powers

q The power function, p(x,n)=xn, can be
defined recursively:

q This leads to an power function that runs in
O(n) time (for we make n recursive calls).

q We can do better than this, however.

!
"
#

−⋅

=
=

else)1,(
0 if1

),(
nxpx

n
nxp

© 2013 Goodrich, Tamassia, Goldwasser

Recursion 17

Recursive Squaring
q We can derive a more efficient linearly

recursive algorithm by using repeated squaring:

q For example,
24 = 2(4/2)2 = (24/2)2 = (22)2 = 42 = 16
25 = 21+(4/2)2 = 2(24/2)2 = 2(22)2 = 2(42) = 32
26 = 2(6/ 2)2 = (26/2)2 = (23)2 = 82 = 64
27 = 21+(6/2)2 = 2(26/2)2 = 2(23)2 = 2(82) = 128.

ï
î

ï
í

ì

>
>

=
-×=

even is 0 if
odd is 0 if
0 if

)2/,(
)2/)1(,(

1
),(

2

2

x
x
x

nxp
nxpxnxp

© 2013 Goodrich, Tamassia, Goldwasser

Recursion 18

Recursive Squaring Method
Algorithm Power(x, n):

Input: A number x and integer n = 0
Output: The value xn

if n = 0 then
return 1

if n is odd then
y = Power(x, (n - 1)/ 2)
return x · y ·y

else
y = Power(x, n/ 2)
return y · y

© 2013 Goodrich, Tamassia, Goldwasser

Recursion 19

Analysis
Algorithm Power(x, n):

Input: A number x and
integer n = 0

Output: The value xn

if n = 0 then
return 1

if n is odd then
y = Power(x, (n - 1)/ 2)
return x · y · y

else
y = Power(x, n/ 2)
return y · y

It is important that we
use a variable twice
here rather than calling
the method twice.

Each time we make a
recursive call we halve
the value of n; hence,
we make log n recursive
calls. That is, this
method runs in O(log n)
time.

© 2013 Goodrich, Tamassia, Goldwasser

Recursion 20

Tail Recursion
q Tail recursion occurs when a linearly recursive

method makes its recursive call as its last step.
q The array reversal method is an example.
q Such methods can be easily converted to non-

recursive methods (which saves on some resources).
q Example:

Algorithm IterativeReverseArray(A, i, j):
Input: An array A and nonnegative integer indices i and j
Output: The reversal of the elements in A starting at

index i and ending at j
while i < j do

Swap A[i] and A[j]
i = i + 1
j = j - 1

return

© 2013 Goodrich, Tamassia, Goldwasser

Recursion 21

Binary Recursion
q Binary recursion occurs whenever there are two

recursive calls for each non-base case.
q Example from before: the DrawTicks method for

drawing ticks on an English ruler.

© 2013 Goodrich, Tamassia, Goldwasser

Recursion 22

Another Binary Recusive Method
q Problem: add all the numbers in an integer array A:

Algorithm BinarySum(A, i, n):
Input: An array A and integers i and n
Output: The sum of the n integers in A starting at index i

if n = 1 then
return A[i]
return BinarySum(A, i, n/ 2) + BinarySum(A, i + n/ 2, n/ 2)

q Example trace:

3, 1

2, 2

0, 4

2, 11, 10, 1

0, 8

0, 2

7, 1

6, 2

4, 4

6, 15, 1

4, 2

4, 1

© 2013 Goodrich, Tamassia, Goldwasser

Recursion 23

Computing Fibonacci Numbers
q Fibonacci numbers are defined recursively:

F0 = 0
F1 = 1
Fi = Fi-1

+ Fi-2 for i > 1.

q Recursive algorithm (first attempt):
Algorithm BinaryFib(k):

Input: Nonnegative integer k
Output: The kth Fibonacci number Fk

if k = 1 then
return k
else
return BinaryFib(k - 1) + BinaryFib(k - 2)

© 2013 Goodrich, Tamassia, Goldwasser

Recursion 24

Analysis
q Let nk be the number of recursive calls by BinaryFib(k)

n n0 = 1
n n1 = 1
n n2 = n1 + n0 + 1 = 1 + 1 + 1 = 3
n n3 = n2 + n1 + 1 = 3 + 1 + 1 = 5
n n4 = n3 + n2 + 1 = 5 + 3 + 1 = 9
n n5 = n4 + n3 + 1 = 9 + 5 + 1 = 15
n n6 = n5 + n4 + 1 = 15 + 9 + 1 = 25
n n7 = n6 + n5 + 1 = 25 + 15 + 1 = 41
n n8 = n7 + n6 + 1 = 41 + 25 + 1 = 67.

q Note that nk at least doubles every other time
q That is, nk > 2k/2. It is exponential!

© 2013 Goodrich, Tamassia, Goldwasser

Recursion 25

A Better Fibonacci Algorithm
q Use linear recursion instead

Algorithm LinearFibonacci(k):
Input: A nonnegative integer k
Output: Pair of Fibonacci numbers (Fk , Fk-1)
if k = 1 then

return (k, 0)
else

(i, j) = LinearFibonacci(k - 1)
return (i +j, i)

q LinearFibonacci makes k-1 recursive calls

© 2013 Goodrich, Tamassia, Goldwasser

Recursion 26

Multiple Recursion

q Motivating example:
n summation puzzles

w pot + pan = bib
w dog + cat = pig
w boy + girl = baby

q Multiple recursion:
n makes potentially many recursive calls
n not just one or two

© 2013 Goodrich, Tamassia, Goldwasser

Recursion 27

Algorithm for Multiple Recursion
Algorithm PuzzleSolve(k,S,U):
Input: Integer k, sequence S, and set U (universe of elements to

test)
Output: Enumeration of all k-length extensions to S using elements

in U without repetitions
for all e in U do

Remove e from U {e is now being used}
Add e to the end of S
if k = 1 then

Test whether S is a configuration that solves the puzzle
if S solves the puzzle then

return “Solution found: ” S
else

PuzzleSolve(k - 1, S,U)
Add e back to U {e is now unused}
Remove e from the end of S

© 2013 Goodrich, Tamassia, Goldwasser

Example

© 2013 Goodrich, Tamassia, Goldwasser 28Recursion

cbb + ba = abc a,b,c stand for 7,8,9; not
necessarily in that order

[] {a,b,c}

[a] {b,c}
a=7

[b] {a,c}
b=7

[c] {a,b}
c=7

[ab] {c}
a=7,b=8
c=9

[ac] {b}
a=7,c=8
b=9

[ba] {c}
b=7,a=8
c=9

[bc] {a}
b=7,c=8
a=9

[ca] {b}
c=7,a=8
b=9

[cb] {a}
c=7,b=8
a=9

might be able to
stop sooner

Slide by Matt Stallmann
included with permission.

799 + 98 = 997

Recursion 29

Visualizing PuzzleSolve

PuzzleSolve (3,(),{a,b,c})

Initial call

PuzzleSolve (2,c,{a,b})PuzzleSolve (2,b,{a,c})PuzzleSolve (2,a,{b,c})

PuzzleSolve (1,ab,{c})

PuzzleSolve (1,ac,{b}) PuzzleSolve (1,cb,{a})

PuzzleSolve (1,ca,{b})

PuzzleSolve (1,bc,{a})

PuzzleSolve (1,ba,{c})

abc

acb

bac

bca

cab

cba

© 2013 Goodrich, Tamassia, Goldwasser

